
OVM & UVM Techniques for Terminating Tests
Clifford E. Cummings

Sunburst Design, Inc.
www.sunburst-design.com

cliffc@sunburst-design.com

Tom Fitzpatrick
Mentor Graphics Corp

www.mentor.com

tom_fitzpatrick@mentor.com

ABSTRACT
The Open Verification Methodology (OVM) and the new Universal Verification methodology (UVM) have a number of methods for
terminating the run() phase at the completion of a test, usually via a combination of sequence completion, calls to the global stop_request
mechanism and/or the recently-added objection mechanism. Many users also use built-in event and barrier constructs on a more
application-specific basis to achieve their goals. This plethora of choices has led to some confusion among the user community about how
best to manage this important aspect of the testbench.

This paper describes various techniques for gracefully terminating an OVM/UVM test, and proposes a set of guidelines to avoid further
confusion.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and Features – abstract data types, polymorphism, control structures.

General Terms
Algorithms, Documentation, Performance, Design, Experimentation, Standardization, Languages, Theory, Verification.

Keywords
UVM, OVM, SystemVerilog, testbench, global_stop_request() , raise objection, drop objection.

1. INTRODUCTION
UVM is a verification class library based largely on the OVM version 2.1.1 class library. The descriptions in this paper reference the UVM
code and methods but the comments on this topic are just as applicable to OVM. Terminating the simulation run() phase is identical
using either class library except where noted.

Unlike all of the design modules and interfaces that are called during compilation and elaboration, none of the UVM testbench
environment is setup until after simulation starts.

To help understand these topics, it is often useful to understand some basics about how the UVM class library is laid out in the uvm
directory and file setup. This paper details important basics on vital files and how they are laid out. The location of important files, class
definitions and global variables and tasks can be difficult to find. This paper will help to partially navigate the UVM maze that hides many
important details.

1.1 Version
This paper is based on UVM version 1.0ea (ea - Early Adopter version), which is largely based on OVM version 2.1.1.

2. COMPILING DESIGNS & RUNNING UVM
To help understand how UVM simulations work within the SystemVerilog testbench environment, it is useful to have a big-picture view of
the entire simulation flow.

Figure 1 - (1) Compiling designs & running UVM - overview

As shown in Figure 1, a design and testbench are first compiled, then the design and testbench are elaborated. Design and elaboration
happen before the start of simulation at time-0.

At time-0, the procedural blocks (initial and always blocks) in the top-level module and in the rest of the design start running. In the
top-level module is an initial block that calls the run_test() task from uvm_top. When run_test() is called at time-0, the
UVM pre-run() global function phases (build(), connect(), end_of_elaboration(), start_of_simulation()) all
execute and complete. After the pre-run() global function phases complete (still at time-0), the global run() phase starts. The run()
phase is a task-based phase that executes the entire simulation, consuming all of the simulation time. When the run() phase stops, the
UVM post-run() global function phases (extract(), check(), report()) all run in the last time slot before simulation ends.

3. PHASES
For discussion purposes, it is useful to start with a quick reminder of the standard UVM phases. Some brief references will be made to
these phases throughout the content of this paper.

Some of the best UVM (and OVM) documentation is actually buried in the comments of the UVM base class source files themselves, if
you know where to look. A concise description of the UVM phases can be found in the uvm_phases.sv file in the uvm/src/base
subdirectory.

In fact, the following excellent summary-description of the UVM phases comes from comments on lines 284-316 of the
uvm_phases.sv file:

// Section: Usage
//
// Phases are a synchronizing mechanism for the environment. They are
// represented by callback methods. A set of predefined phases and corresponding
// callbacks are provided in uvm_component. Any class deriving from
// uvm_component may implement any or all of these callbacks, which are executed
// in a particular order. Depending on the properties of any given phase, the
// corresponding callback is either a function or task, and it is executed in
// top-down or bottom-up order.
//
// The UVM provides the following predefined phases for all uvm_components.
//
// build - Depending on configuration and factory settings,
// create and configure additional component hierarchies.
//
// connect - Connect ports, exports, and implementations (imps).
//
// end_of_elaboration - Perform final configuration, topology, connection,
// and other integrity checks.
//
// start_of_simulation - Do pre-run activities such as printing banners,
// pre-loading memories, etc.
//
// run - Most verification is done in this time-consuming phase. May fork
// other processes. Phase ends when global_stop_request is called
// explicitly.
//
// extract - Collect information from the run in preparation for checking.
//
// check - Check simulation results against expected outcome.
//
// report - Report simulation results.

Of these eight standard pre-defined phases, four of the phases are pre-run() function phases that execute in zero-time after compiling and
elaborating the design (typically at time-0) but before the run() phase commences, and three of the phases are post-run() function
phases that execute in zero-time at the end of the simulation after the run() phase completes.

3.1 Run() Phase
The run() phase is the only standard pre-defined phase where all UVM simulation activity is executed.

Included in lines 284-425 of the 427 lines that make up the uvm_phases.sv file, are included brief descriptions of: a summary-
description of the UVM phases (lines 284-316), discussion of the UVM phase subtype (lines 317-320), requirements to create a user-
defined phase (lines 321-355) and a description of the optional Phase Macros (lines 321-425).

This paper largely deals with starting and stopping the run() phase. We briefly mention the pre-run() function phases by way of
introduction, but then most of this paper talks about how the run() phase is started and how it is gracefully terminated. Graceful

termination of the run() phase allows the rest of the UVM post-run() function phases to do their intended jobs and then to terminate
gracefully.

Graceful termination of the run() phase often requires the use of UVM built-in termination commands, such as
global_stop_request(), and others described in this paper.

The run() phase is a time-consuming phase. The run() phase will unconditionally execute all of the run tasks, and conditionally all of
the stop tasks in the UVM testbench. run and stop are empty virtual tasks defined in the uvm_component. Any testbench
component that is derived from uvm_component can override the run and stop tasks and they will be executed during the run()
phase either unconditionally (run) or conditionally (stop).

Some of the common UVM components that are derived from uvm_component include:

Location: uvm/src/base/

uvm_root.svh: class uvm_root

Location: uvm/src/methodology/

uvm_agent.svh: virtual class uvm_agent
uvm_driver.svh: class uvm_driver #(...)
uvm_env.svh: virtual class uvm_env
uvm_monitor.svh: virtual class uvm_monitor
uvm_scoreboard.svh: virtual class uvm_scoreboard
uvm_subscriber.svh: virtual class uvm_subscriber #(...)
uvm_test.svh: virtual class uvm_test

Location: uvm/src/methodology/sequences/

uvm_sequencer_base.svh: class uvm_sequencer_base

3.2 Run() Phase Stages
For reference purposes in this paper, the run() phase has been divided into two stages and the three different types of execution threads
that can run in those stages (the different threads are discussed in section 3.3). The two run() phase stages are the Active Stage, and the
Stop-Interrupt Stage, as shown in Figure 2.

Figure 2 - run() phase - Active Stage, Stop-Interrupt Stage and Timeout

Execution flow of the run and stop tasks in these stages is shown in the flow diagram of Figure 3.

Figure 3 - run() phase execution flow diagram (without timeouts)

All run tasks are forked at the beginning of the Active Stage of the run() phase, while only components that have set the
enable_stop_interrupt bit will execute the stop tasks during the Stop-Interrupt Stage.

More details about the execution of run and stop tasks are detailed throughout the remainder of this paper.

3.3 Run() Phase Threads
Again, for reference purposes in this paper, the run() phase execution threads can be divided into three types: Non-Stopping threads,
Stop-Request threads and Objections-Raised threads.

All three types of execution threads are run tasks defined in tests or components that are directly or indirectly extended from
uvm_component, and all three begin execution as forked run tasks at the beginning of the Active Stage.

3.3.1 Non-Stopping Threads
Non-Stopping threads are run tasks that either execute their code without issuing a stop command or are run tasks with a forever loop
that never ends.

A run task that does not make a call to global_stop_request() or that does not raise any objections would be a non-stopping
thread.

A common run task example that includes a forever loop would be a UVM testbench driver. The driver might have a forever loop
that continuously loops and calls seq_item_port.get_next_item(tx) to get the next transaction that will be supplied by the
UVM sequencer. Placing a forever loop in a driver is a common practice that makes the driver independent of the number of
transactions that may be supplied by the test through the sequencer.

3.3.2 Stop-Request Threads
Stop-Request threads are run tasks that call the global_stop_request() command inside of the run task. If there are no
Objections-Raised threads, the run() phase will immediately process the stop_request(), terminate the Active Stage and start the
Stop-Interrupt Stage if any of the enable_stop_interrupt bits were set in any of the run() phase threads.

If there are any Objections-Raised threads, the global_stop_request() command is largely ignored. For this reason, the
global_stop_request() command is probably not the best way to terminate the Active Stage of the run() phase. All it takes is a
single Objections-Raised thread to invalidate all of the global_stop_request() commands in all of the Stop-Request threads.

3.3.3 Objections-Raised Threads
Objections-Raised threads are run tasks that call the command uvm_test_done.raise_objection(), typically at the beginning
of the run task.

A run task that calls uvm_test_done.raise_objection(), is specifying that it "objects to the termination of the Active Stage of
the run() phase," until the objection is dropped using the uvm_test_done.drop_objection()command.

Once any thread calls uvm_test_done.raise_objection(), all calls to global_stop_request() from Stop-Request
threads will be ignored. For this reason, the following guideline is recommended:

Guideline: Use the raise_objection() / drop_objection() mechanism to terminate the Active Stage of the run() phase.

Reason: Adding a single Raised-Objection thread to a test that previously used Stop-Request threads exclusively will turn off all stopping
mechanisms that were present in the Stop-Request threads. Choosing Objection-Raised threads over Stop-Request threads, is a defensive
coding style that will prevent confusion related to global_stop_request() commands inexplicably failing to stop the Active Stage
of the run() phase.

