
Panning for Gold in RTL Using Transactions

Rich Edelman
Mentor Graphics

rich_edelman@mentor.com

Raghu Ardeishar
Mentor Graphics

raghu_ardeishar@mentor.com

Akshay Sarup
Mentor Graphics

 akshay_sarup@mentor.com

Suman Kasam
Qualcomm

 skasam@qualcomm.com

ABSTRACT
This paper explains multi-level transaction level monitoring,
scoreboarding and coverage collection for existing RTL designs. By
applying the ideas in this paper, the reader will understand how to
achieve higher level verification on reused or lower level design
components. Simple transaction verification is not our only goal.
Most systems have a great number of combinations of transactions or
sub-transactions. The main contribution of this paper is the
generation of those detailed transactions using intelligent monitors,
making the transactions visible for other higher level verification
components.

Categories and Subject Descriptors
[Hardware Verification]: Functional Simulation and Verification –
class based SystemVerilog, OVM library, UVM library.

General Terms
Verification, Simulation, Transactions, Verification IP.

Keywords
MVC, VIP, Verification IP, Bind, Transactions.

1. INTRODUCTION
This paper proposes a TLM fabric that is overlaid on the RTL. The
fabric is a verification fabric that can be connected to the lower level
RTL. The TLM fabric recognizes transactions in the design. This
recognition must be complete – a TLM fabric must be able to
monitor all the possible transactions, including sub-transactions (like
phases) or burst transactions.

Figure 1 - Bed-of-Nails Testing

The fabric is a collection of smart probes that are bound into the RTL
just as a tester might probe internal DUT signals [Figure 1]. When
the fabric probes the RTL the signals are made available to monitors
that transform the pin level signals into higher level abstractions such
as transactions. These monitors are abstraction shifters – they shift
from pin wiggles and signals to transactions.

In addition, monitors may be able to create multi-level transactions.
These multi-level transactions are transactions which describe the
sub-parts of the same transactions – a transfer transaction might be
made up of two other phase transactions. A packet transaction might
consist of multiple bursts, which consist of multiple transfers, which
consist of two phases each.

Figure 2 - Multi-level transactions

The multi-level transactions are often hard to observe or rebuild from
externally visible signals, but they are available as internal states, or
internal signal changes. These internal states and internal signals are
the gold which this paper will mine.

Each of the transaction levels are important to understand as part of a
complete verification environment. Unfortunately, the detailed
monitoring of multi-level transactions and their related internal
signals and their transformation can be hard to accomplish. This
paper will describe some techniques to make monitoring,
scoreboarding and coverage of multi-level transactions easier, but
since this area of verification is very design specific, there will
always be a heavy requirement of planning and coding to achieve the
verification goals.

2. ENABLING TRANSACTIONS
The TLM fabric – the bed-of-nails[5] – will allow new coverage,
new model checking and debug. It will do this by making internal
states and signals visible. Furthermore, it will transform the internal
states into higher level transactions. Exposing the internal states and
signals also is a valuable verification tool, but can lead to too much
information. Transforming multiple states, state transitions or pin
wiggles into transactions allows the information to be captured and
communicated throughout the verification environment efficiently.

Figure 3 - TLM Fabric

Once a design has been enabled with this TLM fabric, new
functionality can be added to the testbench, including coverage of
pairs of transactions – like two long burst transactions on two
different RTL interfaces. Debugging is also easier since the actual
transactions are being recognized and are available.

The fabric consists of verification components - agents which work
to recognize the transactions and perform tasks such as coverage
collection or scoreboarding. The overlay of the TLM fabric is
achieved by “binding” the RTL signals out to a transaction level
monitor. The advantage of this approach is that it can be applied at
run-time to any part of the design which adheres to the interface
protocol.

3. USING VERIFICATION COMPONENTS
Verification components are commonly used to encapsulate an
interface or device. A verification component might be used as an
AHB [11] master. It knows how to issue stimulus and to respond to
AHB related signals. A verification component (agent) contains a
monitor which knows how to recognize pin wiggles and generate
transactions. It contains a driver, a sequencer, a library of sequences,
and other things needed to manage the interface or device [Figure 4].

Figure 4 - Verification Component

The TLM fabric will only use the monitoring side of verification
components – it is a passive monitor of internal states and signals.
The driver, sequencer and sequences will not be used.

