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ABSTRACT  
This paper explains multi-level transaction level monitoring, 
scoreboarding and coverage collection for existing RTL designs. By 
applying the ideas in this paper, the reader will understand how to 
achieve higher level verification on reused or lower level design 
components. Simple transaction verification is not our only goal. 
Most systems have a great number of combinations of transactions or 
sub-transactions. The main contribution of this paper is the 
generation of those detailed transactions using intelligent monitors, 
making the transactions visible for other higher level verification 
components.    

 

Categories and Subject Descriptors  
[Hardware Verification]: Functional Simulation and Verification – 
class based SystemVerilog, OVM library, UVM library. 

General Terms  
Verification, Simulation, Transactions, Verification IP.  

Keywords  
MVC, VIP, Verification IP, Bind, Transactions. 

1. INTRODUCTION  
This paper proposes a TLM fabric that is overlaid on the RTL. The 
fabric is a verification fabric that can be connected to the lower level 
RTL. The TLM fabric recognizes transactions in the design. This 
recognition must be complete – a TLM fabric must be able to 
monitor all the possible transactions, including sub-transactions (like 
phases) or burst transactions.  

 
Figure 1 - Bed-of-Nails Testing 

 
The fabric is a collection of smart probes that are bound into the RTL 
just as a tester might probe internal DUT signals [Figure 1]. When 
the fabric probes the RTL the signals are made available to monitors 
that transform the pin level signals into higher level abstractions such 
as transactions. These monitors are abstraction shifters – they shift 
from pin wiggles and signals to transactions. 

In addition, monitors may be able to create multi-level transactions. 
These multi-level transactions are transactions which describe the 
sub-parts of the same transactions – a transfer transaction might be 
made up of two other phase transactions. A packet transaction might 
consist of multiple bursts, which consist of multiple transfers, which 
consist of two phases each. 

 
Figure 2 - Multi-level transactions 

 

The multi-level transactions are often hard to observe or rebuild from 
externally visible signals, but they are available as internal states, or 
internal signal changes. These internal states and internal signals are 
the gold which this paper will mine. 

Each of the transaction levels are important to understand as part of a 
complete verification environment. Unfortunately, the detailed 
monitoring of multi-level transactions and their related internal 
signals and their transformation can be hard to accomplish. This 
paper will describe some techniques to make monitoring, 
scoreboarding and coverage of multi-level transactions easier, but 
since this area of verification is very design specific, there will 
always be a heavy requirement of planning and coding to achieve the 
verification goals. 

2. ENABLING TRANSACTIONS  
The TLM fabric – the bed-of-nails[5] – will allow new coverage, 
new model checking and debug. It will do this by making internal 
states and signals visible. Furthermore, it will transform the internal 
states into higher level transactions. Exposing the internal states and 
signals also is a valuable verification tool, but can lead to too much 
information. Transforming multiple states, state transitions or pin 
wiggles into transactions allows the information to be captured and 
communicated throughout the verification environment efficiently. 

 
Figure 3 - TLM Fabric 

 



Once a design has been enabled with this TLM fabric, new 
functionality can be added to the testbench, including coverage of 
pairs of transactions – like two long burst transactions on two 
different RTL interfaces. Debugging is also easier since the actual 
transactions are being recognized and are available.  

The fabric consists of verification components - agents which work 
to recognize the transactions and perform tasks such as coverage 
collection or scoreboarding. The overlay of the TLM fabric is 
achieved by “binding” the RTL signals out to a transaction level 
monitor. The advantage of this approach is that it can be applied at 
run-time to any part of the design which adheres to the interface 
protocol.  

3. USING VERIFICATION COMPONENTS 
Verification components are commonly used to encapsulate an 
interface or device. A verification component might be used as an 
AHB [11] master. It knows how to issue stimulus and to respond to 
AHB related signals. A verification component (agent) contains a 
monitor which knows how to recognize pin wiggles and generate 
transactions. It contains a driver, a sequencer, a library of sequences, 
and other things needed to manage the interface or device [Figure 4].  