Once all of the threads with raised objections have been dropped, the run() phase will immediately process an implicit
stop_request(), terminate the Active Stage and start the Stop-Interrupt Stage if any of the enable_stop_interrupt bits were
set in any of the run() phase threads.

Dropping all objections will issue an immediate and implicit stop_request(), even if there is a free-running forever-loop in a Non-
Stopping thread.

As a general rule, issuing the uvm_test_done.raise_objection() command in an Objections-Raised thread should be done at
the beginning of the run task, but it can actually be issued anywhere in the run task as long as it is issued before the end of the Active
Stage. Once the Stop-Interrupt Stage starts, calling uvm_test_done.raise_objection()will have no effect and no objection for
that thread will be raised.

A thread cannot object to the termination of the Stop-Interrupt Stage. Setting the enable_stop_interrupt bit in one or more threads
is the mechanism that is used to interrupt the termination of the Stop-Interrupt Stage, as described in the next section.

3.3.4 Enabling Stop-Interrupts In Threads
Any of the three thread types can also delay completion of the run() phase by declaring their intent to interrupt the stopping of the
run() phase.

To interrupt the stoppage of the run() phase requires that a thread set the enable_stop_interrupt bit, typically at the beginning
of the run task. Once the enable_stop_interrupt bit is set, the thread will also execute a stop task in the Stop-Interrupt Stage.
Even Non-Stopping threads with forever loops can set the enable_stop_interrupt bit and include a stop task that will execute
in parallel with the thread's forever-loop activity in the Stop-Interrupt Stage.

As a general rule, setting the enable_stop_interrupt bit for any thread type should be done at the beginning of the run task, but it
can actually be set anywhere in the run task as long as it is set before the end of the Active Stage. Once the Stop-Interrupt Stage starts,
setting the enable_stop_interrupt bit will have no effect and any local stop tasks will be ignored.

The base class stop() method is defined in the uvm_component.sv file as a simple empty task as shown in Example 1.

task uvm_component::stop(string ph_name);
 return;
endtask

Example 1 - uvm_component base stop() method definition

If the thread with enable_stop_interrupt=1 does not include a local stop task, then the default empty stop() method will
execute and return in zero time.

As a general rule, threads that set the enable_stop_interrupt bit should also define a local stop task to override the default
stop() method. The authors can think of no good reason to set the enable_stop_interrupt bit and omit the inclusion of a local
stop task.

4. HOW UVM SIMULATIONS WORK
There are a few poorly-understood features that if generally understood would help explain how UVM simulations work.

First, how do some of the important UVM commands work and how do they become available?

Briefly, in a top-level module, an engineer:

1. Imports the uvm_pkg.

2. Instantiates a Design Under Test (DUT) with design interface that is used to tie the class-based testbench to the DUT.

3. Calls a UVM run_test() method.

Of course there is more to a UVM top-module than just these three pieces, but this will serve as a starting point.

What do we get when we import uvm_pkg::*; ?

The uvm_pkg.sv is located in the uvm/src directory and is little more than an `include command enclosed within a package as
shown in Example 2.

package uvm_pkg;
 `include "uvm.svh"
endpackage

Example 2 - Abbreviated uvm_pkg.sv file

The included uvm.svh file itself includes global UVM macros, and calls on three more include files located in the uvm/base,
uvm/uvm_tlm and uvm/methodology subdirectories respectively as shown in Example 3.

//`include "uvm_macros.svh"
 `include "base/base.svh"
//`include "uvm_tlm/uvm_tlm.svh"
//`include "methodology/methodology.svh"

Example 3 - Abbreviated uvm.svh file (with some `include files commented out)

In Example 3, we have commented out all of the include commands except for the "base/base.svh" include command, because we
are going to put together a simple example to show how some important UVM simulation commands are used.

The base.svh file actually includes 28 other files from the src/base subdirectory, but we are only going to focus on two of the
included files as shown in Example 4.

`include "base/uvm_component.sv"
//----------------------------------
// uvm_component includes uvm_root
//----------------------------------
`include "base/uvm_globals.svh"

Example 4 - Abbreviated base/base.svh file (shows inclusion of 2 of 28 included files)

The uvm/base subdirectory actually contains 39 files, but some of the files in this subdirectory include other files in the same
subdirectory. In fact, as indicated in Example 4, the uvm_component.sv file includes the very important uvm_root.svh file, which
is discussed next.

4.1 uvm_root
From comments in the uvm_root.svh source code file[11] (also in the ovm_root.svh source code file[8]):

"The uvm_root class serves as the implicit top-level and phase controller for all UVM components. Users do not directly instantiate
uvm_root. The UVM automatically creates a single instance of <uvm_root> that users can access via the global (uvm_pkg-scope)
variable, uvm_top. "

Among other things, the uvm_root.svh file, contains the uvm_root class definition, which is an extension of uvm_component.
uvm_root also has some very important methods and variables that are used at the beginning of the simulation. Important pieces of an
abbreviated uvm_root file with line numbers are shown in Example 5 and will be discussed in more detail in this section.

 1 class uvm_root extends uvm_component;
 2 extern protected function new (); // Later line
 3
 4 extern static function uvm_root get();
 5
 6 extern virtual task run_test (string test_name="");
 7
 8 extern task run_global_phase ();
 9
10 extern function void stop_request();
11
12 time phase_timeout = 0;
13 time stop_timeout = 0;
14
15 //extern `_protected function new ();
16
17 static local uvm_root m_inst;
18
19 function void uvm_rocks ();
20 $display("\n*** UVM rocks! - This is the future of verification! ***\n");
21 endfunction
22 endclass
23
24 //---
25 // IMPLEMENTATION
26 //---
27
28 function uvm_root uvm_root::get();
29 if (m_inst == null)
30 m_inst = new();
31 return m_inst;
32 endfunction
33
34 function uvm_root::new();
35 endfunction
36
37 //---
38 // Create a top-level handle called: uvm_top
39 //---
40
41 const uvm_root uvm_top = uvm_root::get();
42
43 //---
44 // Primary Simulation Entry Points
45 //---
46
47 task uvm_root::run_test(string test_name="");
48 bit testname_plusarg;
49 string msg;
50
51 testname_plusarg = 0;
52
53 // plusarg overrides argument
54 if ($value$plusargs("UVM_TESTNAME=%s", test_name))
55 testname_plusarg = 1;
56
57 // if test_name is not "", create it using common factory
58 if (test_name != "") begin

59 msg = testname_plusarg ? "command line +UVM_TESTNAME=":
60 "call to run_test(";
61 $display("INVTST",
62 {"Requested test from ",msg, test_name, ") not found." });
63 $finish;
64 end
65
66 $display("RNTST", {" Running test ",test_name, "..."});
67
68 run_global_phase();
69 endtask
70
71 task uvm_root::run_global_phase();
72 $display("run_global_phase() Phases now running");
73 endtask
74
75
76 //---
77 // Stopping
78 //---
79
80 function void uvm_root::stop_request();
81 // ->m_stop_request_e;
82 $display("Executing stop_request();");
83 endfunction

Example 5 - Abbreviated base/uvm_root.svh file

The uvm_root class includes the following important extern method definitions: protected function new(), get(),
run_test(), run_global_phase(), and stop_request().The external definitions are actually included later in the same file
(for example, the task uvm_root::run_test(...); definition starts on line 47). In fact all of the definitions for the extern
methods are actually defined later in the same file, which means they are not very extern-al! So why declare all of these methods as
extern methods? By declaring all of the methods as extern methods, the first 240 lines of the uvm_root.svh file serve as
documentation for and prototypes of the methods and important variables that make up the uvm_root non-virtual class. The details of
how the methods work are included in lines 266-1218 of the rest of this file. When you open the file, the top portion has an explanation of
what you will find in the uvm_root class and the bottom portion has the implementation details.

The uvm_root class also includes definitions for the time variables phase_timeout, stop_timeout and the static local
m_inst handle of type uvm_root.

This abbreviated version of uvm_root has been augmented with the function void uvm_rocks() method, which is not in the
actual uvm_root.svh file, but has been included in this abbreviated file for demonstration purposes as shown Example 6.

4.2 uvm_root Typical Use
Before talking about the base/uvm_globals.svh file, it is instructive to look at how the uvm_root file is used in a typical
verification environment.

The top-level module, calls the import uvm_pkg::*; command. uvm_pkg includes uvm.svh, which includes base/base.svh,
which includes base/uvm_component.sv, which includes base/uvm_root.svh.

The inclusion of uvm_root.svh is where UVM gets interesting. The following discussion will refer to the abbreviated
uvm_root.svh line numbers shown in Example 5.

On line 2, there is an extern protected function new(). This line does not exist in the actual uvm_root.svh file, but the
commented out extern `_protected function new() on line 15 does, and accomplishes the same goal. Declaring the new()
constructor as protected means that only methods inside of uvm_root can call the constructor. uvm_root cannot be declared and
constructed outside of uvm_root.

On line 17 is the declaration of a local static handle called m_inst of type uvm_root. On line 4 is the extern static
function uvm_root get(); declaration, and on lines 28-32 is the external definition of the get() function. The first time that
uvm_root::get() is called, the m_inst handle will be null so the get() function will call the protected new() constructor to

create a uvm_root object with handle name m_inst and return the handle to the calling code. All subsequent calls to get() will just
return the static m_inst handle value.

17 static local uvm_root m_inst;

4 extern static function uvm_root get();

28 function uvm_root uvm_root::get();
29 if (m_inst == null)
30 m_inst = new();
31 return m_inst;
32 endfunction

In the same uvm_root.svh file is a declaration for a const uvm_root uvm_top (a constant handle of type uvm_root with
handle name uvm_top) that calls uvm_root::get() in its declaration.