A verification component may be connected to the RTL using signals
and wires, or may use a SystemVerilog interface construct. An
interface construct is common in UVM verification environments,
and will be assumed for the verification in this paper.

A SystemVerilog interface is a collection of related signals – like the
signals on a bus. It has many properties and capabilities defined in
the SystemVerilog LRM [1]. This paper will only consider the
interface as a collection of signals.

Verification components are built assuming access to a
SystemVerilog interface. Part of building the verification
environment is to create an interface, and make it available for the
verification component. This interface instantiation and connection
to a verification component is assumed by this paper.

4. ANALYSIS COMPONENTS
Analysis components are simple – they perform some kind of
analysis. In this paper, analysis components will have any number of
analysis_exports. Each of these analysis_exports will be connected to
an analysis_port, and specific transactions will be published on these
analysis_ports by monitors.

Analysis traffic is generated from monitors, and published to
subscribers. Analysis traffic is generated instantaneously – once an
analysis transaction is generated it is transferred to an analysis
component without consuming any time.

An analysis component can perform any kind of analysis from
golden model checking to vector compare to transaction compare to
functional coverage collection.

The analysis component can copy the transaction into storage for
later processing – as in the case of out-of-order transaction
comparison.

The transactions are specific to the functionality of what is being
monitored. For example an AHB monitor might be publishing AHB
phases, AHB transfers and AHB bursts. Each of these transaction
types will be connected to different analysis_exports on analysis
components.

5. MONITORS AND INTERFACES
A monitor’s job is to monitor. It can monitor many things. It can be
simple or complex. A monitor needs to know what to monitor (a
value, or state), when to monitor (on posedge clk) and what to do
with the monitored data (send a transaction out the analysis port).

Interfaces and bind have been used in many ways [8][9][10]. This
paper describes an additional usage – binding interfaces, and
providing the bound interfaces to verification component monitors.

5.1 Module-based Monitor
A monitor could be a simple module, connected to the signals to be
monitored. In this case the monitor prints the current ‘value’ on the
positive edge of the clock.

It has the necessary inputs – at least one piece of data to be
monitored – ‘value’, and a trigger – when to monitor – ‘clk’.
Unfortunately, while this monitor does a good job monitoring, it is
just monitoring a value, and only prints it. If a series of values made
up a transaction, it would be nice to collect the values together,
create the transaction and send it elsewhere to be processed. This
kind of monitor will be introduced below.

To complete our simple module-based monitoring, we construct the
testbench ‘top’ below, and have a piece of hardware –
‘computing_element’ that needs to be monitored.

module top();
 computing_element ce(clk);

 bind ce monitor mon1(clk1, sum);
endmodule

module computing_element(input clk1);
 bit [7:0] sum = 0;

 always @(posedge clk1)
 sum += 1;
endmodule

module monitor(input bit clk,
 input bit[7:0] value);
 always @(posedge clk)
 $display(
 "Value = %0d (%m)", value);
endmodule

The computing_element 8 bit ‘sum’ is an internal value. It is not
visible to the testbench or the outside world. In order to monitor that
value we use the SystemVerilog bind command to instantiate the
monitor module within the RTL module being verified
(computing_element).

In the bind statement above, the module named ‘monitor’ is
instantiated into the instance named ‘ce’. Furthermore, the signal
‘clk1’ local to the instance of ‘ce’ is connected to the first port of
monitor, and the signal ‘sum’, local to the instance of ‘ce’ is
connected to the second port of monitor.

This monitor needs to publish a transaction to interested subscribers.
An assortment of techniques are available, including direct
connection, config setting, and the new resource database setting.

This module based monitoring is provided as background, but is not
the subject of this paper.

5.2 Interface-based Monitor
Monitoring internal signals can also be achieved by binding a
SystemVerilog interface into existing RTL. This interface is the
exact same interface that was used to do block level testing, but now
that the system is being tested, the block level interface is no longer
externally visible. It is internal, hidden. Using bind, an interface can
be instantiated just as the monitor module was above.

The abc_if interface above has two signals shown – the clock and an
8 bit data. The checker below, part of the abc_agent, is a class with a
run() task and a virtual interface handle to an abc_if interface. The
checker monitors an abc_if, and for each negative or positive edge, it
performs some job.

The checker in Figure 5 is connected to the block named Block X
and is part of the block level verification plan for that block.