 
Figure 4 - Verification Component 

 
The TLM fabric will only use the monitoring side of verification 
components – it is a passive monitor of internal states and signals. 
The driver, sequencer and sequences will not be used. 

A verification component may be connected to the RTL using signals 
and wires, or may use a SystemVerilog interface construct. An 
interface construct is common in UVM verification environments, 
and will be assumed for the verification in this paper. 

A SystemVerilog interface is a collection of related signals – like the 
signals on a bus. It has many properties and capabilities defined in 
the SystemVerilog LRM [1]. This paper will only consider the 
interface as a collection of signals. 

Verification components are built assuming access to a 
SystemVerilog interface. Part of building the verification 
environment is to create an interface, and make it available for the 
verification component. This interface instantiation and connection 
to a verification component is assumed by this paper.  

4. ANALYSIS COMPONENTS 
Analysis components are simple – they perform some kind of 
analysis. In this paper, analysis components will have any number of 
analysis_exports. Each of these analysis_exports will be connected to 
an analysis_port, and specific transactions will be published on these 
analysis_ports by monitors. 

Analysis traffic is generated from monitors, and published to 
subscribers.  Analysis traffic is generated instantaneously – once an 
analysis transaction is generated it is transferred to an analysis 
component without consuming any time. 

An analysis component can perform any kind of analysis from 
golden model checking to vector compare to transaction compare to 
functional coverage collection.  

The analysis component can copy the transaction into storage for 
later processing – as in the case of out-of-order transaction 
comparison. 

The transactions are specific to the functionality of what is being 
monitored. For example an AHB monitor might be publishing AHB 
phases, AHB transfers and AHB bursts. Each of these transaction 
types will be connected to different analysis_exports on analysis 
components. 

5. MONITORS AND INTERFACES 
A monitor’s job is to monitor. It can monitor many things. It can be 
simple or complex. A monitor needs to know what to monitor (a 
value, or state), when to monitor (on posedge clk) and what to do 
with the monitored data (send a transaction out the analysis port). 

Interfaces and bind have been used in many ways [8][9][10]. This 
paper describes an additional usage – binding interfaces, and 
providing the bound interfaces to verification component monitors. 

5.1 Module-based Monitor 
A monitor could be a simple module, connected to the signals to be 
monitored. In this case the monitor prints the current ‘value’ on the 
positive edge of the clock. 

 
It has the necessary inputs – at least one piece of data to be 
monitored – ‘value’, and a trigger – when to monitor – ‘clk’. 
Unfortunately, while this monitor does a good job monitoring, it is 
just monitoring a value, and only prints it. If a series of values made 
up a transaction, it would be nice to collect the values together, 
create the transaction and send it elsewhere to be processed. This 
kind of monitor will be introduced below. 

To complete our simple module-based monitoring, we construct the 
testbench ‘top’ below, and have a piece of hardware – 
‘computing_element’ that needs to be monitored.  

 

module top(); 
  computing_element ce(clk); 
 
  bind ce monitor mon1(clk1, sum); 
endmodule 
 
module computing_element(input clk1); 
  bit [7:0] sum = 0; 
 
  always @(posedge clk1) 
    sum += 1; 
endmodule 

module monitor(input bit clk, 
   input bit[7:0] value); 
  always @(posedge clk) 
    $display( 
      "Value = %0d (%m)", value); 
endmodule 



The computing_element 8 bit ‘sum’ is an internal value. It is not 
visible to the testbench or the outside world. In order to monitor that 
value we use the SystemVerilog bind command to instantiate the 
monitor module within the RTL module being verified 
(computing_element). 

In the bind statement above, the module named ‘monitor’ is 
instantiated into the instance named ‘ce’. Furthermore, the signal 
‘clk1’ local to the instance of ‘ce’ is connected to the first port of 
monitor, and the signal ‘sum’, local to the instance of ‘ce’ is 
connected to the second port of monitor. 