41 const uvm_root uvm_top = uvm_root::get();

This is how the uvm_top is created and it is all done by importing the uvm_pkg in the top-level module and the construction of
uvm_top happens right after simulation starts at time 0. uvm_top is constructed before we even execute the UVM phases; in fact, the
UVM phases are executed by calling the run_test() method from this instance (object) of uvm_top. Now uvm_top is a fully
constructed object of type uvm_root, and it is now possible to call any uvm_root method (including run_test()) just by using the
uvm_top handle.

Consider the simple test module example in Example 6. After importing uvm_pkg, although we have not directly called a constructor to
create a uvm_top handle of type uvm_root, we can still call the uvm_rocks() method (shown in Example 7) using the uvm_top
handle.

module test;
 import uvm_pkg::*; // import uvm base classes
 initial begin
 uvm_top.uvm_rocks();
 end
endmodule

Example 6 - Simple test module example that calls the uvm_top.uvm_rocks() method

19 function void uvm_rocks ();
20 $display("\n*** UVM rocks! - This is the future of verification! ***\n");
21 endfunction

Example 7 - uvm_rocks() method definition

The uvm_rocks() method shown in Example 7 is our simple replacement for the ubiquitous C-language "hello world" example (which
is so passé!)

A more typical usage example is a top-level module that calls a run_test() method as shown in Example 8.

module top;
 import uvm_pkg::*; // import uvm base classes

 initial begin
 run_test();
 end
endmodule

Example 8 - Top module example with run_test() call

4.3 run_test()
The run_test() method is also defined in the uvm_root class. Most initial block calls to run_test() do not reference this
method with the uvm_top handle name. Why does this work?

Now examine the base/uvm_globals.svh file. An abbreviated version of the uvm_globals.svh file is shown in Example 9.

//--
// Group: Simulation Control
//--
task run_test (string test_name="");
 uvm_root top;
 top = uvm_root::get();
 top.run_test(test_name);
endtask

function void global_stop_request();
 uvm_root top;
 top = uvm_root::get();
 top.stop_request();
endfunction

function void set_global_timeout(time timeout);
 uvm_root top;
 top = uvm_root::get();
 top.phase_timeout = timeout;
endfunction

function void set_global_stop_timeout(time timeout);
 uvm_root top;
 top = uvm_root::get();
 top.stop_timeout = timeout;
endfunction

Example 9 - Abbreviated base/uvm_globals.svh file

The tasks and functions in the uvm_globals.svh file are also in the uvm_pkg, but they are not part of any class definition.

A call to run_test(), as shown in Example 8, calls the run_test() task defined in Example 9. The run_test() task declares a
handle called top of the uvm_root class type. Then the uvm_root::get() method is called, which will return the local static
uvm_root handle, m_inst, and store it into the top handle declared in the task (the uvm_root::get() method ensures that only
one uvm_root object will ever be created), and using the top handle, the local run_test() calls the top.run_test() method in
the uvm_top object, which starts up all the UVM simulation phases.

The uvm_globals.svh file also contains the set_global_timeout() and set_global_stop_timeout() methods, which
will be discussed in section 6.1.

As a side note, although not shown in the abbreviated version of the uvm_globals.svh file in Example 9, the uvm_globals.svh
file also contains the UVM standard message commands: uvm_report_info(), uvm_report_warning(),
uvm_report_error() and uvm_report_fatal(). These commands are also available anywhere the uvm_pkg routines have
been imported.

To summarize what has been discussed in this section, import uvm_pkg::*; creates the uvm_top module and includes important
global commands such as run_test(), global_stop_request(), set_global_timeout() and
set_global_phase_timeout(). Users of the uvm_pkg have access to commands without being required to construct any class
objects.

5. HOW UVM SIMULATIONS RUN
As mentioned in the previous section, the run_test() command starts all of the UVM phases. This section gives more details on what
happens when simulations run.

5.1 Choosing A Test To Run
The run_test() command must be passed a valid test name that has been registered in the UVM factory. There are two ways to pass a
valid test name to the run_test() command, (1) coded into the top module or (2) passed to the UVM testbench through the command
line switch +UVM_TESTNAME.

The inline coded method passes the test name string as an argument to the run_test() method in the top-level module, similar to what
is shown below.

module top;
 ...

 initial begin
 run_test("test1");
 ...
 end
endmodule

The inline coded method is not typically recommended since it ties the testbench to a specific test that requires the top-module to be
modified, recompiled and simulated for each new test.

The +UVM_TESTNAME command line switch is the preferred method for executing tests since the simulation executable can be called with
a new testname without the requirement to re-compile the entire testbench. Below is shown an example command line switch using
Questa:

vsim -c -do "run -all" top +UVM_TESTNAME=test1

5.2 Common +UVM_TESTNAME Errors
If no top-module run_test() argument is included in the top-module, and if there is no +UVM_TESTNAME command line argument,
UVM reports the error shown in Figure 4.

UVM_FATAL @ 0: reporter [NOCOMP] No components instantiated.
You must instantiate at least one component before calling run_test.
To run a test, use +UVM_TESTNAME or supply the test name in the
 argument to run_test(). Exiting simulation.

Figure 4 - UVM_FATAL - No components instantiated - missing test name

If the run_test() test name argument included in the top-module has not been registered in the UVM factory, or if the
+UVM_TESTNAME test name has not been registered in the UVM factory, then UVM reports the error shown in Figure 5.

UVM_WARNING @ 0: reporter [BDTYP] Cannot create a component of type
 'test1' because it is not registered with the factory.
UVM_FATAL @ 0: reporter [INVTST] Requested test from command line
 +UVM_TESTNAME=test1 not found.

Figure 5 - UVM_FATAL - +UVM_TESTNAME not found - test not registered with the factory

5.3 Verliog-Style Testbench
Before looking at common UVM testbench styles, consider how Verilog verification engineers typically build a testbench.

Verilog tasks are encapsulated, time-consuming subroutines that execute their code when called and return when done. The experienced
Verilog verification engineer typically assembles a large number of tasks and then makes calls to the tasks from a Verilog testbench. The
tasks are used as high level commands that either execute important Verilog testbench activity or are used to apply stimulus to, or check
outputs from a Verilog DUT.

At the end of the test, after all of the testing tasks have run, the typical verification engineer terminates the test with a call to $finish; as
shown in Example 10.

module top;
 import uvm_pkg::*;
 logic clk;
 clkgen ck (clk);

 initial begin
 run_task();
 $finish;
 end

 task run_task;
 uvm_report_info("top","run_task running");
 #100ns;
 endtask
endmodule

Example 10 - Verilog style testbench with task call followed by $finish

Since the uvm_pkg was imported in Example 10, the top module has access to the UVM reporting commands, which happened to be
called from the Verilog testbench run_task. Even though the uvm_pkg was imported, it was not necessary to call the UVM
run_test() command, so none of the UVM phases were executed, including the final reporting phase, and the final output simply
shows that UVM_INFO was called and that the top module finished at time 100ns, as shown in Figure 6.

UVM_INFO @ 0: reporter [top] run_task running
** Note: $finish ...
 Time: 100 ns ...

Figure 6 - Verilog style testbench output

5.4 Common New-User UVM Testbench Coding Mistake
Based on the previous Verilog coding style, the novice UVM verification engineer frequently follows the Verilog style by calling the
run_test() command followed immediately by calling a global_stop_request() command, as shown in Example 11.

module top;
 import uvm_pkg::*; // import ovm base classes
 import tb_pkg::*; // import testbench classes
 logic clk;
 clkgen ck (clk);

 initial begin
 run_test();
 global_stop_request();
 end
endmodule

Example 11 - BAD - top module with common mistake - global_stop_request() after run_test()

Runs all UVM phases so
global_stop_request()

will never execute

Engineers who assemble testing code as shown in Example 11 fail to understand that the run_test() command will execute all of the
UVM phases and the placement of the global_stop_request() command immediately after the run_test() command is too late
to be included in the execution of any of the UVM phases. In this example, the only call to global_stop_request() is placed in the
top-module, so the run_test() command will execute the requested run() phase test1 code, shown in Example 12 , then keep
executing simulation in the run() phase until simulation times out with the error message shown in Figure 7.

class test1 extends uvm_test;
 `uvm_component_utils(test1)
 env e;

 function new (string name="test1", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 endfunction

 task run;
 #100ns;
 endtask
endclass

Example 12 - test1 with NO global_stop_request()

UVM_INFO @ 0: reporter [RNTST] Running test test1...

UVM_ERROR @ 9200000000000: reporter [TIMOUT] Watchdog timeout

 of '9200000000000' expired

Figure 7 - Test timeout - BAD global_stop_request() after run_test() command

The test1 code of Example 12 was run with the top-module shown in Example 11, but since the test1 code did not include a
global_stop_request() command, and since the global_stop_request() command of the top module was never executed,
test1 executed its code and then the run() phase continued until the simulation timed-out.

Placement of a global_stop_request() command after a call to run_test() is a Verilog-like coding style that does not work in
UVM.

5.5 Proper Use of global_stop_request() Command
The proper use of the global_stop_request() command is to omit it from the top module as shown in Example 13, and to include
the global_stop_request() command in the test code as shown in Example 14.

module top;
 import uvm_pkg::*;
 import tb_pkg::*;

 logic clk;
 clkgen ck (clk);

 initial begin
 run_test();
 end
endmodule

Example 13 - GOOD - top module with run_test() and NO global_stop_request()

run() task executes a 100ns
delay but does not include a

global_stop_request()

class test2 extends uvm_test;
 `uvm_component_utils(test2)
 env e;

 function new (string name="test2", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 endfunction

 task run;
 #100ns;
 global_stop_request();
 endtask
endclass

Example 14 - GOOD - test2 terminates with global_stop_request()

The top-module of Example 13 still includes the run_test() command, which is responsible for initiating and executing all of the
UVM phases.

After the test2 code of Example 14 terminates with global_stop_request(), the rest of the post-run() phases will execute (as
shown in Figure 8) and the full UVM report-output will be displayed as shown in Figure 9.