Figure 5 - Block checking using a virtual interface

The skeleton for the checker (a monitor) is below. This checker
needs a virtual interface of type abc_if, and then it can do its
checking job (monitoring).

In Figure 6, BlockX from above is combined with BlockY, and
reused inside other blocks, SOC A and SOC B, the checker code no
longer has direct access to the interface signals that it is checking.

Figure 6 - System checking using a virtual interface

With a simple bind statement an instance of the checker interface can
be bound into the lower level SOC A and SOC B blocks. Once
bound, the interface becomes available for a checker to connect to.

6. A TRANSACTION LEVEL MONITOR
A transaction level monitor monitors interesting behavior, and
creates transactions which get published to interested subscribers.
The kinds of interesting behavior monitored includes pin wiggles,
counter values, internal states, registers, state-machine current states,
state-machine transitions and even other transactions.

Figure 7 - Monitor and Analysis Component

The monitor will publish the transaction using an analysis port, and
the analysis component will subscribe using an analysis export. The
publisher/subscriber interface ensures that transactions are delivered
without delays (they are transported as function calls, as opposed to
task calls).

The monitor recognizes a transaction. Once a transaction has been
recognized, a call to new() or the factory creates a transaction. The
newly created transaction fields are filled in. Finally, the filled in
transaction is published by calling ‘ap.write(t)’.

The simple protocol in Figure 8 could be monitored with the code
below it. This is a trivial protocol, and a simplistic monitor. Most

class checker extends uvm_component;
 virtual interface abc_if vif;
 ...
 task run();
 fork
 forever @(negedge vif.clk) begin
 ...
 end
 forever @(posedge vif.clk) begin
 ...
 end
 join
 endtask
endclass

interface abc_if(input wire clk,
 input wire[7:0]data);
 ...
endinterface

real protocols are quite complicated, and most real monitors are quite
sophisticated. Writing correct monitors is quite difficult, contributing
to a collection of widely available monitors from a variety of
specialists. Many times verification teams choose to use multiple
monitors from different sources, just to ensure that no behavior is
missed.

Figure 8 - Simple Read Transfer

This simple protocol is a read transfer made up of two sub-phases, a
read addresss phase and a read data phase. The monitor below only
publishes a transaction when the read transfer is complete. A more
complete monitor would also have the ability to publish the phase
transactions are well, since an analysis component might be
interested to know that a phase had occurred.

7. TRANSACTION LEVEL FUNCTIONAL
COVERAGE

7.1 Simultaneous Reads
In the figure below, a memory is shared by two different sub-
systems. One of the verification goals is to make sure that a large
read occurs from BlockX and BlockW simultaneously to the same
memory location. This kind of design functionality is exactly what
functional coverage in SystemVerilog is for. Functional coverage is
the coverage of design specific functionality. Code coverage is an
automated coverage where each executable line is counted when it is
executed. Functional coverage is different – it must be specified by
the user.

Figure 9 - Memory traffic on two competing busses

In addition to writing the functional coverage, the user must find a
way to retrieve the things to be covered – in this case a large packet
read transaction from overlapping addresses on two different
interfaces.

Functional coverage is one of the most interesting uses for
transaction level monitors.

7.2 Data transformation
In Figure 10, when a packet is transmitted on the input of a block a
transaction is created. It is the input transaction, and is sent to the
coverage unit. As the packet is processed in the RTL, an intermediate
packet may be created, and produced. That intermediate packet can
be sent to a coverage collector – it is the “generated” result.

In the figure below, BlockX reads via interface 1 and writes via
interface 2. BlockX performs a data transformation, for example
AES encryption or data compression.

Figure 10 - BlockX transformation

8. TRANSACTION LEVEL SCOREBOARD
Scoreboards check to see if the behavior as observed is what is
expected. They check the experimental behavior against a known
good behavior.

class monitor extends uvm_component;
 virtual interface simple_bus vif;
 uvm_analysis_port #(my_transaction) ap;

 function new(string name,
 uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build();
 ap = new("ap", this);
 endfunction

 task run();
 my_transaction t;
 forever @(posedge vif.clk) begin
 t = my_transaction::type_id
 ::create("t");
 t.addr = vif.addr;
 if (vif.idle) begin
 t.rw = IDLE;
 t.data = vif.data;
 t.addr = vif.addr;
 end
 else if (vif.rw) begin
 t.rw = READ;
 @(posedge vif.clk);
 t.data = vif.data;
 end
 else begin
 t.rw = WRITE;
 t.data = vif.data;
 end
 ap.write(t);
 end
 endtask
endclass

Transaction based scoreboards are no different. They are built to
accept transactions and to check behavior or legality or validity.