This monitor needs to publish a transaction to interested subscribers. 
An assortment of techniques are available, including direct 
connection, config setting, and the new resource database setting.  

This module based monitoring is provided as background, but is not 
the subject of this paper. 

5.2 Interface-based Monitor 
Monitoring internal signals can also be achieved by binding a 
SystemVerilog interface into existing RTL. This interface is the 
exact same interface that was used to do block level testing, but now 
that the system is being tested, the block level interface is no longer 
externally visible. It is internal, hidden. Using bind, an interface can 
be instantiated just as the monitor module was above. 

The abc_if interface above has two signals shown – the clock and an 
8 bit data. The checker below, part of the abc_agent, is a class with a 
run() task and a virtual interface handle to an abc_if interface. The 
checker monitors an abc_if, and for each negative or positive edge, it 
performs some job. 

The checker in Figure 5 is connected to the block named Block X 
and is part of the block level verification plan for that block. 

  

 
Figure 5 - Block checking using a virtual interface 

 
The skeleton for the checker (a monitor) is below. This checker 
needs a virtual interface of type abc_if, and then it can do its 
checking job (monitoring). 

 
In Figure 6, BlockX from above is combined with BlockY, and 
reused inside other blocks, SOC A and SOC B, the checker code no 
longer has direct access to the interface signals that it is checking. 

 
Figure 6 - System checking using a virtual interface 

 
With a simple bind statement an instance of the checker interface can 
be bound into the lower level SOC A and SOC B blocks. Once 
bound, the interface becomes available for a checker to connect to. 

6. A TRANSACTION LEVEL MONITOR  
A transaction level monitor monitors interesting behavior, and 
creates transactions which get published to interested subscribers. 
The kinds of interesting behavior monitored includes pin wiggles, 
counter values, internal states, registers, state-machine current states, 
state-machine transitions and even other transactions. 

 
Figure 7 - Monitor and Analysis Component 

 

The monitor will publish the transaction using an analysis port, and 
the analysis component will subscribe using an analysis export. The 
publisher/subscriber interface ensures that transactions are delivered 
without delays (they are transported as function calls, as opposed to 
task calls).  

The monitor recognizes a transaction. Once a transaction has been 
recognized, a call to new() or the factory creates a transaction. The 
newly created transaction fields are filled in. Finally, the filled in 
transaction is published by calling ‘ap.write(t)’. 

The simple protocol in Figure 8 could be monitored with the code 
below it. This is a trivial protocol, and a simplistic monitor. Most 

class checker extends uvm_component; 
  virtual interface abc_if vif; 
  ... 
  task run(); 
    fork 
      forever @(negedge vif.clk) begin 
        ... 
      end 
      forever @(posedge vif.clk) begin 
        ... 
      end 
    join 
  endtask 
endclass  

interface abc_if(input wire clk,  
  input wire[7:0]data); 
  ... 
endinterface 



real protocols are quite complicated, and most real monitors are quite 
sophisticated. Writing correct monitors is quite difficult, contributing 
to a collection of widely available monitors from a variety of 
specialists. Many times verification teams choose to use multiple 
monitors from different sources, just to ensure that no behavior is 
missed. 

 
Figure 8 - Simple Read Transfer 

 
This simple protocol is a read transfer made up of two sub-phases, a 
read addresss phase and a read data phase. The monitor below only 
publishes a transaction when the read transfer is complete. A more 
complete monitor would also have the ability to publish the phase 
transactions are well, since an analysis component might be 
interested to know that a phase had occurred. 

 

7. TRANSACTION LEVEL FUNCTIONAL 
COVERAGE  

7.1 Simultaneous Reads 
In the figure below, a memory is shared by two different sub-
systems. One of the verification goals is to make sure that a large 
read occurs from BlockX and BlockW simultaneously to the same 
memory location. This kind of design functionality is exactly what 
functional coverage in SystemVerilog is for. Functional coverage is 
the coverage of design specific functionality. Code coverage is an 
automated coverage where each executable line is counted when it is 
executed. Functional coverage is different – it must be specified by 
the user. 