Figure 8 - global_stop_request() terminates the run() phase and post-run() phases execute

run() task executes a 100ns
delay but followed by a call to
global_stop_request()

UVM_INFO @ 0: reporter [RNTST] Running test test2...

--- UVM Report Summary ---

** Report counts by severity
UVM_INFO : 1
UVM_WARNING : 0
UVM_ERROR : 0
UVM_FATAL : 0
** Report counts by id
[RNTST] 1
** Note: $finish ...
 Time: 100 ns ...

Figure 9 - UVM report output after proper termination of the run() phase using call to global_stop_request()

If the global_stop_request() command in the test code is replaced with the Verilog $finish command as shown in Example 15,
the simulation will abort in the middle of the run() phase and the post-run() phases will not execute as shown in Figure 10. Since the
UVM phases abort in the middle of the run() phase, no final UVM reports will be printed as can be seen in the resultant output in Figure
11.

class test2a extends uvm_test;
 `uvm_component_utils(test2a)
 env e;

 function new (string name="test2a", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 endfunction

 task run;
 #100ns;
 $finish;
 endtask
endclass

Example 15 - Bad - test2a terminates with $finish; - run() phase aborts early

Figure 10 - $finish command causes the run() phase to abort and post-run() phases never execute

UVM_INFO @ 0: reporter [RNTST] Running test test2a...
** Note: $finish : test2a.sv ...
 Time: 100 ns Instance: /uvm_pkg::uvm_root::m_do_phase

Figure 11 - $finish; causes simulation to abort run() phase - no final reports printed

In Figure 11, there is no UVM Report Summary because the post-run() report() phase was never executed.

6. HOW UVM SIMULATIONS STOP
UVM has a number of important, built-in global simulation and control commands to set timeouts and to terminate the run() phase.
Descriptions of these UVM commands can be found in the UVM Class Reference manual[9] (also in the OVM Class Reference
manual[6]).

run_test() - is a commonly used convenience function that calls uvm_top.run_test(). It is used to start the execution of the
specified test.

global_stop_request() - is a commonly used convenience function that calls uvm_top.stop_request(). It is used to
terminate the Active Stage if there are no raised objections (see Objections-Raised Threads in section 3.3.3)

set_global_timeout() - is a convenience function that calls uvm_top.phase_timeout = timeout.

set_global_stop_timeout()is a convenience function that calls uvm_top.stop_timeout = timeout.

The basic UVM simulation termination command is the global_stop_request() call as previously shown in Example 14.

Two other ways to terminate simulations are timeouts and a combination of raised-objections and stop-interrupts.

6.1 Timeouts
When the run() phase starts, a parallel timeout timer is also started. If the timeout timer reaches one of the specified timeout limits
before the run() phase completes, the run() phase will timeout and:

1. All run tasks will be immediately disabled.

2. A timeout message will be issued.

3. Execution of the post-run() phases will begin.

There are two timeout counters that may become active during the run() phase and their timeout limits are kept in the variables
uvm_top.phase_timeout and uvm_top.stop_timeout.

The phase_timeout is the time that the entire run() phase (Active Stage and Stop-Interrupt Stage) is allowed to run before timing
out. The phase_timeout is often referred to as the global_timeout limit as shown in Figure 12. If the phase_timeout time
limit is reached, a UVM_ERROR will be reported.

The default value for the phase_timeout limit is set from the `UVM_DEFAULT_TIMEOUT macro and has a default timeout value of
9200 seconds. This value can be shortened by using the set_global_timeout() command.

As part of the run() phase, various components of a test might execute stop tasks in the Stop-Interrupt Stage. The maximum execution
time of the stop tasks is stored in the stop_timeout limit and can be controlled by the set_global_stop_timeout()
command. The default stop_timeout value is also 9200 seconds. The stop_timeout is often referred to as the
global_stop_timeout limit as shown in Figure 12.

Figure 12 - run() phase execution flow diagram (with timeouts)

6.2 Stop-Interrupt Enabled Example
The test3 code in Example 16 demonstrates the use of the enable_stop_interrupt bit and a local stop task.

A test or component (thread) can interrupt the scheduled stopping of the run() phase by setting the enable_stop_interrupt bit at
the beginning of the run task in the test. Any thread that sets this bit should also override the default stop task with functionality that
shall be executed in the Stop-Interrupt Stage before this run() phase finishes.

The run task in test3, shown in Example 16, has set the enable_stop_interrupt bit. Any thread that has this bit set will run the
stop task after a stop_request is called. Whenever enable_stop_interrupt=1, the same thread typically includes a local
stop task that has important commands that should be executed before the end of the simulation, and these commands typically take
additional simulation time before the run() phase is allowed to finish.

When test3 runs, the following sequence of actions will be executed:

• run() phase starts at time 0ns (start of Active Stage).
• test3 executes:

• run task (starts running at time 0ns)
• enable_stop_interrupt bit will be set (indicates that the test3 stop task should interrupt and execute its

code before the end of the run() phase.
• Delays for 100ns.
• Call the global_stop_request() command (causes end of Active Stage and start of Stop-Interrupt Stage) .

• stop task (starts running at time 100ns):
• print a "stop task running" message.
• delays for 100ns.
• print a "stop task done" message.

• run() phase finishes at time 200ns (end of both Stop-Interrupt Stage and run() phase).

class test3 extends uvm_test;
 `uvm_component_utils(test3)
 env e;

 function new (string name="test3", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 endfunction

 task run;
 enable_stop_interrupt = '1;
 #100ns;
 global_stop_request();
 endtask

 task stop (string ph_name);
 uvm_report_info("test3", "stop task running ...");
 #100ns;
 uvm_report_info("test3", "stop task done");
 endtask
endclass

Example 16 - test3 with enabled stop task

The printed messages and test3 UVM Report summary are shown in Figure 13. The first printed message came from the run_test()
command itself, the next two printed messages came from the stop task in Example 16, and the UVM Report Summary came from the
UVM report() phase at the end of the simulation.

UVM_INFO @ 0: reporter [RNTST] Running test test3...
UVM_INFO @ 100: uvm_test_top [test3] stop task running ...
UVM_INFO @ 200: uvm_test_top [test3] stop task done

--- UVM Report Summary ---
** Report counts by severity
UVM_INFO : 3
UVM_WARNING : 0
UVM_ERROR : 0
UVM_FATAL : 0
** Report counts by id
[RNTST] 1
[test3] 2
** Note: $finish ...
 Time: 200 ns ...

Figure 13 - test3 UVM reported output

The test in Example 16 executed the run task code in the Active Stage of the run() phase, while the stop task code executed in the
Stop-Interrupt Stage of the run() phase as shown in Figure 14.

Figure 14 - (1) run() phase - Active Stage and Stop-Interrupt Stage

6.3 Stop_Timeout Example
The test4 code in Example 18 demonstrates the use of the set_global_stop_timeout() command in the top-level module and
the stop task timing out during execution of code during the Stop-Interrupt Stage.

The top module in Example 17 has issued the set_global_stop_timeout(50ns) command, which means that if any thread
executes code during the Stop-Interrupt Stage, the code must complete in less than 50ns otherwise a Stop-request timeout warning will be
reported. test4 will exceed the stop_timeout limit and the warning will be reported.

As was done in the Stop-Interrupt Enabled example, the run task in test4, shown in Example 18, has set the
enable_stop_interrupt bit and a local stop task includes a pair of uvm_report_info commands separated by a 100ns delay.

When test4 runs, the following sequence of actions will be executed:

• top module executes (starts running at time 0ns):
• initial block starts.
• Call the set_global_stop_timeout(50ns) command.
• Call the run_test() command.

• run() phase starts at time 0ns (start of Active Stage).
• test4 executes:

• run task (starts running at time 0ns)
• enable_stop_interrupt bit will be set.
• Delays for 100ns.
• Call the global_stop_request() command (causes end of Active Stage and start of Stop-Interrupt Stage) .

• stop task (starts running at time 100ns):
• print a "stop task running" message.
• delays for 100ns.
• UVM_WARNING - Stop-request timeout (reported at 150ns)

• run() phase times out at time 150ns (end of both Stop-Interrupt Stage and run() phase).

module top;
 import uvm_pkg::*;
 import tb_pkg::*;

 logic clk;
 clkgen ck (clk);

 initial begin
 set_global_stop_timeout(50ns);
 end

 initial begin
 run_test();
 end
endmodule

Example 17 - top module - set_global_stop_timeout()

class test4 extends uvm_test;
 `uvm_component_utils(test4)
 env e;

 function new (string name="test4", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 endfunction

 task run;
 enable_stop_interrupt = '1;
 #100ns;
 global_stop_request();
 endtask

 task stop (string ph_name);
 uvm_report_info("test4", "stop task running ...");
 #100ns;
 uvm_report_info("test4", "stop task done");
 endtask
endclass

Example 18 - test4 - stop task timeout

The printed messages are shown in Figure 15 (UVM Report summary not shown). The first printed message came from the run_test()
command itself, the next printed message came from the stop task in Example 18, and the UVM_WARNING timeout message came from
the phase execution mechanism in uvm_root. The UVM Report Summary (not shown) came from the UVM report() phase at the
end of the simulation.

UVM_INFO @ 0: reporter [RNTST] Running test test4...
UVM_INFO @ 100: uvm_test_top [test4] stop task running ...
UVM_WARNING @ 150: reporter [STPTO] Stop-request timeout
 of 50 expired. Stopping phase 'run'

Figure 15 - test4 UVM report output after Stop-request timeout

The test4 example executed the run task code in the Active Stage and the stop task code in the Stop-Interrupt Stage before ending
early with a UVM stop_timeout warning also executed in the Stop-Interrupt Stage.

6.4 Global_Timeout Example
The test5 code in Example 20 demonstrates the use of the set_global_stop_timeout() command in the top-level module and
the stop task timing out during execution of code during the Stop-Interrupt Stage.