8.1 Simple Scoreboard
A simple scoreboard is implemented below which is a
uvm_subscriber. The write() routine is called when any connected
analysis port publishes a new transaction. The analysis port in our
case will be part of the monitor – the monitor recognizes a
transaction, constructs a transaction class, and publishes it to its
subscribers.

This example subscriber is simple. It just echoes the received
transaction to the standard output.

A more interesting scoreboard might accept a transaction from a
monitor, and calculate if it is a legal transaction. For example by
calculating the checksum on a collection of data, then comparing
with the checksum received in the transaction.

8.2 In-order Scoreboard
A more complex scoreboard might have two sets of transaction
streams, an expected stream and an actual stream. Each pair of
transactions are compared as they are generated. This is “in-order”
comparison.

Below is the in-order comparator for a simple transaction type. This
analysis component – a scoreboard – has two analysis exports, and
two fifos. When a transaction is available – either on A or B, the
write_A() or write_B() function is executed. In each case the
transaction passed in is saved into a fifo for later processing. This
“front-end” to the scoreboard has infinite length fifos. As
transactions appear they are saved “in-order”.

The scoreboard has a run() task which pops one transaction from
each fifo and does a compare. A more complete scoreboard would
check the end of simulation for items still in the fifo. This would
indicate that some matching transaction was never produced, or that
too many transactions were produced. In either case it is a problem
for the verification team.

8.3 Out-of-order Scoreboard
Another kind of complex scoreboard also accepts expected and
actual streams, but the transactions are not expected to be in order.
This is “out-of-order” comparison. In this case, either the expected or
actual transactions would be posted to a list of transactions. These
posted transactions must be matched within a window, otherwise the
scoreboard will flag the posted transaction as either missed (an
expected transaction occurred, but no matching actual) or extra (an
actual transaction occurred, but no matching expected). The out-of-
order comparator is an exercise for the reader.

9. TRANSACTION LEVEL DEBUG
Using a simple subscriber, as mentioned above, a transaction can be
captured. Once captured in the write() routine of the subscriber,
many things can be done with it. It can be printed to the standard
output. It can be formatted and printed into a logfile. It can be
formatted and printed into a “replay-file”. It can be recorded into a
transaction viewing database using a recording API.

`uvm_analysis_imp_decl(_A)
`uvm_analysis_imp_decl(_B)

class inorder_analysis_component
 extends uvm_component;
 ...
 // Declare the analysis exports that
 // the monitor will publish to.
 uvm_analysis_imp_A#(...) analysis_export_A;
 uvm_analysis_imp_B#(...) analysis_export_B;

 // Fifos to hold the in-order data.
 uvm_tlm_fifo #(my_transaction) fifo_A;
 uvm_tlm_fifo #(my_transaction) fifo_B;
 ...

 function void build();
 fifo_A = new("fifo_A", this, 0);
 fifo_B = new("fifo_B", this, 0);
 analysis_export_A = new("...", this);
 analysis_export_B = new("...", this);
 endfunction

 // When the A analysis_export is written,
 // this write() routine will be called.
 function void write_A(my_transaction t);
 void'(fifo_A.try_put(t));
 endfunction

 // When the B analysis_export is written,
 // this write() routine will be called.
 function void write_B(my_transaction t);
 void'(fifo_B.try_put(t));
 endfunction

 function void compare(my_transaction A, B);
 ...
 endfunction

 task run();
 my_transaction A, B;
 forever begin
 fifo_A.get(A);
 fifo_B.get(B);
 compare(A, B);
 end
 endtask
endclass

class simple_analysis_component
 extends uvm_subscriber#(my_transaction);
 `uvm_component_utils(
 simple_analysis_component)
 ...
 function void write(my_transaction t);
 `uvm_info("SIMPLE",
 $psprintf("Analyzing '%s'.",
 t.convert2string()),
 UVM_INFO)
 endfunction
endclass

The standard output and logfile solutions are useful debug
techniques. The replay-file is a file that is formatted so that it can be
read later as either stimulus or as expected behavior. The recording
API can be implemented by a user, or a vendor solution can be used.