 
Figure 9 - Memory traffic on two competing busses 

 

In addition to writing the functional coverage, the user must find a 
way to retrieve the things to be covered – in this case a large packet 
read transaction from overlapping addresses on two different 
interfaces. 

Functional coverage is one of the most interesting uses for 
transaction level monitors.  

7.2 Data transformation 
In Figure 10, when a packet is transmitted on the input of a block a 
transaction is created. It is the input transaction, and is sent to the 
coverage unit. As the packet is processed in the RTL, an intermediate 
packet may be created, and produced. That intermediate packet can 
be sent to a coverage collector – it is the “generated” result.  

In the figure below, BlockX reads via interface 1 and writes via 
interface 2. BlockX performs a data transformation, for example 
AES encryption or data compression. 

 
Figure 10 - BlockX transformation 

 

8. TRANSACTION LEVEL SCOREBOARD 
Scoreboards check to see if the behavior as observed is what is 
expected. They check the experimental behavior against a known 
good behavior. 

class monitor extends uvm_component; 
  virtual interface simple_bus vif; 
  uvm_analysis_port #(my_transaction) ap; 
 
  function new(string name,  
    uvm_component parent); 
    super.new(name, parent); 
  endfunction 
 
  function void build(); 
    ap = new("ap", this); 
  endfunction 
 
  task run(); 
    my_transaction t; 
    forever @(posedge vif.clk) begin 
      t = my_transaction::type_id 
        ::create("t"); 
      t.addr = vif.addr; 
      if (vif.idle) begin 
        t.rw = IDLE; 
        t.data = vif.data;  
        t.addr = vif.addr;  
      end 
      else if (vif.rw) begin 
        t.rw = READ; 
        @(posedge vif.clk); 
        t.data = vif.data; 
      end 
      else begin 
        t.rw = WRITE;  
        t.data = vif.data; 
      end 
      ap.write(t); 
    end 
  endtask 
endclass 



Transaction based scoreboards are no different. They are built to 
accept transactions and to check behavior or legality or validity. 

8.1 Simple Scoreboard 
A simple scoreboard is implemented below which is a 
uvm_subscriber. The write() routine is called when any connected 
analysis port publishes a new transaction. The analysis port in our 
case will be part of the monitor – the monitor recognizes a 
transaction, constructs a transaction class, and publishes it to its 
subscribers.  

This example subscriber is simple. It just echoes the received 
transaction to the standard output. 

  
A more interesting scoreboard might accept a transaction from a 
monitor, and calculate if it is a legal transaction. For example by 
calculating the checksum on a collection of data, then comparing 
with the checksum received in the transaction. 

8.2 In-order Scoreboard 
A more complex scoreboard might have two sets of transaction 
streams, an expected stream and an actual stream. Each pair of 
transactions are compared as they are generated. This is “in-order” 
comparison. 

Below is the in-order comparator for a simple transaction type. This 
analysis component – a scoreboard – has two analysis exports, and 
two fifos. When a transaction is available – either on A or B, the 
write_A() or write_B() function is executed. In each case the 
transaction passed in is saved into a fifo for later processing. This 
“front-end” to the scoreboard has infinite length fifos. As 
transactions appear they are saved “in-order”. 

The scoreboard has a run() task which pops one transaction from 
each fifo and does a compare. A more complete scoreboard would 
check the end of simulation for items still in the fifo. This would 
indicate that some matching transaction was never produced, or that 
too many transactions were produced. In either case it is a problem 
for the verification team. 

 

  

 

8.3 Out-of-order Scoreboard 
Another kind of complex scoreboard also accepts expected and 
actual streams, but the transactions are not expected to be in order. 
This is “out-of-order” comparison. In this case, either the expected or 
actual transactions would be posted to a list of transactions. These 
posted transactions must be matched within a window, otherwise the 
scoreboard will flag the posted transaction as either missed (an 
expected transaction occurred, but no matching actual) or extra (an 
actual transaction occurred, but no matching expected). The out-of-
order comparator is an exercise for the reader. 