The top module in Example 19 has issued the set_global_stop_timeout(100ns) command, which means that if any thread
executes code during the Stop-Interrupt Stage, the code must complete in less than 100ns otherwise a Stop-request timeout warning will be
reported. The top module also issued the set_global_timeout(550ns) command, which means that all the code must complete in
less than 550ns otherwise a watchdog timeout (global_timeout) error will be reported. test5 will exceed the global_timeout limit and the
error will be reported.

When test5 runs, the following sequence of actions will be executed:

• top module executes (starts running at time 0ns):
• initial block starts.

• Call the set_global_stop_timeout(100ns) command.
• Call the set_global_timeout(550ns) command.
• Call the run_test() command.

• run() phase starts at time 0ns (start of Active Stage).
• test5 executes:

• run task (starts running at time 0ns)
• enable_stop_interrupt bit will be set.
• Delays for 500ns.
• Call the global_stop_request() command (causes end of Active Stage and start of Stop-Interrupt Stage) .

• stop task (starts running at time 500ns):
• print a "stop task running" message.
• delays for 200ns.
• UVM_ERROR - global_timeout (reported at 550ns)

• run() phase times out at time 550ns (end of both Stop-Interrupt Stage and run() phase).

module top;
 import uvm_pkg::*;
 import tb_pkg::*;

 logic clk;
 clkgen ck (clk);

 initial begin
 set_global_stop_timeout(100ns);
 set_global_timeout(550ns);
 end

 initial begin
 run_test();
 end
endmodule

Example 19 - top module - set_global_stop_timeout() & set_global_timeout()

class test5 extends uvm_test;
 `uvm_component_utils(test5)
 env e;

 function new (string name="test5", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 endfunction

 task run;
 enable_stop_interrupt = '1;
 #500ns;
 global_stop_request();
 endtask

 task stop (string ph_name);
 uvm_report_info("test5", "stop task running ...");
 #200ns;
 uvm_report_info("test5", "stop task done");
 endtask
endclass

Example 20 - test5 - times out due to set_global_timeout() set to 550ns

The printed messages are shown in Figure 16 (UVM Report summary not shown). The first printed message came from the run_test()
command itself, the next printed message came from the stop task in Example 20, and the UVM_ERROR timeout message came from the
phase execution mechanism in uvm_root.

UVM_INFO @ 0: reporter [RNTST] Running test test5...
UVM_INFO @ 500: uvm_test_top [test5] stop task running ...
UVM_ERROR @ 550: reporter [TIMOUT] Watchdog timeout of '550' expired.

Figure 16 - test5 UVM report output after Watchdog (global) timeout

The test5 example executed the run task code in the Active Stage and the stop task code in the Stop-Interrupt Stage before ending
early with a UVM global_timeout error also executed in the Stop-Interrupt Stage.

6.5 Delayed Global_Timeout Example
The test6 code in Example 22 demonstrates the use of the set_global_stop_timeout() command in the top-level module
when the run_test() command startup is delayed in the top -module.

The top module in Example 21 has issued the set_global_stop_timeout(100ns) and set_global_timeout(550ns)
commands. In this example, the top-module delays for 100ns before issuing the run_test() command, which means that all the code
must complete in less than 100ns + 550ns otherwise a watchdog timeout (global_timeout) error will be reported. test6 will exceed the
global_timeout limit and the error will be reported at time 650ns.

When test6 runs, the following sequence of actions will be executed:

• top module executes (starts running at time 0ns):
• initial block starts.

• Call the set_global_stop_timeout(100ns) command.
• Call the set_global_timeout(550ns) command.
• Delay for 100ns then call the run_test() command.

• run() phase starts at time 100ns (start of Active Stage).
• test6 executes:

• run task (starts running at time 100ns)
• enable_stop_interrupt bit will be set.
• Delays for 500ns.
• Call the global_stop_request() command (causes end of Active Stage and start of Stop-Interrupt Stage) .

• stop task (starts running at time 600ns):
• print a "stop task running" message.
• delays for 200ns.
• UVM_ERROR - global_timeout (reported at 650ns)

• run() phase times out at time 650ns (end of both Stop-Interrupt Stage and run() phase).

module top;
 import uvm_pkg::*;
 import tb_pkg::*;

 logic clk;
 clkgen ck (clk);

 initial begin
 set_global_stop_timeout(100ns);
 set_global_timeout(550ns);
 end

 initial begin
 #100ns run_test();
 end
endmodule

Example 21 - top module - set_global_stop_timeout(), set_global_timeout() and delayed startup

class test6 extends uvm_test;
 `uvm_component_utils(test6)
 env e;

 function new (string name="test6", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 endfunction

 task run;
 enable_stop_interrupt = '1;
 #500ns;
 global_stop_request();
 endtask

 task stop (string ph_name);
 uvm_report_info("test6", "stop task running ...");
 #200ns;
 uvm_report_info("test6", "stop task done");
 endtask
endclass

Example 22 - test6 with run() and stop() tasks

The printed messages are shown in Figure 17 (UVM Report summary not shown). The first printed message came from the run_test()
command itself at time 100ns, the next printed message came 500ns later from the stop task in Example 22, and the UVM_ERROR
timeout message came from the phase execution mechanism in uvm_root at time 650ns.

UVM_INFO @ 100: reporter [RNTST] Running test test6...
UVM_INFO @ 600: uvm_test_top [test6] stop task running ...
UVM_ERROR @ 650: reporter [TIMOUT] Watchdog timeout of '550' expired.

Figure 17 - test6 UVM report output after Watchdog (global) timeout

The test6 example did not start the run() phase and global_timeout counter until 100ns into the simulation, then test6 executed the
run task code in the Active Stage and the stop task code in the Stop-Interrupt Stage before ending early with a UVM global_timeout
error also executed in the Stop-Interrupt Stage.

6.6 run Task Sets Timeout Value Example
The test7 code in Example 24 demonstrates the use of the set_global_stop_timeout() and the set_global_timeout()
commands in the run task of the test7 code instead of in the top-level module.

The top module in Example 23 is a simple top module with no timeout settings and no startup delays.

The test7 code has issued the set_global_stop_timeout(100ns) and set_global_timeout(550ns) commands in the
run task. The problem with setting the global_timeout in the run task is that the timeout must be set before starting the run task
otherwise the global_timeout will not work, which is what happens in this test. After the simulation passes the 550ns time without a
global_timeout, it will trigger the stop_timeout, which can be set from the run task.

When test7 runs, the following sequence of actions will be executed:

• run() phase starts at time 0ns (start of Active Stage).
• test7 executes:

• run task (starts running at time 0ns)
• Call the set_global_stop_timeout(100ns) command.
• Call the set_global_timeout(550ns) command (TOO LATE!)
• Set the enable_stop_interrupt bit.
• Delays for 500ns.
• Call the global_stop_request() command (causes end of Active Stage and start of Stop-Interrupt Stage) .

• stop task (starts running at time 500ns):
• print a "stop task running" message.
• delays for 200ns.
• UVM_WARNING - stop_timeout (reported at 600ns)

• run() phase times out at time 600ns (end of both Stop-Interrupt Stage and run() phase).

module top;
 import uvm_pkg::*;
 import tb_pkg::*;

 logic clk;
 clkgen ck (clk);

 initial begin
 run_test();
 end
endmodule

Example 23 - Simple top module used for testing - no timeout values set and no startup delays

class test7 extends uvm_test;
 `uvm_component_utils(test7)
 env e;

 function new (string name="test7", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 endfunction

 task run;
 set_global_stop_timeout(100ns);
 set_global_timeout(550ns);
 enable_stop_interrupt = '1;
 #500ns;
 global_stop_request();
 endtask

 task stop (string ph_name);
 uvm_report_info("test7", "stop task running ...");
 #200ns;
 uvm_report_info("test7", "stop task done");
 endtask
endclass

Example 24 - BAD: test7 with & set_global_timeout() set in the run() task - too late

The printed messages are shown in Figure 18 (UVM Report summary not shown). The first printed message came from the run_test()
command itself, the next printed message came 500ns later from the stop task in Example 24, and the UVM_WARNING timeout message
came from the phase execution mechanism in uvm_root at time 600ns.

UVM_INFO @ 0: reporter [RNTST] Running test test7...
UVM_INFO @ 500: uvm_test_top [test7] stop task running ...
UVM_WARNING @ 600: reporter [STPTO] Stop-request timeout
 of 100 expired. Stopping phase 'run'

Figure 18 - test7 UVM report output after Stop-request timeout

The test7 example shows that the global_timeout limit must be set before executing the run task, otherwise the setting will be too late
and the global timeout counter will not start.

6.7 build() Phase Sets Global_Timeout Value Example
The test8 code in Example 25 demonstrates the use of the the set_global_timeout() command in the build() method of the
test8 code instead of in the run task.

The top module used for this test is the same simple top module used with test7 (shown in Example 23).

The test8 code has issued the set_global_stop_timeout(100ns) command in the run task and has issued the
set_global_timeout(550ns) command in the build() method. Although this coding style is not recommended, setting the
global_timeout in the build() method allows the setting to be active before executing the run task; hence, the setting will be active.
After the simulation reaches the 550ns time the global_timeout, will trigger as expected.

When test8 runs, the following sequence of actions will be executed:

• test8 executes:
• build() phase starts at time 0ns.

• Call the set_global_timeout(550ns) command (ACTIVE!)
• run() phase starts at time 0ns (start of Active Stage).

• run task (starts running at time 0ns)
• Call the set_global_stop_timeout(100ns) command.
• Set the enable_stop_interrupt bit.
• Delays for 500ns.
• Call the global_stop_request() command (causes end of Active Stage and start of Stop-Interrupt Stage) .