In all of these cases, once the transaction is captured by the
subscriber, it is logged or saved for future debug or golden model
checking.

10. BINDING IT ALL TOGETHER
Monitors have been built that monitor interfaces, and analysis
components have been built that check functionality or collect
coverage.

In order to gain access to the internal signals we are interested in
monitoring, we must bind the interface inside the RTL, and register
that bound interface – make it available for the monitor.

In the code snippet above, there are two RTL duts (dutA and dutB)
and a testbench. The testbench, ‘e’, will contain two monitors, and
perform comparison on the results – one result from dutA and one
result from dutB. There are two interfaces created with the two bind
statements – dutA.dut_if and dutB.dut_if.

Those interfaces are bound into the RTL, and available for futher use
by our testbench. In this example the bound (instanced) interfaces are
registered with the resource database [4][7]. This database is really a
fancy global name lookup for typed data. We’re using it in the most
simple way possible. We register a name “A”, a variable name
“vbus_if” and a value – the virtual interface.

The testbench connect() function, below, is built to lookup the A and
B interfaces. The testbench environment code uses the resource
‘read_by_name” functionality to retrieve the virtual interface. Once
retrieved the environment passes the virtual interface to the monitors
– one for A and one for B.

11. CONCLUSION
When a block is verified using UVM Verification methods, and a
verification component is used with a SystemVerilog interface, that
verification component can be reused as a monitor when the block is
reused in a higher level block or system.

This reuse is accomplished by using ‘bind’ to bind an interface into
the block as it exists as lower-level RTL in a system. Once the
interface is bound, the verification component can monitor the
interface – just as a bed-of-nails tester might have done.

Once these monitors are in place, the monitors can generate
transactions as they observe the internal operations of the reused
block. These internal transactions can be checked for correctness,
can be used as debugging aids, and can have coverage collected.

Observing these transactions together with similarly published
transactions from other blocks in the system can provide a birds-eye
view of the system operation, and can allow easy checking of corner
cases like – “did we ever check that the bus transfer between BlockA
and B works right after Block C has powered up”. Observing these
transactions together with each other offers the verification engineer
greater insight and comfort from his verification environment.

12. REFERENCES
[1] SystemVerilog LRM. www.accellera.org
[2] OVM World Download, www.ovmworld.org
[3] OVM User Guide.
[4] UVM User Guide. (unpublished)
[5] Conrad, James, Mysore, G. and Newberry, B., “A

Microcontroller-Based Bed-of-Nails Test Fixture to Program and
Test Small Printed Circuit Boards”, SouthEast Con, 2006.

[6] OVM Reference Guide.
[7] UVM Reference Guide. (unpublished)
[8] Rich, Dave and Bromley, Jonathan, “Abstract BFMs Outshine

Virtual Interfaces for Advanced SystemVerilog Testbenches”,
DVCON 2008

[9] Baird, Michael, “Coverage Driven Verification of an Unmodified
DUT within an OVM Testbench”, DVCON 2010

[10] Mallez, Virginie, Peryer, Mark, et. al., “Are You in a “bind”
with Advanced Verification?”, Verification Horizons, February
2009.

[11] AHB Specifcation. www.arm.com

 function void env::connect();
 // The 'A' Side.
 uvm_resource_db#(
 virtual interface bus_interface)
 ::read_by_name("A", "vbus_if",
 vbus_if_A);
 monA.vbus_if = vbus_if_A;
 ...

 // The 'B' Side.
 uvm_resource_db#(
 virtual interface bus_interface)
 ::read_by_name("B", "vbus_if",
 vbus_if_B);
 monB.vbus_if = vbus_if_B;
 ...
 endfunction

module top();
 bit fast_clk, clk, reset;

 dut dutA(clk, reset);
 dut dutB(fast_clk, reset);

 env e = new("env", null);

 // Create the probes.
 // Bind a virtual interface into each
 // dut. Name the instances dutA.dut_if
 // and dutB.dut_if. Connect the signal
 // 'clk' and 'counter', as referenced
 // from within the dut.
 bind dutA bus_interface dut_if(
 dut_clk, counter);
 bind dutB bus_interface dut_if(
 dut_clk, counter);

 initial begin
 // Put the probes into a database.
 uvm_resource_db #(
 virtual interface bus_interface)
 ::set("A", "vbus_if", dutA.dut_if);
 uvm_resource_db #(
 virtual interface bus_interface)
 ::set("B", "vbus_if", dutB.dut_if);

 run_test();
 end

APPENDIX 1 – INTERNAL RTL MONITORS AND SCOREBOARDS

//===
import uvm_pkg::*;
`include "uvm_macros.svh"