9. TRANSACTION LEVEL DEBUG  
Using a simple subscriber, as mentioned above, a transaction can be 
captured. Once captured in the write() routine of the subscriber, 
many things can be done with it. It can be printed to the standard 
output. It can be formatted and printed into a logfile. It can be 
formatted and printed into a “replay-file”. It can be recorded into a 
transaction viewing database using a recording API. 

`uvm_analysis_imp_decl(_A) 
`uvm_analysis_imp_decl(_B) 
 
class inorder_analysis_component  
    extends uvm_component; 
  ... 
  // Declare the analysis exports that  
  // the monitor will publish to. 
  uvm_analysis_imp_A#(...) analysis_export_A; 
  uvm_analysis_imp_B#(...) analysis_export_B; 
 
  // Fifos to hold the in-order data. 
  uvm_tlm_fifo #(my_transaction) fifo_A; 
  uvm_tlm_fifo #(my_transaction) fifo_B; 
  ... 
 
  function void build(); 
    fifo_A = new("fifo_A", this, 0); 
    fifo_B = new("fifo_B", this, 0); 
    analysis_export_A = new("...", this); 
    analysis_export_B = new("...", this); 
  endfunction 
 
  // When the A analysis_export is written, 
  // this write() routine will be called. 
  function void write_A(my_transaction t); 
    void'(fifo_A.try_put(t)); 
  endfunction 
 
  // When the B analysis_export is written, 
  // this write() routine will be called. 
  function void write_B(my_transaction t); 
    void'(fifo_B.try_put(t)); 
  endfunction 
 
  function void compare(my_transaction A, B); 
    ... 
  endfunction 
 
  task run(); 
    my_transaction A, B; 
    forever begin 
      fifo_A.get(A); 
      fifo_B.get(B); 
      compare(A, B); 
    end 
  endtask 
endclass 

class simple_analysis_component  
  extends uvm_subscriber#(my_transaction); 
  `uvm_component_utils( 
    simple_analysis_component) 
  ... 
  function void write(my_transaction t); 
    `uvm_info("SIMPLE",  
      $psprintf("Analyzing '%s'.",  
        t.convert2string()),  
      UVM_INFO) 
  endfunction 
endclass 



The standard output and logfile solutions are useful debug 
techniques. The replay-file is a file that is formatted so that it can be 
read later as either stimulus or as expected behavior. The recording 
API can be implemented by a user, or a vendor solution can be used. 

In all of these cases, once the transaction is captured by the 
subscriber, it is logged or saved for future debug or golden model 
checking. 

10. BINDING IT ALL TOGETHER 
Monitors have been built that monitor interfaces, and analysis 
components have been built that check functionality or collect 
coverage. 

In order to gain access to the internal signals we are interested in 
monitoring, we must bind the interface inside the RTL, and register 
that bound interface – make it available for the monitor. 

 
In the code snippet above, there are two RTL duts (dutA and dutB) 
and a testbench. The testbench, ‘e’, will contain two monitors, and 
perform comparison on the results – one result from dutA and one 
result from dutB. There are two interfaces created with the two bind 
statements – dutA.dut_if and dutB.dut_if. 

Those interfaces are bound into the RTL, and available for futher use 
by our testbench. In this example the bound (instanced) interfaces are 
registered with the resource database [4][7]. This database is really a 
fancy global name lookup for typed data. We’re using it in the most 
simple way possible. We register a name “A”, a variable name 
“vbus_if” and a value – the virtual interface. 

The testbench connect() function, below, is built to lookup the A and 
B interfaces. The testbench environment code uses the resource 
‘read_by_name” functionality to retrieve the virtual interface. Once 
retrieved the environment passes the virtual interface to the monitors 
– one for A and one for B. 

 

11. CONCLUSION 
When a block is verified using UVM Verification methods, and a 
verification component is used with a SystemVerilog interface, that 
verification component can be reused as a monitor when the block is 
reused in a higher level block or system. 

