
Adiel Khan, Justin Refice, Warren Stapleton

Version: Final 1.0

OVM TO UVM DEFINITIVE GUIDE PART 1

Abstract- The Universal Verification Methodology (UVM) is an

industry standard maintained and developed by the Accellera

technical subcommittee for verification intellectual property

(TSC-VIP). The UVM standard consists of SystemVerilog IEEE

1800 compliant reference library along with a technical reference

manual and a VIP engineer’s user guide.

UVM is constantly maturing and as OVM based projects come

to end everyone is asking how they should move to use UVM for

the next project. At AMD there is a long term strategy to migrate

all projects using OVM code to UVM. Based on the knowledge

within the methodology team there has been several successful

SoC code-upgrades each containing numerous subsystems with

dozens of IP block projects.

During OVM’s short life span, it went through a multitude of

revisions and lots of bug fixes. Many other issues and bugs were

never resolved in OVM which created divergence in the user

community as verification teams created their own solutions.

UVM not only fixes several open bugs from OVM but also

draws from VMM to address many of the basic features required

for verification that were left unanswered by OVM.

The definitive guide is split over two parts. This paper is part

one, a practical aid for the users who are upgrading from OVM

to UVM. There will be a subsequent paper namely “Part Two”

which addresses methodological modifications required to

upgrade from OVM to UVM.

I. INTRODUCTION
When upgrading from OVM to UVM there is more than

just syntax and semantics that need to be modified. In

this paper we will discuss for each major section of the

UVM’s base classes how to upgrade syntax from OVM to

UVM, covering explanations as how to move forward with

UVM.

The starting point of UVM code base was created by an

automation script that performed a renaming of

keywords, from the OVM base class library. The script

was the first OVM to UVM renaming technology

developed and was donated to Accellera. Subsequently,

Accellera members have enhanced, modified, rewritten

and renamed the original script, OVM_UVM_Rename.pl to

ovm2uvm.pl. Unfortunately, these scripts quickly became

outdated as UVM moved forward and they cannot take

code from OVM to UVM-1.X version. There are other

scripts and technologies in the industry that can

automate much of the process. However, automation is

not a substitute for knowing what and why changes are

occurring. It is not the purpose of this paper to provide

an automated script, but instead to provide the user with

the knowledge as to what such an automated script

might be doing.

The UVM library proved a switch to the user to ensure

that users have not accidently overlooked an area which

is deprecated or targeted for deprecation.

+define+UVM_NO_DEPRECATED is a compilation option that

enables error messages if deprecated features are used.

II. PRIOR TO OVM-2.1.2
The OVM-2.1.2 release notes list deprecated features in

OVM. These need to be resolved before converting to

UVM. Any items marked as deprecated prior to OVM-

2.1.2 will not be available in UVM. As OVM went through

rapid churning, not all projects were able to keep up to

date and not all changes were easily identifiable as

deprecated features or required code modification. Whilst

many of the OVM deprecated features were indicated at

runtime by a specific OVM_DEPRECATED warning

message there were some that were not so easily

identifiable by the end users. To ensure OVM migration to

UVM was as smooth as possible AMD methodology team

created OVM_2.1.2_TRANS version which was OVM-2.1.2

but with all deprecated features removed. This enabled

project teams to identify areas where their code was

using features not available in UVM.

A. Typical deprecation issues not enforced in OVM
 For completeness this section outlines some of the more

prevalent issues a user would need to resolve prior to

upgrading from OVM to UVM. The issues include

modification to the phasing API, the removal of semi-

colons to macros and the replacement of

ovm_threaded_component objects along with vendor

specific classes.

1) Threaded Classes
In older versions of OVM library there was an

ovm_threaded_component object that could be used by

people to derive their own custom VIP components. The

ovm_threaded_component was originally the class that

held run() mechanism. By the time of UVM and OVM-

2.1.2 the ovm_threaded_component had been completely

deprecated and functionality merged into

ovm_component.

2) Reporting
An area that inevitably touches every part of a

verification environment is the standard output text API.

It has been well discussed about the limitations of using

$display() within your code as it can add overhead for

regression and lacks the controllability for different users.