// ==
// My_transaction
// Simple transaction class with 'data'
// and a timestamp, t.
class my_transaction extends
 uvm_transaction;
 `uvm_object_utils(my_transaction)

 bit [31:0] data;
 time t;
 int id;
 static int g_id = 0;

 function new(string name =
 "my_transaction");
 super.new(name);
 id = g_id++;
 endfunction

 function string convert2string();
 return $psprintf(
 "(id=%0d, data=%0x, @%0t)",
 id, data, t);
 endfunction
endclass

// ==
// General Analysis Component.
// Listen for transactions. Re-implement
// write() do to something more
// interesting with them.
class simple_analysis_component
 extends uvm_subscriber#(my_transaction);
 `uvm_component_utils(
 simple_analysis_component)

 function new(string name =
 "simple_analysis_component",
 uvm_component parent = null);
 super.new(name, parent);
 endfunction

 function void write(my_transaction t);
 `uvm_info("SIMPLE",
 $psprintf("Analyzing '%s'.",
 t.convert2string()),
 UVM_INFO)
 endfunction
endclass

`uvm_analysis_imp_decl(_A)
`uvm_analysis_imp_decl(_B)

// ==
// INORDER COMPARE
// Simple comparison of transactions
// generated on two streams, in-order.
class inorder_analysis_component
 extends uvm_component;
 `uvm_component_utils(
 inorder_analysis_component)

 // Declare the analysis exports that
 // the monitor will publish to.
 uvm_analysis_imp_A#(my_transaction,
 inorder_analysis_component)
 analysis_export_A;
 uvm_analysis_imp_B#(my_transaction,
 inorder_analysis_component)
 analysis_export_B;

 // Fifos to hold the in-order data.
 uvm_tlm_fifo #(my_transaction) fifo_A;
 uvm_tlm_fifo #(my_transaction) fifo_B;

 function new(string name =
 "inorder_analysis_component",
 uvm_component parent = null);
 super.new(name, parent);
 endfunction

 function void build();
 // Create 2 infinite size fifos. One
 // for each input stream.
 fifo_A = new("fifo_A", this, 0);
 fifo_B = new("fifo_B", this, 0);
 analysis_export_A =
 new("analysis_export_A", this);
 analysis_export_B =
 new("analysis_export_B", this);
 endfunction

 // When the A analysis_export is written,
 // this write() routine will be called.
 function void write_A(my_transaction t);
 `uvm_info("INORDER-A",
 $psprintf("Got '%s'.",
 t.convert2string()), UVM_INFO)
 void'(fifo_A.try_put(t));
 endfunction

 // When the B analysis_export is written,
 // this write() routine will be called.
 function void write_B(my_transaction t);
 `uvm_info("INORDER-B",
 $psprintf("Got '%s'.",
 t.convert2string()), UVM_INFO)
 void'(fifo_B.try_put(t));
 endfunction

 local function void compare(
 my_transaction A, B);
 `uvm_info("COMPARE", $psprintf("A=%s",
 A.convert2string()), UVM_INFO)
 `uvm_info("COMPARE", $psprintf("B=%s",
 B.convert2string()), UVM_INFO)
 `uvm_info("COMPARE",
 (A.data==B.data)?"PASSED":"FAILED",
 UVM_INFO)
 endfunction

 task run();
 my_transaction A, B;
 forever begin
 fifo_A.get(A);
 fifo_B.get(B);
 compare(A, B);
 end
 endtask

 function void check();
 `uvm_info("CHECK",
 $psprintf("A=%0d, B=%0d",
 fifo_A.used(), fifo_B.used()),
 UVM_INFO)
 endfunction
endclass

// ==
// Monitor.
// On each positive edge of the clock
// create a transaction and send it out
// the analysis port.
class monitor extends uvm_component;
 `uvm_component_utils(monitor)

 virtual bus_interface vbus_if;
 uvm_analysis_port #(my_transaction) ap;

 function new(string name = "mon",
 uvm_component parent = null);
 super.new(name, parent);
 endfunction

 function void build();
 ap = new("ap", this);
 endfunction

 task run();
 my_transaction t;
 bit inject_error;
 forever @(posedge vbus_if.clk) begin
 // Recognize transaction on the
 // clock edge...