This reuse is accomplished by using ‘bind’ to bind an interface into 
the block as it exists as lower-level RTL in a system. Once the 
interface is bound, the verification component can monitor the 
interface – just as a bed-of-nails tester might have done. 

Once these monitors are in place, the monitors can generate 
transactions as they observe the internal operations of the reused 
block. These internal transactions can be checked for correctness, 
can be used as debugging aids, and can have coverage collected.  

Observing these transactions together with similarly published 
transactions from other blocks in the system can provide a birds-eye 
view of the system operation, and can allow easy checking of corner 
cases like – “did we ever check that the bus transfer between BlockA 
and B works right after Block C has powered up”.  Observing these 
transactions together with each other offers the verification engineer 
greater insight and comfort from his verification environment. 
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  function void env::connect(); 
    // The 'A' Side. 
    uvm_resource_db#( 
      virtual interface bus_interface) 
        ::read_by_name("A", "vbus_if",  
          vbus_if_A); 
    monA.vbus_if = vbus_if_A; 
    ... 
 
    // The 'B' Side. 
    uvm_resource_db#( 
      virtual interface bus_interface) 
        ::read_by_name("B", "vbus_if",  
          vbus_if_B); 
    monB.vbus_if = vbus_if_B; 
    ... 
  endfunction 

module top(); 
  bit fast_clk, clk, reset; 
 
  dut dutA(clk,      reset); 
  dut dutB(fast_clk, reset); 
 
  env e = new("env", null); 
 
  // Create the probes. 
  // Bind a virtual interface into each  
  // dut. Name the instances dutA.dut_if  
  // and dutB.dut_if. Connect the signal  
  // 'clk' and 'counter', as referenced  
  // from within the dut. 
  bind dutA bus_interface dut_if( 
    dut_clk, counter); 
  bind dutB bus_interface dut_if( 
    dut_clk, counter); 
 
  initial begin 
    // Put the probes into a database. 
    uvm_resource_db #( 
      virtual interface bus_interface) 
        ::set("A", "vbus_if", dutA.dut_if); 
    uvm_resource_db #( 
      virtual interface bus_interface) 
        ::set("B", "vbus_if", dutB.dut_if); 
 
    run_test(); 
  end 



APPENDIX 1 – INTERNAL RTL MONITORS AND SCOREBOARDS 
 
//========================================= 
import uvm_pkg::*; 
`include "uvm_macros.svh" 
 
// ======================================== 
// My_transaction 
// Simple transaction class with 'data'  
// and a timestamp, t. 
class my_transaction extends  
     uvm_transaction; 
  `uvm_object_utils(my_transaction) 
 
  bit [31:0] data; 
  time t; 
  int id; 
  static int g_id = 0; 
 
  function new(string name =  
      "my_transaction"); 
    super.new(name); 
    id = g_id++; 
  endfunction 
 
  function string convert2string(); 
    return $psprintf( 
      "(id=%0d, data=%0x, @%0t)",  
        id, data, t); 
  endfunction 
endclass 
 
// ======================================== 
// General Analysis Component. 
// Listen for transactions. Re-implement  
// write() do to something more  
// interesting with them. 
class simple_analysis_component  
  extends uvm_subscriber#(my_transaction); 
  `uvm_component_utils( 
    simple_analysis_component) 
 
  function new(string name =  
    "simple_analysis_component",  
    uvm_component parent = null); 
    super.new(name, parent); 
  endfunction 
 
  function void write(my_transaction t); 
    `uvm_info("SIMPLE",  
      $psprintf("Analyzing '%s'.",  
        t.convert2string()),  
      UVM_INFO) 
  endfunction 
endclass 
 
`uvm_analysis_imp_decl(_A) 
`uvm_analysis_imp_decl(_B) 
 

// ======================================== 
// INORDER COMPARE 
// Simple comparison of transactions  
// generated on two streams, in-order. 
class inorder_analysis_component  
    extends uvm_component; 
  `uvm_component_utils( 
    inorder_analysis_component) 
 