So, it was quite natural for users to want to adopt a

better reporting system as provided by OVM. Most users

got caught between different version of OVM having

slightly different API to use as an alternative to

$display(). i.e. `message(), `OVM_REPORT_INFO,

ovm_report_info or `ovm_info. Also note,

`message() was not part of OVM and will be discussed in

vendor specific section.

a. Messages with Severities
By the time of OVM-2.1.2 users were expected to be

using `ovm_info(), `ovm_warning(), `ovm_error()

and `ovm_fatal() macros for reporting information. The

capitalized variants were deprecated prior to OVM-2.1.2;

`OVM_REPORT_[info_WARNING|ERROR|FATAL]

 This in UVM now becomes:

`uvm_[info_warning|error|fatal]

b. Message Macros with semi-colon
The semi-colon is a line terminator in Verilog and can

cause functional differences in the code if not used

correctly. For instance a semi-colon placed at the end of

an already terminated line after an if-else clause will

cause the “if” to be terminated unless it is followed by a

“begin” block. Therefore, it is important to understand

whether or not a semi-colon is included as part of the

macro expanded code. Here is the code in question:

if (enter)

 if (somevar)

 `ovm_error(…);

 else ...

The issue in the above code is that the ”if (somevar)”

clause may be terminated by the semi-colon after the

ovm_macro call.

Let us rewrite the above as some classic Verilog code.

if (enter)

 if (somevar)

 $display(“ERROR Message output”);

//`ovm_error(…)

 ; //bad semi-colon after `ovm_error

 else ... //Else is associated with “enter”

and not with “somevar”

Therefore,

`ovm_[info|warning|error|fatal](…);

becomes:

`ovm_[info|warning|error|fatal](…) `ifndef

BAD_semi ; `endif

3) Sequence and Sequence_item Constructor
The sequence and sequence_item constructor in OVM

had 3 parameters passed in 2 of which were deprecated

i.e.:

ovm_sequence::new(arg1, arg2, arg3);

ovm_sequence_item::new(arg1, arg2, arg3);

Sample code is:

ovm_sequence::new(name, sequencer=null,

parent_sequence=null);

In UVM the constructor now only has the one supported

parameter so the code becomes:

 uvm_sequence::new(name);

4) Phasing

a. Terminating the Simulation
In OVM each component had a global_stop_request()

method which has been removed from UVM. In UVM a

global level (not component level) global_stop_request()

method is present but marked as deprecated. The

preferred mechanism in UVM is for components to

participate in phasing and object to the current phase

being executed from ending until the component no

longer requires that phase to be executing. More on this

topic in the methodology improvements section later in

this paper.

i.e. OVM syntax:

mycomp::global_stop_request() or mycomp_inst.

global_stop_request();

Making the UVM syntax:

global_stop_request(); // to be deprecated

Component level global_stop_request() was deprecated

prior to ovm-2.1.2 and removed in UVM from component

into root space. In turn global_stop_request() in the root

space is marked for deprecation.

b. Deprecated Phases
As OVM matured and learned what users needs were,

several phases got deprecated along the way. Most

notable post_new(), configure() and pre_run()

phases should not be used in OVM-2.1.2 and are

completely removed in UVM-1.X. The expectation is that

the functionality executed in these deprecated phases

can be moved into a supported phase in UVM. For

instance, post_new() functionality can often be moved

into UVM’s build_phase(). Similarly, configure()

functionality can be collapsed backward into

connect_phase() or it can pushed forward into

end_of_elaboration_phase(). Lastly, procedural code

executed in pre_run() can be mapped into
start_of_simulation_phase().

B. Vendor Specific code in OVM
There were numerous parts of users usage of OVM library

that relied on code from vendor specific solutions. These

have been removed so that UVM is vendor neutral and

doesn’t contain legacy non-agreed code in the standard.

You may have some leftover pieces from a vendor

specific library or vendor specific debug facility.

In UVM the transaction recording has been abstracted

away from the base-class library and EDA vendors have

an API which allows them to provide tool-specific

transaction recording without affecting the UVM library

code. Historically, many OVM users migrated from the

now defunct URM or AVM methodologies.

As noted previously you may have unknowingly been

using reporting features like `message() and

`dut_error() which were never actually part of OVM.