 // Create new UVM transaction.
 t = my_transaction::type_id
 ::create("t");
 t.data = vbus_if.data;
 t.t = $time;
 $display("NOW=%0t", t.t);

 // Randomly inject a mismatch.
 assert(std::randomize(inject_error));
 if (inject_error)
 t.data += 100;

 `uvm_info("MON", $psprintf(
 "Sending new transaction '%s'.",
 t.convert2string()), UVM_INFO)

 // Send the transaction to any
 // subscribers
 ap.write(t);
 end
 endtask
endclass

// ==
// ENV.
// This env expects to connect to two
// interfaces.
// It will monitor those interfaces.
class env extends uvm_env;
 `uvm_component_utils(env)

 monitor monA;
 monitor monB;

 simple_analysis_component simple_ac;
 inorder_analysis_component inorder_ac;

 virtual bus_interface vbus_if_A;
 virtual bus_interface vbus_if_B;

 function new(string name = "env",
 uvm_component parent = null);
 super.new(name, parent);
 endfunction

 function void build();
 monA = monitor::type_id
 ::create("monA", this);
 monB = monitor::type_id
 ::create("monB", this);

 simple_ac = simple_analysis_component::
 type_id::create("simple_ac", this);
 inorder_ac =
 inorder_analysis_component::
 type_id::create("inorder_ac", this);
 endfunction

 function void connect();
 // Retrieve the bus interface, and
 // pass to the monitor.
 // The 'A' Side.
 uvm_resource_db#(
 virtual interface bus_interface)
 ::read_by_name("A", "vbus_if",
 vbus_if_A);
 if (vbus_if_A == null)
 `uvm_fatal("ENV",
 "Virtual interface A is null")
 monA.vbus_if = vbus_if_A;
 monA.ap.connect(
 simple_ac.analysis_export);
 monA.ap.connect(
 inorder_ac.analysis_export_A);

 // The 'B' Side.
 uvm_resource_db#(
 virtual interface bus_interface)
 ::read_by_name("B", "vbus_if",
 vbus_if_B);
 if (vbus_if_B == null)
 `uvm_fatal("ENV",
 "Virtual interface B is null")
 monB.vbus_if = vbus_if_B;
 monB.ap.connect(
 simple_ac.analysis_export);
 monB.ap.connect(
 inorder_ac.analysis_export_B);
 endfunction

 task run();
 #1000;
 uvm_top.stop_request();
 endtask
endclass

// ==
// Interface.
// Interface to be bound into the DUT.
interface bus_interface(
 input bit clk, bit [31:0] data);
 // Wires...
endinterface

// ==
// DUT.
// On the positive edge of the clock, if
// reset is high, clear the counter,
// otherwise increment the counter by 1.
module dut(input wire dut_clk,
 input wire reset);
 bit [31:0]counter = 0;

 always @(posedge dut_clk)
 if (reset == 1'h1)
 counter = 0;
 else
 counter++;
endmodule

// ==
// Top.
// Instantiate two DUTs and an monitor
// environment. Bind two interfaces into
// the DUT to allow internal monitoring.
// Register those bound interfaces.
module top();
 bit fast_clk, clk, reset;

 dut dutA(clk, reset);
 dut dutB(fast_clk, reset);

 env e = new("env", null);

 // Create the probes.
 // Bind a virtual interface into each
 // dut. Name the instances dutA.dut_if
 // and dutB.dut_if. Connect the signal
 // 'clk' and 'counter', as referenced
 // from within the dut.
 bind dutA bus_interface dut_if(
 dut_clk, counter);
 bind dutB bus_interface dut_if(
 dut_clk, counter);

 initial begin
 // Put the probes into a database.
 uvm_resource_db #(
 virtual interface bus_interface)
 ::set("A", "vbus_if", dutA.dut_if);
 uvm_resource_db #(
 virtual interface bus_interface)
 ::set("B", "vbus_if", dutB.dut_if);

 run_test();
 end

 always begin
 #5 clk = 0; #5 clk = 1; end
 always begin
 #1 fast_clk = 0; #1 fast_clk = 1; end

 initial begin
 // Reset, then run. Repeat.
 reset = 1; #20; reset = 0; #100;
 reset = 1; #20; reset = 0; #100;
 end
endmodule