• stop task (starts running at time 500ns):
• print a "stop task running" message.
• delays for 200ns.
• UVM_ERROR - stop_timeout (reported at 550ns)

• run() phase times out at time 550ns (end of both Stop-Interrupt Stage and run() phase).

class test8 extends uvm_test;
 `uvm_component_utils(test8)
 env e;

 function new (string name="test8", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 set_global_timeout(550ns);
 endfunction

 task run;
 set_global_stop_timeout(100ns);
 enable_stop_interrupt = '1;
 #500ns;
 global_stop_request();
 endtask

 task stop (string ph_name);
 uvm_report_info("test8", "stop task running ...");
 #200ns;
 uvm_report_info("test8", "stop task done");
 endtask
endclass

Example 25 - test8 with set_global_timeout() set in the build() method - stop-timeout is active

The printed messages are shown in Figure 19 (UVM Report summary not shown). The first printed message came from the run_test()
command itself, the next printed message came 500ns later from the stop task in Example 25, and the UVM_ERROR timeout message
came from the phase execution mechanism in uvm_root at time 550ns.

UVM_INFO @ 0: reporter [RNTST] Running test test8...
UVM_INFO @ 500: uvm_test_top [test8] stop task running ...
UVM_ERROR @ 550: reporter [TIMOUT] Watchdog timeout of '550' expired.

Figure 19 - test8 UVM report output after Watchdog (global) timeout

The test8 example shows that the global_timeout limit can be properly set in the build() phase, before executing the run task in the
run() phase. Although this style works, this is not necessarily a recommended coding style.

6.8 Raising And Dropping Objections Example
The test9 code in Example 26 demonstrates the raising and dropping of objections in the run task by using the commands
uvm_test_done.raise_objection() / uvm_test_done.drop_objection() respectively.

The top module used for this test is the same simple top module used with test7 (shown in Example 23).

The test9 code has issued the uvm_test_done.raise_objection() / uvm_test_done.drop_objection() commands
in the run task. Once an objection is raised, all objections must be dropped before an implicit global_stop_request() will force
the Active Stage to complete. In test9, there is only one raised objection so once that objection is dropped, the Active Stage finishes.

When test9 runs, the following sequence of actions will be executed:

• test9 executes:
• run() phase starts at time 0ns (start of Active Stage).

• run task (starts running at time 0ns)
• Call the uvm_test_done.raise_objection() command.
• Delays for 500ns.
• Call the uvm_test_done.drop_objection() command. All objections have been dropped because there was

only one objection (causes implicit call to global_stop_request()), which causes the end of the Active Stage
and start of Stop-Interrupt Stage) .

• No active stop task (starts running at time 500ns):
• run() phase finishes at time 500ns (end of both Stop-Interrupt Stage and run() phase).

class test9 extends uvm_test;
 `uvm_component_utils(test9)
 env e;

 function new (string name="test9", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 endfunction

 task run;
 uvm_test_done.raise_objection();
 #500ns;
 uvm_test_done.drop_objection();
 endtask
endclass

Example 26 - test9 with raise_objection()/drop_objection() to terminate the test

The printed messages are shown in Figure 20 (UVM Report summary not shown). The first printed message came from the run_test()
command itself, the next printed message came 500ns later and is the TEST_DONE message, which shows that the dropping of all
objections has forced an implicit call to the global_stop_request() command.

UVM_INFO @ 0: reporter [RNTST] Running test test9...
UVM_INFO @ 500: uvm_test_done [TEST_DONE]
 All end_of_test objections have been dropped.
 Calling global_stop_request()

Figure 20 - test9 UVM report output after all objections were dropped

The test9 example shows that after all objections have been dropped that there is an implicit call to the global_stop_request()
command, which will terminate the Active Stage of the run() phase.

Later tests will show that any active Objections-Raised threads will take control of when the Active Stage completes.

6.9 Raising And Dropping Multiple Objections Example
The test10 code in Example 27 demonstrates the raising and dropping of objections from different components. Example 27 includes
the code for the test10 test and a testbench environment component (env).

The top module used for this test is the same simple top module used with test7 (shown in Example 23).

The test10 code has issued the uvm_test_done.raise_objection() / uvm_test_done.drop_objection() commands
in the run task. The environment env component has also issued the uvm_test_done.raise_objection() /
uvm_test_done.drop_objection() commands in its local copy of the run task. Once an objection is raised, all objections must
be dropped before an implicit global_stop_request() will force the Active Stage to complete. The test10 run task drops its
objection at time 500ns, while the env run task drops its objection at 700ns. The last dropped objection happens at time 700ns so that is
when the Active Stage finishes. It is not necessarily recommended to override the run task in the environment component, but since
uvm_env is derived from the uvm_component class, it is possible to add a run task to the environment.

When test10 runs, the following sequence of actions will be executed:

• test10 executes:
• run() phase starts at time 0ns (start of Active Stage).

• test10 run task (starts running at time 0ns)
• Call the uvm_test_done.raise_objection() command.
• Delays for 500ns.
• Calls the uvm_test_done.drop_objection() command at 500ns.

• env run task (starts running at time 0ns)
• Call the uvm_test_done.raise_objection() command.
• Delays for 700ns.
• Calls the uvm_test_done.drop_objection() command at 700ns.
• All objections have now been dropped (causes implicit call to global_stop_request()), which causes the end

of the Active Stage and start of Stop-Interrupt Stage) .
• No active stop task (starts running at time 700ns):

• run() phase finishes at time 700ns (end of both Stop-Interrupt Stage and run() phase).

class env extends uvm_env;
 `uvm_component_utils(env)

 function new (string name, uvm_component parent=null);
 super.new(name, parent);
 endfunction

 task run;
 uvm_test_done.raise_objection();
 #700ns;
 uvm_test_done.drop_objection();
 endtask
endclass

class test10 extends uvm_test;
 `uvm_component_utils(test10)
 env e;

 function new (string name="test10", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 endfunction

 task run;
 uvm_test_done.raise_objection();
 #500ns;
 uvm_test_done.drop_objection();
 endtask
endclass

Example 27 - test10 & env with raise_objection()/drop_objection() - last drop ends test

The printed messages are shown in Figure 21 (UVM Report summary not shown). The first printed message came from the run_test()
command itself, the next printed message came 700ns later and is the TEST_DONE message, which shows that the dropping of all
objections has forced an implicit call to the global_stop_request() command.

UVM_INFO @ 0: reporter [RNTST] Running test test10...
UVM_INFO @ 700: uvm_test_done [TEST_DONE]
 All end_of_test objections have been dropped.
 Calling global_stop_request()

Figure 21 - test10 UVM report output after all objections were dropped

The test10 example shows that after all objections have been dropped that there is an implicit call to the global_stop_request()
command, which will terminate the Active Stage of the run() phase.

6.10 Multiple Objections And forever-Loop Example
The test11 code in Example 29 demonstrates the raising and dropping of objections from different components and how they interact
with another component that is executing forever-loop code a another run task. Example 28 includes the code for a testbench driver
component (tb_driver) and Example 29 includes the code for the test11 test and environment component (env).

The top module used for this test is the same simple top module used with test7 (shown in Example 23).

The test11 code has issued the uvm_test_done.raise_objection() / uvm_test_done.drop_objection() commands
in the run task. The environment env component has also issued the uvm_test_done.raise_objection() /
uvm_test_done.drop_objection() commands in its local copy of the run task. The testbench driver tb_driver has a run
task that is executing a forever loop, but has no objections. Once an objection is raised, all objections must be dropped before an
implicit global_stop_request() will force the Active Stage to complete. The test11 run task drops its objection at time 500ns,
while the env run task drops its objection at 811ns. Dropping of all objections has forced an implicit call to the
global_stop_request() command at 811ns, which does not require the tb_driver run task to complete, so even though the
tb_driver run task may continue to run, the Active Stage completes with the last dropped objection and the Stop-Interrupt stage can
now start. In test11, there are no enabled stop tasks, so the run() phase finishes right after the Active Stage finishes.

When test11 runs, the following sequence of actions will be executed:

• test11 executes:
• run() phase starts at time 0ns (start of Active Stage).

• test11 run task (starts running at time 0ns)
• Call the uvm_test_done.raise_objection() command.
• Delays for 500ns.
• Calls the uvm_test_done.drop_objection() command at 500ns.

• tb_driver run task (starts running at time 0ns)
• forever-loop cycles every 120ns and prints a repeating message. The forever-loop keeps running until the

run() phase finishes.
• env run task (starts running at time 0ns)

• Call the uvm_test_done.raise_objection() command.
• Delays for 811ns.
• Calls the uvm_test_done.drop_objection() command at 811ns.
• All objections have now been dropped (causes implicit call to global_stop_request()), which causes the end

of the Active Stage and start of Stop-Interrupt Stage) .
• No active stop task (starts running at time 811ns):

• run() phase finishes at time 700ns (end of both Stop-Interrupt Stage and run() phase).

class tb_driver extends uvm_driver;
 `uvm_component_utils(tb_driver)

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 endfunction

 task run();
 forever begin
 #120 uvm_report_info("tb_driver", "driver run() loop");
 end
 endtask
endclass

Example 28 - test11 - tb_driver with forever loop (loop will be cancelled when all objections are dropped)

class env extends uvm_env;
 `uvm_component_utils(env)
 tb_driver drv;

 function new (string name, uvm_component parent=null);
 super.new(name, parent);
 drv = tb_driver::type_id::create("drv", this);
 endfunction

 task run;
 uvm_test_done.raise_objection();
 #811ns;
 uvm_test_done.drop_objection();
 endtask
endclass

class test11 extends uvm_test;
 `uvm_component_utils(test11)
 env e;

 function new (string name="test11", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 endfunction

 task run;
 uvm_test_done.raise_objection();
 #500ns;
 uvm_test_done.drop_objection();
 endtask
endclass

Example 29 - test11 - env and test11 raise and drop objections

The printed messages are shown in Figure 22 (UVM Report summary not shown). The first printed message came from the run_test()
command itself. The next six printed messages came at 120ns intervals from the tb_driver component. The next printed message came
811ns after the start of the Active Stage and is the TEST_DONE message, which shows that the dropping of all objections has forced an
implicit call to the global_stop_request() command, even though the forever loop continued to run.