  // Declare the analysis exports that  
  // the monitor will publish to. 
  uvm_analysis_imp_A#(my_transaction,  
    inorder_analysis_component)  
      analysis_export_A; 
  uvm_analysis_imp_B#(my_transaction,  
    inorder_analysis_component)  
      analysis_export_B; 
 
  // Fifos to hold the in-order data. 
  uvm_tlm_fifo #(my_transaction) fifo_A; 
  uvm_tlm_fifo #(my_transaction) fifo_B; 
 
  function new(string name =  
    "inorder_analysis_component",  
    uvm_component parent = null); 
    super.new(name, parent); 
  endfunction 
 
  function void build(); 
    // Create 2 infinite size fifos. One  
    // for each input stream. 
    fifo_A = new("fifo_A", this, 0); 
    fifo_B = new("fifo_B", this, 0); 
    analysis_export_A =  
      new("analysis_export_A", this); 
    analysis_export_B =  
      new("analysis_export_B", this); 
  endfunction 
 
  // When the A analysis_export is written, 
  // this write() routine will be called. 
  function void write_A(my_transaction t); 
    `uvm_info("INORDER-A",  
      $psprintf("Got '%s'.",  
        t.convert2string()), UVM_INFO) 
    void'(fifo_A.try_put(t)); 
  endfunction 
 
  // When the B analysis_export is written, 
  // this write() routine will be called. 
  function void write_B(my_transaction t); 
    `uvm_info("INORDER-B",  
      $psprintf("Got '%s'.",  
        t.convert2string()), UVM_INFO) 
    void'(fifo_B.try_put(t)); 
  endfunction 
 
  local function void compare( 
    my_transaction A, B); 
    `uvm_info("COMPARE", $psprintf("A=%s",  
      A.convert2string()), UVM_INFO) 
    `uvm_info("COMPARE", $psprintf("B=%s",  
      B.convert2string()), UVM_INFO) 
    `uvm_info("COMPARE",  
      (A.data==B.data)?"PASSED":"FAILED",  
        UVM_INFO) 
  endfunction 
 
  task run(); 
    my_transaction A, B; 
    forever begin 
      fifo_A.get(A); 
      fifo_B.get(B); 
      compare(A, B); 
    end 
  endtask 
 
  function void check(); 
    `uvm_info("CHECK",  
      $psprintf("A=%0d, B=%0d", 
        fifo_A.used(), fifo_B.used()),  
        UVM_INFO) 
  endfunction 
endclass 
 

// ======================================== 
// Monitor. 
// On each positive edge of the clock  
// create a transaction and send it out  
// the analysis port. 
class monitor extends uvm_component; 
  `uvm_component_utils(monitor) 
 
  virtual bus_interface vbus_if; 
  uvm_analysis_port #(my_transaction) ap; 
 
  function new(string name   = "mon",  
        uvm_component parent = null); 
    super.new(name, parent); 
  endfunction 
 
  function void build(); 
    ap = new("ap", this); 
  endfunction 
 
  task run(); 
    my_transaction t; 
    bit inject_error; 
    forever @(posedge vbus_if.clk) begin 
      // Recognize transaction on the  
      // clock edge... 
 
      // Create new UVM transaction. 
      t = my_transaction::type_id 
        ::create("t"); 
      t.data = vbus_if.data; 
      t.t = $time;  
      $display("NOW=%0t", t.t); 
 
      // Randomly inject a mismatch. 
      assert(std::randomize(inject_error)); 
      if (inject_error)  
        t.data += 100; 
 
      `uvm_info("MON", $psprintf( 
        "Sending new transaction '%s'.",  
          t.convert2string()), UVM_INFO) 
 
      // Send the transaction to any  
      // subscribers 
      ap.write(t); 
    end 
  endtask 
endclass 
 



