
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

PA-APIs: Looking beyond power intent specification formats
Amit Srivastava and Awashesh Kumar

Mentor Graphics Corp. 8005 SW Boeckman Rd. Wilsonville, OR 97070

Abstract
Power Management affects design functionality, hence both tools
and users need to be aware of this information. The traditional
approaches to query information don't work for power aware
designs as information is captured in different formats, UPF, HDL
and Liberty. The paper provides details of an abstract data model
for Power Aware design and the interface to query the
information. This can be used to provide standard access to
power management information.

Access to Power Aware Information

PA Information Model

PA Handle: A reference to an object in PA Information Model

Figure 1: Information Model Flow

UPF Objects

 Represents objects created by UPF
 e.g. Power Domains, Supply Sets, Power States, etc.

 Captures information after application of power intent
 Can represent objects from different UPF versions and other

power formats

Figure 3: UML Class Diagram of Relationship Object: paCellInfoT

Power Aware Application Programmable Interface (PA-API)
PA-API is the interface to access information from PA-Information
Model. It can be implemented in different languages depending
upon requirements.
 C Interface

 Can be used to construct more sophisticated
applications

 Tcl Interface
 Allow querying power management information

 HDL Interface
 Allow construction of high level testbenches

The PA-API is mainly designed to provide read only access to PA
Information. However, there is some requirement to provide API
to modify dynamic attributes during simulation in order to
construct sophisticated testbenches at higher level of abstraction.
This feature is currently under exploration.

C-API

UML Object Diagram of Information Model

C-Example: Print Isolation Information

Conclusion

Access to power aware information is not just significant for tool
developers but also to design and verification engineers. Some
typical requirements are:
 Develop utilities for design intent exploration.
 Generate a customized report of power architecture

information for specific exploration. E.g. List of power
management cells inserted in the design.

 Develop utilities that help create additional UPF definitions.
 Understand the power management of an IP and then

accordingly create the power intent of the SoC depending
upon characteristics of the IP.

 Develop custom checking utilities that can be incorporated
into a quality checking flow.
 Check that an isolation clamp value matches the reset

value.
 Create an environment to automatically generate coverage

monitors and assertions for power management.

Obstacles to accessing PA Information
There are various challenges to accessing information related to
power management.
 Power management information is specified separately from

HDL in UPF and Liberty files.
 UPF relies more on tool automation to simplify specification

and hence its difficult to inspect UPF files for extracting
information.

 UPF provides some Tcl Query commands which are
incomplete and inconsistent to be used for accessing
information.

Tcl-API

Tcl-Example: Return list of all isolation cells in a given scope

The PA-IM along with PA-APIs provides a well-defined structure
and simplified access to power management information. This
can be used across tools and design flows. It captures the result
of the application of power intent and stores the abstract
representation of HDL. Hence, it can represent the PA
information at different levels of design abstraction – RTL or Gate
Level and also from different sources (UPF, HDL, Liberty). The
following work has been donated to IEEE P1801 UPF WG and
the work is on to include this in UPF Standard.

Modeling the Power Aware Information
A model that captures the information related to power
management for a given design and provides simplified interface
to access the information.

HDL Objects

 Represent objects from HDL design hierarchy
 Object contains abstracted HDL information common across

all HDL languages
 e.g. hierarchical structure, name, size of ports/nets

 Only subset of HDL information is captured
 necessary to represent power management architecture
 e.g. extent, control signals, creation scopes, -instance,

etc.
 Additional HDL information can be accessed by getting full-

hierarchical path of HDL object from PA Handle and then
querying from other respective HDL Information Models.

Relationship Objects
 Represent some relationships between other objects
 Captures meta information which is not present in user design

 e.g. Expressions, extents, cell information etc.