`message() and `dut_error()should be replaced with

`ovm_info() and `ovm_error() respectively. It is

important that your code be clean of all urm_* and avm_*

code before attempting to upgrade to UVM. In a similar

but much more subtle vain there was a macro that had

the ovm prefix but clearly leveraged the urm code

infrastructure, although it may not have been quite so

clearly stated as deprecated in OVM it definitely had no

place in UVM. The macro in question is

`ovm_msg_define(<verbosity_arg>) which users

performing the upgrade are expected to replace with

ovm_report_enabled(<verbosity_arg>) prior to moving

to UVM. The main functionality is to test what level the

verbosity has been set to and the result will return “1” if

the configured verbosity is greater than the

verbosity_arg supplied. Another popular method that is

should be kept upto date with OVM advancements to

reduce issues in migrating to UVM is

set_global_verbosity() which in OVM-2.1.2 becomes
set_report_verbosity_level_hier().

III. OVM TO UVM
One could imagine since UVM was derived from an OVM

code base that by performing an “O” to “U” translation on

all scripts and code should suffice to enable UVM

compilation rather than OVM. This is not true as OVM had

some files and members that were not prefixed with ovm.

Many of these discrepancies have been addressed in

UVM. However, this does mean that the user needs to

upgrade their scripts and top-to-bottom code usage

appropriately.

In the following section let us review what is required to

have correct UVM functionality for each of the major

building blocks within the UVM library. This covers the

general base class usage, the infamous configuration and

factory schemes, a review of the reporting structure,

what is involved in switching to UVM phasing, leveraging

the new UVM sequence infrastructure and lastly

modification in the TLM domain.

A. Base Classes
For the majority of the classes you will find OVM_ or ovm_

has become UVM_ or uvm_ respectively. The leads us to

look at areas where simple conversion is not possible

such as how users access the library code, changes in

temporary workarounds, how access to the top level

arrays have been modified, discrepancies in macros that

have been fixed, and modification to the comparator

operations that could catch you out.

1) Class Inclusion Scheme
The first place to start with the OVM is how users were

accessing it from their verification code. A large portion

of users were using `include “ovm.svh”. Well in UVM

there is no uvm.svh and if you pull in uvm.sv then there

will be duplicate entries of the uvm library compiled. The

correct mechanism is to use import uvm_pkg::*; which

also enables users to pre-compile the library into its own

precompiled library for all teams to use. Of course

package imports do not bring in macro definitions

therefore `include “uvm_macro.svh” is expected where

macro usage occurs.

2) Parameter Class Workaround
The file ovm_template.svh was used to workaround

simulator deficiencies. OVM usage of this file should have

been restricted to simulators which did not fully support

template types in separate scopes. The file enabled

template objects to be available in multiple scopes where

the definitions and specializations did not need to be

shared between the scopes. For UVM this file does not

exist and all references in the users code must be

removed.

3) Top_levels Array
The Top_levels array is very useful for viewing all the

classes that are used in your UVM testbench. If a uvm

class has been constructed and not passed a “parent”

hierarchy handle then it will be a top_level component.

The access to the top_levels array is now contained

within the uvm_root object as a static element. Whereas

in OVM one could access using uvm_toplevels, now in

UVM the access is uvm_root::top_levels.

4) Field macro usage
OVM, unintentionally, supported the declaration of an

enumeration as int within the field automation macros.

ie:

typedef enum {FOO, BAR} foo_e;foo_e my_foo;

`ovm_object_utils_begin(my_object_type)

 `ovm_field_int(my_foo, OVM_ALL_ON)

`ovm_object_utils_end

UVM has specializations within `uvm_field_int which

makes this code erroneous. The corrected code becomes:

typedef enum {FOO, BAR} foo_e;foo_e my_foo;

`uvm_object_utils_begin(my_object_type)

 `uvm_field_enum(foo_e, my_foo, UVM_ALL_ON)

`uvm_object_utils_end

5) Comparator
It is generally accepted that the actionable methods in

UVM users need to override should be do_*(). In OVM

there was a comp() method that users could override for

performing the compare functionality. With UVM one

should override do_compare() rather than comp() when

using uvm_class_comparator.

i.e: ovm_class_comparator::comp();

is now: uvm_class_comparator::do_compare();

B. Configuration and Factories
The OVM mechanism for applying configurations has

been significantly revamped and improved in UVM. At the

time of writing the OVM set/get*() API had been

requested to be deprecated. Hence in the later section of

upgrading methodological usage we will discuss how to

move from the old OVM API to the improved UVM API. In

this section we will cover the minimal subset of changes

required to make OVM configuration and factory API’s

operate with UVM code.