UVM_INFO @ 0: reporter [RNTST] Running test test11...
UVM_INFO @ 120: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 240: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 360: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 480: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 600: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 720: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 811: uvm_test_done [TEST_DONE]
 All end_of_test objections have been dropped.
 Calling global_stop_request()

Figure 22 - test11 UVM report output after all objections were dropped

The test11 example shows that after all objections have been dropped that there is an implicit call to the global_stop_request()
command, which will terminate the Active Stage of the run() phase, even if there was a forever loop running in another run task.

6.11 Multiple Objections Then Stop-Interrupt Activity Example
The test12 code in Example 30 demonstrates the raising and dropping of objections from different components and how they interact
with another component that has another run task that is executing a forever-loop and an enabled stop task in that same component.
Example 30 includes the code for the test12 test, a testbench driver component (tb_driver) and environment component (env).

The top module used for this test is the same simple top module used with test7 (shown in Example 23).

The test12 code has issued the uvm_test_done.raise_objection() / uvm_test_done.drop_objection() commands
in the run task. The environment env component has also issued the uvm_test_done.raise_objection() /
uvm_test_done.drop_objection() commands in its local copy of the run task. The testbench driver tb_driver has a run
task that is executing a forever loop, but has no objections. The same tb_driver also has an enabled stop task that runs another
1,000ns before returning. Once an objection is raised, all objections must be dropped before an implicit global_stop_request()
will force the Active Stage to complete. The test12 run task drops its objection at time 500ns, while the env run task drops its
objection at 811ns. Dropping of all objections has forced an implicit call to the global_stop_request() command at 811ns, which
does not require the tb_driver run task to complete, so even though the tb_driver run task continues to run into the Stop-
Interrupt Stage, the Active Stage completes with the last dropped objection and the Stop-Interrupt stage can now start. In test12, there is
an enabled stop task, so the run() phase does not finish until after the tb_driver stop task has finished. Throughout the Stop-
Interrupt Stage, the forever loop continues to run and print its periodic repeating message.

When test12 runs, the following sequence of actions will be executed:

• test12 executes:
• run() phase starts at time 0ns (start of Active Stage).

• test12 run task (starts running at time 0ns)
• Call the uvm_test_done.raise_objection() command.
• Delays for 500ns.
• Calls the uvm_test_done.drop_objection() command at 500ns.

• tb_driver run task (starts running at time 0ns)
• forever-loop cycles every 120ns and prints a repeating message. The forever-loop keeps running throughout the

Stop-Interrupt Stage.
• stop task (starts running at time 811ns).
• print a "start of stop task " message
• Delays for 1,000ns.
• print an "end of stop task " message at 1,811ns.

• env run task (starts running at time 0ns)
• Call the uvm_test_done.raise_objection() command.
• Delays for 811ns.
• Calls the uvm_test_done.drop_objection() command at 811ns.
• All objections have now been dropped (causes implicit call to global_stop_request()), which causes the end

of the Active Stage and start of Stop-Interrupt Stage) .
• tb_driver stop task (finishes at 1,811ns):

• run() phase finishes at time 1,811ns (end of both Stop-Interrupt Stage and run() phase).

class tb_driver extends uvm_driver;
 `uvm_component_utils(tb_driver)

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 endfunction

 task run();
 enable_stop_interrupt = '1;
 forever begin
 #120 uvm_report_info("tb_driver", "driver run() loop");
 end
 endtask

 task stop(string ph_name);
 uvm_report_info("tb_driver", "start of stop task");
 #1000;
 uvm_report_info("tb_driver", "end of stop task");
 endtask
endclass

class env extends uvm_env;
 `uvm_component_utils(env)
 tb_driver drv;

 function new (string name, uvm_component parent=null);
 super.new(name, parent);
 drv = tb_driver::type_id::create("drv", this);
 endfunction

 task run;
 uvm_test_done.raise_objection();
 #811ns;
 uvm_test_done.drop_objection();
 endtask
endclass

class test12 extends uvm_test;
 `uvm_component_utils(test12)
 env e;

 function new (string name="test12", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 endfunction

 task run;
 uvm_test_done.raise_objection();
 #500ns;
 uvm_test_done.drop_objection();
 endtask
endclass

Example 30 - test12 - tb_driver with cancelled forever loop but still executes stop task

The printed messages are shown in Figure 23 (UVM Report summary not shown). The first printed message came from the run_test()
command itself. The next six printed messages came at 120ns intervals from the tb_driver component. The next printed message came
811ns after the start of the Active Stage and is the TEST_DONE message, which shows that the dropping of all objections has forced an
implicit call to the global_stop_request() command, even though the forever loop continued to run. The next message came
from the tb_driver stop task while the tb_driver run task continued to execute the forever loop. The next nine printed
messages continued to come at 120ns intervals from the tb_driver component, while the last printed message came from the
tb_driver stop task just before the Stop-Interrupt Stage finished.

UVM_INFO @ 0: reporter [RNTST] Running test test12...
UVM_INFO @ 120: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 240: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 360: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 480: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 600: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 720: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 811: uvm_test_done [TEST_DONE]
 All end_of_test objections have been dropped.
 Calling global_stop_request()
UVM_INFO @ 811: uvm_test_top.e.drv [tb_driver] start of stop task
UVM_INFO @ 840: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 960: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 1080: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 1200: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 1320: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 1440: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 1560: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 1680: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 1800: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 1811: uvm_test_top.e.drv [tb_driver] end of stop task

Figure 23 - test12 UVM report output after all objections were dropped and stop task completed

The test12 example shows that after all objections have been dropped that there is an implicit call to the global_stop_request()
command, which will terminate the Active Stage of the run() phase, even if there was a forever loop running in another run task. It
also shows that even though test12 entered the Stop-Interrupt Stage for the next 1,000ns, that the run task forever loop continued to
run throughout the Stop-Interrupt stage. It can be seen that not all run tasks have to finish before the Stop-Interrupt Stage activity can
commence.

6.12 Dropped Objection And Early global_stop_request() Example
The test13 code in Example 32 demonstrates that the raising and dropping of even a single objection will disable an Active Stage call to
global_stop_request() from a run task in the test. Example 31 includes the code for a testbench driver component (tb_driver)
and Example 32 includes the code for the test13 test and environment component (env).

The top module used for this test is the same simple top module used with test7 (shown in Example 23).

The environment env component has issued the uvm_test_done.raise_objection() /
uvm_test_done.drop_objection() commands in its local copy of the run task. The test13 code has issued a
global_stop_request()command in its run task before the env issued the drop objection command. The testbench driver
tb_driver has a run task that is executing a forever loop, but has no objections. Once an objection is raised, all objections must be
dropped before an implicit global_stop_request() will force the Active Stage to complete. The test13 call to
global_stop_request() happened while there was an active raised objection, so the test13 global_stop_request()
command was effectively ignored until all objections were dropped. In test13, there are no enabled stop tasks, so the run() phase
finishes right after the Active Stage finishes.

When test13 runs, the following sequence of actions will be executed:

• test13 executes:
• run() phase starts at time 0ns (start of Active Stage).

• test13 run task (starts running at time 0ns)
• Delays for 100ns.
• Calls the global_stop_request() command at 100ns (ignored)

• tb_driver run task (starts running at time 0ns)
• forever-loop cycles every 120ns and prints a repeating message. The forever-loop keeps running throughout the

Active Stage.
• env run task (starts running at time 0ns)

• Call the uvm_test_done.raise_objection() command.
• Delays for 811ns.
• Calls the uvm_test_done.drop_objection() command at 811ns.
• All objections have now been dropped (causes implicit call to global_stop_request()), which causes the end

of the Active Stage and start of Stop-Interrupt Stage) .
• No active stop task (starts running at time 811ns):

• run() phase finishes at time 811ns (end of both Stop-Interrupt Stage and run() phase).

class tb_driver extends uvm_driver;
 `uvm_component_utils(tb_driver)

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 endfunction

 task run();
 forever begin
 #120 uvm_report_info("tb_driver", "driver run() loop");
 end
 endtask
endclass

Example 31 - test13 - tb_driver with forever loop (loop will be cancelled when all objections are dropped)

class env extends uvm_env;
 `uvm_component_utils(env)
 tb_driver drv;

 function new (string name, uvm_component parent=null);
 super.new(name, parent);
 drv = tb_driver::type_id::create("drv", this);
 endfunction

 task run;
 uvm_test_done.raise_objection();
 #811ns;
 uvm_test_done.drop_objection();
 endtask
endclass

class test13 extends uvm_test;
 `uvm_component_utils(test13)
 env e;

 function new (string name="test13", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 endfunction

 task run;
 #100ns;
 global_stop_request();
 endtask
endclass

Example 32 - test13 - global_stop_request() ignored until env drops objections

The printed messages are shown in Figure 24 (UVM Report summary not shown). The first printed message came from the run_test()
command itself. The next six printed messages came at 120ns intervals from the tb_driver component. The next printed message came
811ns after the start of the Active Stage and is the TEST_DONE message, which shows that the dropping of all objections has forced an
implicit call to the global_stop_request() command, even though the forever loop continued to run. NOTE: there was a call to
global_stop_request() at 100ns, but the command was ignored until all objections were dropped. The final message makes
reference to the "Previous call to global_stop_request()," which is "now (being) honored."

UVM_INFO @ 0: reporter [RNTST] Running test test13...
UVM_INFO @ 120: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 240: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 360: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 480: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 600: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 720: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 811: uvm_test_done [TEST_DONE]
 All end_of_test objections have been dropped.
 Previous call to global_stop_request() will now be honored.