// ======================================== 
// ENV. 
// This env expects to connect to two  
// interfaces. 
// It will monitor those interfaces. 
class env extends uvm_env; 
  `uvm_component_utils(env) 
 
  monitor                    monA; 
  monitor                    monB; 
 
  simple_analysis_component  simple_ac; 
  inorder_analysis_component inorder_ac; 
 
  virtual bus_interface      vbus_if_A; 
  virtual bus_interface      vbus_if_B; 
 
  function new(string name   = "env",  
        uvm_component parent = null); 
    super.new(name, parent); 
  endfunction 
 
  function void build(); 
    monA = monitor::type_id 
      ::create("monA", this); 
    monB = monitor::type_id 
      ::create("monB", this); 
 
    simple_ac = simple_analysis_component:: 
      type_id::create("simple_ac", this); 
    inorder_ac =  
      inorder_analysis_component:: 
       type_id::create("inorder_ac", this); 
  endfunction 
 
  function void connect(); 
    // Retrieve the bus interface, and  
    // pass to the monitor. 
    // The 'A' Side. 
    uvm_resource_db#( 
      virtual interface bus_interface) 
        ::read_by_name("A", "vbus_if",  
          vbus_if_A); 
    if (vbus_if_A == null) 
      `uvm_fatal("ENV",  
        "Virtual interface A is null") 
    monA.vbus_if = vbus_if_A; 
    monA.ap.connect( 
      simple_ac.analysis_export); 
    monA.ap.connect( 
      inorder_ac.analysis_export_A); 
 
    // The 'B' Side. 
    uvm_resource_db#( 
      virtual interface bus_interface) 
        ::read_by_name("B", "vbus_if",  
          vbus_if_B); 
    if (vbus_if_B == null) 
      `uvm_fatal("ENV",  
        "Virtual interface B is null") 
    monB.vbus_if = vbus_if_B; 
    monB.ap.connect( 
      simple_ac.analysis_export); 
    monB.ap.connect( 
      inorder_ac.analysis_export_B); 
  endfunction 
 
  task run(); 
    #1000; 
    uvm_top.stop_request(); 
  endtask 
endclass 
 

// ======================================== 
// Interface. 
// Interface to be bound into the DUT. 
interface bus_interface( 
  input bit clk, bit [31:0] data); 
  // Wires... 
endinterface 
 
// ======================================== 
// DUT. 
// On the positive edge of the clock, if  
// reset is high, clear the counter,  
// otherwise increment the counter by 1. 
module dut(input wire dut_clk,  
           input wire reset); 
  bit [31:0]counter = 0; 
 
  always @(posedge dut_clk) 
    if (reset == 1'h1) 
      counter = 0; 
    else 
      counter++; 
endmodule 
 

// ======================================== 
// Top. 
// Instantiate two DUTs and an monitor  
// environment. Bind two interfaces into  
// the DUT to allow internal monitoring.  
// Register those bound interfaces. 
module top(); 
  bit fast_clk, clk, reset; 
 
  dut dutA(clk,      reset); 
  dut dutB(fast_clk, reset); 
 
  env e = new("env", null); 
 
  // Create the probes. 
  // Bind a virtual interface into each  
  // dut. Name the instances dutA.dut_if  
  // and dutB.dut_if. Connect the signal  
  // 'clk' and 'counter', as referenced  
  // from within the dut. 
  bind dutA bus_interface dut_if( 
    dut_clk, counter); 
  bind dutB bus_interface dut_if( 
    dut_clk, counter); 
 
  initial begin 
    // Put the probes into a database. 
    uvm_resource_db #( 
      virtual interface bus_interface) 
        ::set("A", "vbus_if", dutA.dut_if); 
    uvm_resource_db #( 
      virtual interface bus_interface) 
        ::set("B", "vbus_if", dutB.dut_if); 
 
    run_test(); 
  end 
 
  always begin  
    #5 clk = 0;      #5 clk = 1;      end 
  always begin  
    #1 fast_clk = 0; #1 fast_clk = 1; end 
 
  initial begin 
    // Reset, then run. Repeat. 
    reset = 1; #20; reset = 0; #100; 
    reset = 1; #20; reset = 0; #100; 
  end 
endmodule

 
 

 
 

 