1) Set/get config_object()
There was an ambiguity that required clarification

between OVM documentation versus OVM code versus

UVM documentation versus UVM code implementations of

set/get_config_object() API. The following is an

amended extract from Accellera’s UVM bug tracking

system Mantis with reference bug number 3731.

http://eda.org/svdb/view.php?id=3731

In OVM-2.1.2, cloning would occur on a

get_config_object() only if the clone bit for and the

corresponding set_config_object() were set to 1. This

prevented inadvertent cloning when

get_config_object() was called without specifying the

clone argument, which defaults to 1. One could argue the

default for clone should have been 0.

Set Get affect

0 0 no cloning at all

0 1 no cloning at all

1 0 cloning on set

1 1 cloning on set

(useful for multi-

gets)

 In UVM-1.0, the clone bit for the set is not saved, so the

truth table is different, and not backward compatible.

Set Get affect

0 0 no cloning at all

0 1 cloning on get

1 0 cloning on set

1 1 cloning on set,

cloning on get

Thus discussion of Mantis 3731 ensued. Resulting in,

auto-configuration method, apply_config_settings()

being fixed in UVM-1.1b to honor the clone bit provided

with the set_config_object() method per the Accellera

standard specification. The get_config_object() has

intentionally been left as implemented in UVM-1.0 (not

following the Accellera standard specification) in order to

preserve current library implementation semantics.

2) Printing Factory & Override
Code modifications that were performed in other areas of

OVM were also applied to the factory section. Some areas

are high likely to affect users such as the modification in

how to print the factory and how to print all the overrides

in the factory. Previously, an OVM user would have called

ovm_factory::print() and to output all the override,

ovm_factory::print_all_overrides(). Whereas now

in UVM the code becomes uvm_factory::get.print().

To perform override calls to enable the factory to replace

objects the API has gone from
ovm_factory::set_type_override[_by_type|_by_name

]

 Thus in UVM becomes:

http://eda.org/svdb/view.php?id=3731

my_obj::type_id::set_type_override[_by_type|_

by_name];

C. Reporting and Controlling Messages

1) Command line message control
Converting OVM Command line options cause UVM

warnings. The format of the example below is an

incorrect translation from “O”vm to “U”vm. The verbosity

options are reordered under UVM.

i.e:

+uvm_set_verbosity=start_of_simulation,uvm_te

st_top.t0.ioe_s.slave[0].*,UVM_HIGH

becomes :

+uvm_set_verbosity=uvm_test_top.t0.ioe_s.sla

ve[0].*,_ALL_,UVM_HIGH,start_of_simulation

2) `uvm_info inside of sequence static methods
In OVM, sequences did not have implementations of the

report methods, and as such relied soley on the ovm_pkg

scope functions.

In UVM, sequences do implement these methods,

allowing for `uvm_info() (et al.) to be called from within

the sequence without needing to point to the sequence's

parent sequencer. These implementations are not static

however, which means that any static methods defined

inside of a sequence must not use`uvm_info calls.

3) Reporting Classes
The ovm_reporter has been superseded by

uvm_report_object and the ovm_report_global_server

class is replaced with a proper implementation of a

singleton in the uvm_report_server class. The following

statements

ovm_report_server srvr;

ovm_report_global_server glbl= new();

srvr = glbl.get_server();

GLBL.SET_SERVER(MY_SRVR);

should be modified as follows:

uvm_report_server srvr;

srvr = uvm_report_server::get_server();

uvm_report_server::set_server(my_srvr);

4) Topology Printing
The printing of the topology is now scoped to the

uvm_root object constructed as uvm_top. Therefore,

ovm_print_topology() now becomes uvm_top.print().

The same modification needs to be performed for

ovm_enable_print_topology() for it to become in UVM
uvm_top.enable_print_topology().

Based on component context this should be reviewed by

user to ensure valid modification is performed during

upgrade.

5) Printer API’s
Several printer knobs are deprecated and no longer have

any effects.

In OVM the printer knobs were located in:

ovm_default_printer.knobs

these in UVM 1.0 became:

uvm_printer_knobs

subsequently in UVM 1.1 the printer knobs were reviewed

and many where removed, such as:

uvm_printer_knobs::max_width

uvm_printer_knobs::truncation

uvm_printer_knobs::name_width

uvm_printer_knobs::type_width

uvm_printer_knobs::value_width

uvm_printer_knobs::sprint

uvm_component::print_config_settings

One of the knob members was renamed from:

ovm_printer_knobs::global_indent

to

uvm_printer_knobs::indent

The uvm_component::print_config_settings() method

is deprecated in favor of the method

uvm_component::print_config().