Figure 24 - test13 UVM report output after all objections were dropped

The test13 example shows that explicit calls to global_stop_request() are ignored if there are any raised objections. Only after
all objections have been dropped is there an implicit call to the global_stop_request() command, which will terminate the Active
Stage of the run() phase.

6.13 Dropped Objection And Late global_stop_request() Example
The test14 code in Example 34 demonstrates that the raising and dropping of even a single objection will disable any future call to
global_stop_request() from a run task in the test. Example 33 includes the code for a testbench driver component (tb_driver)
and Example 34 includes the code for the test14 test and environment component (env).

The top module used for this test is the same simple top module used with test7 (shown in Example 23).

The environment env component has issued the uvm_test_done.raise_objection() /
uvm_test_done.drop_objection() commands in its local copy of the run task. The test14 code has issued a
global_stop_request()command in its run task after the env issued the drop objection command. The testbench driver
tb_driver has a run task that is executing a forever loop, but has no objections. Once an objection is raised, all objections must be
dropped before an implicit global_stop_request() will force the Active Stage to complete. The test14 call to
global_stop_request() happened after there was an active raised objection, so the test14 global_stop_request()
command was never executed. In test14, there are no enabled stop tasks, so the run() phase finishes right after the Active Stage
finishes.

When test14 runs, the following sequence of actions will be executed:

• test14 executes:
• run() phase starts at time 0ns (start of Active Stage).

• test14 run task (starts running at time 0ns)
• Delays for 1,000ns.
• Calls the global_stop_request() command at 1,000ns (too late - run() phase has already completed)

• tb_driver run task (starts running at time 0ns)
• forever-loop cycles every 120ns and prints a repeating message. The forever-loop keeps running throughout the

Active Stage.
• env run task (starts running at time 0ns)

• Call the uvm_test_done.raise_objection() command.
• Delays for 811ns.
• Calls the uvm_test_done.drop_objection() command at 811ns.
• All objections have now been dropped (causes implicit call to global_stop_request()), which causes the end

of the Active Stage and start of Stop-Interrupt Stage) .
• No active stop task (starts running at time 811ns):

• run() phase finishes at time 811ns (end of both Stop-Interrupt Stage and run() phase).

class tb_driver extends uvm_driver;
 `uvm_component_utils(tb_driver)

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 endfunction

 task run();
 forever begin
 #120 uvm_report_info("tb_driver", "driver run() loop");
 end
 endtask
endclass

Example 33 - test14 - tb_driver with forever loop (loop will be cancelled when all objections are dropped)

class env extends uvm_env;
 `uvm_component_utils(env)
 tb_driver drv;

 function new (string name, uvm_component parent=null);
 super.new(name, parent);
 drv = tb_driver::type_id::create("drv", this);
 endfunction

 task run;
 uvm_test_done.raise_objection();
 #811ns;
 uvm_test_done.drop_objection();
 endtask
endclass

class test14 extends uvm_test;
 `uvm_component_utils(test14)
 env e;

 function new (string name="test14", uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build;
 super.build();
 e = env::type_id::create("e", this);
 endfunction

 task run;
 #1000ns;
 global_stop_request();
 endtask
endclass

Example 34 - test14 - global_stop_request() comes too late after all objections dropped and is ignored

The printed messages are shown in Figure 25 (UVM Report summary not shown). The first printed message came from the run_test()
command itself. The next six printed messages came at 120ns intervals from the tb_driver component. The next printed message came
811ns after the start of the Active Stage and is the TEST_DONE message, which shows that the dropping of all objections has forced an
implicit call to the global_stop_request() command, even though the forever loop continued to run. NOTE: there was a call to
global_stop_request() at 1,000ns, but the command came after the run() phase had finished.

UVM_INFO @ 0: reporter [RNTST] Running test test14...
UVM_INFO @ 120: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 240: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 360: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 480: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 600: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 720: uvm_test_top.e.drv [tb_driver] driver run() loop
UVM_INFO @ 811: uvm_test_done [TEST_DONE]
 All end_of_test objections have been dropped.
 Calling global_stop_request()

Figure 25 - test14 UVM report output after all objections were dropped

The test14 example shows that after all objections have been dropped there is an implicit call to the global_stop_request()
command, which will terminate the Active Stage of the run() phase.

7. SUMMARY & GUIDELINES
The UVM (and OVM) run() phase is composed of two stages: the Active Stage that runs unconditionally, and the Stop-Interrupt Stage
that executes conditionally if any enable_stop_interrupt bits were set during the Active Stage.

There are three types of threads that can be started at the beginning of the Active Stage when the run_test() command is executed.
These threads are the Non-Stopping threads, Stop-Request threads and Objections-Raised threads.

If there are any Objections-Raised threads, the global_stop_request() command is largely ignored. For this reason, the
global_stop_request() command is probably not the best way to terminate the Active Stage of the run() phase. All it takes is a
single Objections-Raised thread to invalidate all of the global_stop_request() commands in all of the Stop-Request threads. The
Stop-Request threads effectively become Non-Stopping threads if there are any active Objection-Raised threads.

UVM testbench development follows a different coding pattern than the typical Verilog testbench style. Understanding the differences will
help the UVM verification engineer to successfully build efficient UVM tests that gracefully terminate without timing out. To help build
correct UVM testbenches, we offer the following guidelines to successfully setup UVM tests that gracefully terminate.

Guideline: Do not use a $finish command in a UVM testbench. If executed, the $finish command will abort the UVM run()
phase and never execute the post-run() phases.

Guideline: Do not place any global_stop_request() or $finish command in the test file after the run_test() command.
The stop or finish command will never execute and the simulation will either hang or timeout.

Guideline: In general, avoid using the global_stop_request() command. This command does not work if any active objections
have been raised and its apparent failure to terminate at the expect time is a point of global_stop_confusion!

Guideline: Only use the global_stop_request() command in the simplest of tests where you have control over all of the
verification components.

Guideline: Use the uvm_test_done.raise_objection() / uvm_test_done.drop_objection() commands in all test and
component run tasks to control when that test or component has finished its testing activity.

Guideline: When using the stop interrupt capabilities, set the enable_stop_interrupt bit at the beginning of the run task. Setting
this bit will allow the run() phase to execute the Stop-Interrupt Stage.

Guideline: Any test or component that sets the enable_stop_interrupt bit should also include a stop task to describe the testing activity that
should be executed during the Stop-Interrupt Stage or the run() phase.

UVM simulations rarely hang, but if the tests are improperly terminated, the simulations will run for a very long time and appear to be
hung. A good test will never need to set either the phase_timeout or stop_timeout limits. The test will properly execute and gracefully
terminate on its own. If the simulation run seems to be hanging, then the timeout limits can be added to check for a never-ending test.

Guideline: Do not call the set_global_timeout() command in the run task (it is too late to become active)

Guideline: A good place to use the set_global_timeout() and set_global_stop_timeout() commands is in an initial
block in the top-module before calling the run_test() command.

Following these guidelines will help avoid frustration related to improper UVM test termination.

8. ACKNOWLEDGMENTS
Our thanks to our colleague Kelly Larson for sharing useful comments and feedback during the development of this paper. Also thanks to
our colleague Mike Horn for sharing important information related to the use of the run_test() command.

9. REFERENCES
[1] "IEEE Standard For SystemVerilog - Unified Hardware Design, Specification and Verification Language," IEEE Computer Society,

IEEE, New York, NY, IEEE Std 1800-2009. http://standards.ieee.org/findstds/standard/1800-2009.html

[2] Mark Glasser, "Open Verification Methodology Cookbook", Springer, www.springeronline.com, 1st Edition., 2009. ISBN: 978-1-
4419-0967-1
Free PDF Version at: http://verification-academy.mentor.com/content/open-verification-methodology-advanced-ovm-uvm-module

[3] Mentor Graphics Corp. 10 Dec 2010. EOT/Guide. http://uvm.mentor.com/mc/EOT/ovm_test_done

[4] Mentor Graphics Corp. 28 Feb 2011. UVM/OVM Methodology Cookbook. http://uvm.mentor.com/uvm/EOT/Guide

[5] Mike Horn - personal communication.

[6] OVM Class Reference, Version 2.1.1, March 2010. In OVM source code: ovm-2.1.1/OVM_Reference.pdf

[7] OVM 2.1.1 kit - includes OVM base class libraries - Free downloads - www.ovmworld.org (choose Download).

[8] ovm-2.1.1/src/base/ovm_root.svh - comments in the source code file.

[9] Universal Verification Methodology (UVM) 1.0 EA Class Reference, May 2010, Accellera, Napa, CA. In UVM source code:
uvm1.0ea/uvm_reference_guide_1.0_ea.pdf

[10] UVM 1.0EA (Early Adopter) kit - includes UVM base class libraries - Free downloads - www.uvmworld.org (choose Download).

[11] uvm1.0ea/src/base/uvm_root.svh - comments in the source code file.

10. AUTHOR & CONTACT INFORMATION
Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and trainer with 29 years of ASIC, FPGA and
system design experience and 19 years of SystemVerilog, synthesis and methodology training experience.

Mr. Cummings has presented more than 100 SystemVerilog seminars and training classes in the past eight years and was the featured
speaker at the world-wide SystemVerilog NOW! seminars.

Mr. Cummings has participated on every IEEE & Accellera SystemVerilog, SystemVerilog Synthesis, SystemVerilog committee, and has
presented more than 40 papers on SystemVerilog & SystemVerilog related design, synthesis and verification techniques.

Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State University.

Sunburst Design, Inc. offers World Class Verilog & SystemVerilog training courses. For more information, visit the www.sunburst-
design.com web site.

Email address: cliffc@sunburst-design.com

Tom Fitzpatrick, Verification Technologist and Editor of Verification Horizons at Mentor Graphics. Design and verification expert using
SystemVerilog; developing, educating and writing about industry standards.

Email address: top_fitzpatrick@mentor.com

An updated version of this paper can be downloaded from the web sites:

www.sunburst-design.com/papers