Objects Attributes
Primary holders of information Pieces of information present on objects
Accessed by PA Handle Accessed by Attribute IDs
Classified into three broad groups
• UPF Objects
• HDL Objects
• Relationship Objects

Classified into two groups
• Basic Types

• String, Integer, Boolean, Float,
Enumerated

• Complex Types
• Handle, List of Handles

C PA-API

API Name Return
Type

Description

pa_GetHandle paHandleT Returns a handle of an object
corresponding to the given attribute

pa_GetHandleByName paHandleT Returns a handle of another object
matching a given name

pa_GetInt int returns the integer value of the given
attribute

pa_GetStr char* returns the string value of the given
attribute

pa_GetSeqIterator paIteratorT returns the iterator to list of objects for the
given attribute

pa_GetNext paHandleT returns the next handle in a given iterator

pa_GetHandleType int returns the object type of a given handle

pa_IsInClass int Returns 1 if object belongs to specified
class else 0

pa_GetHierPathname char* returns the hierarchical path of a given
object

pa_IsSameHandle int Returns 1 if handles are same else 0

Tcl PA-API

API Name Description

pa_get_object_handle_by_name Search object handle by name

pa_get_attribute
Get value of given attribute present on the
handle

pa_get_hierpath
Return the full hierarchical pathname for
specified handle

pa_is_in_class Check if handle belongs to a specified class

pa_is_same_handle Check if two handles are same

pd = pa_GetHandleByName(NULL,“Sub/PD_Proc”);
iso_iter = pa_GetSeqIterator(pd, ISO_STRATEGIES);
pa_IterForeach(iso_iter, iso) {

pa_GetStr(iso, NAME);
//=> “ISOproc”
pa_GetInt(iso, CLAMP_VALUE, &clamp);

//=> 0
ctrl = pa_GetHandle(iso, ISOLATION_CONTROL);
ctrl_sig = pa_GetHandle(ctrl, CONTROL_SIGNAL);

//=> pISO
pa_GetInt(ctrl, SIGNAL_SENSITIVITY, &ctrl_sense);

//=> SENSE_HIGH
}
port_iter = pa_GetSeqIterator(iso, EFFECTIVE_EXTENTS);
pa_IterForeach(port_iter, port_ex) {

port = pa_GetHandle(port_ex, HDL_ELEMENT);
path = pa_GetFullPathname(port, NULL);

//=> /Sub/P2/p1
cells_iter = pa_GetSeqIterator(port_ex, PLACED_CELLS);
pa_IterForeach(cells_iter, cell) {
path = pa_GetFullPathname(cell, NULL);

//=> /Sub/p1_UPF_ISO
}

}

proc get_iso_cells {scope}{
set cells {}

Check if Valid Handle
if{[pa_is_in_class -handle scope -class_id CLASS_HDL_SCOPE] == 0} {
return $cells

}
Get Child Scopes

set children [pa_get_attribute -handle $scope -attribute
CHILD_SCOPES]
Iterate over children and check if isolation

foreach ch $children {
set cell [pa_get_attribute -handle $ch -attribute CELL_INFO]
if { $cell ne “” } {
set cell_type [pa_get_attribute -handle $cell –attribute

UPFCELL_KIND]
if { $cell_type == ISOLATION_CELL } {
lappend cells [pa_get_hierpath $cell]

}
} else {
concat $cells [get_iso_cells $cell]

}
}
return $cells

}
puts [get_iso_cell [pa_get_object_handle_by_name –name “/Sub”]]
=> { /Sub/p1_UPF_ISO }

Example Design

Figure 4: Block Diagram of Example Design

UPF
set_scope Sub
create_power_domain PD_Sub \
-include_scope
create_power_domain PD_Proc \
-elements {P1 P2}
create_power_domain PD_Mem \
-elements {P1/M1 P1/M2 P2/M1
P2/M2}
set_isolation ISOproc \
-domain PD_Proc \
-applies_to outputs \
-clamp_value 0 \
-location parent \
-isolation_power_net Pwr \
-isolation_ground_net Gnd
-isolation_signal pISO \
-isolation_sense high
...

Figure 5: UML Object diagram of Information Model constructed after application of UPF

Figure 2: UML Class Diagram of Power Domain

	Slide Number 1