The following statement:

comp.print_config_settings("", null, 1);

print_config_settings("", comp, 0);

Hence, should be modified as follows:

comp.print_config(1);

comp.print_config(0);

The other notable point with printers is that in OVM the

down() method had two arguments whereas in UVM

there is only one argument. See the following example:

printer.m_scope.down(get_name(), null);

Is now in UVM as:

 printer.m_scope.down(get_name());

D. Phasing
UVM provides a run time switch allowing the phasing to

use the scheduling as ordained by the OVM run_phase() ,

the switch is +UVM_USE_OVM_RUN_SEMANTIC. Usage of

this switch should be temporary to ease the migration

process, once fully conversant in UVM the phasing should

be implemented correctly and remove usage of the

switch. An obvious change that you will notice is that the

phase names have been enhanced to explicitly state

<method>_phase and pass the phase_name as an

argument to the method. By doing so it give easy access

to phase methods such as objection interactions. This

correlates with how various timeouts have been

modified.

1) Phase names, calls and super accesses.
Even though the same OVM phase methods are in the

UVM library they are marked for deprecation and it is

strong advised that all users implement using the new

phase names and API.

This means OVM code

<phase_name>();

Becomes:

<phase_name>_phase (uvm_phase phase);

The signature of all pre-defined phase implementation

methods are modified, build, connect,

end_of_elaboration, start_of_simulation, run,

stop, extract, check and report.

Due to the change in UVM if there was code in the

environment that was directly calling a phase method

such as <mycomp>.build()this will now cause an error

condition to be signified. Direct calls to

<anyusercomponent>.build() are illegal and should be

removed from the code.

Similarly, the phase name modifications need to be

applied to all super.<phase_name>() where there are

intermediate classes used for derivation functionality

containment these now need to use

super.<phase_name>_phase (phase).

2) Timeouts and Termination Criteria
Timeouts were implemented in OVM and in UVM to

prevent endless runaway simulations. They were never

intended to be used as functional mechanisms to

determine when a users verification of a design was

complete. Moving from OVM to UVM the timeouts were

streamlined, the OVM set_global_timeout and

ovm_top.stop_timeout were removed from UVM in

preference for the objection mechanism. Also, the

`UVM_DEFAULT_TIMEOUT which in OVM was typically used

as “`UVM_DEFAULT_TIMEOUT - $time” still exists

although the usage now is simply

`UVM_DEFAULT_TIMEOUT and it will issue a UVM_FATAL

message when reached from UVM-1.1c onwards.

Users wishing to prolong or terminate their testbenches

must use the objection mechanism to determine when

the simulation should end. There has been a change in

the syntax which for OVM use to be:
ovm_test_done.[raise|drop]_objection(args1)

Now with UVM-1.X the syntax, specifically when within a

phase method context has become:

phase.[raise|drop]_objection(args1);

The hammer approach of global_stop_request() has

been deprecated as it was not reusable and caused many

issues when integrating code that incorrectly and

ungracefully terminated the simulation. Later, in the

methodology section we will cover a full example of how

to properly terminate the simulation.

E. Sequence Control and Data Objects
The sequence API in UVM has been improved by adding

more debug features and aligned the methods with other

parts of UVM also removed unnecessary variables such

as count. The OVM sequence library had several

problems and in UVM-1.1 there is a new sequence library

that solves many of the use and reuse factos faced

previously.

1) Sequence Raise Objection with debug
UVM add a description field to the raise and drop

objections functions. This provides a convenient way to

view and debug when there are multiple interleaved

objections within the simulation. The OVM syntax was:

raise_objection(object, count);

drop_objection(object, count);

Whereas UVM uses:

raise_objection(object, description, count);

drop_objection(object, description, count) ;

2) Sequence Objections
To correctly upgrade the syntactical usage of objections

within sequences one must also address how they are

used. In OVM the policy was to leverage the

ovm_test_done object and use that as a container to

raise and drop the objections controlling the end

proloning or termination of the simulation. That is in OVM

syntax one would have coded :

 uvm_test_done.[raise|drop]_objection(<args>)

Whereas in UVM the policy is to raise and drop objections

per phase which makes the syntax usage within a

sequence as follows:

 if (starting_phase !=null)

starting_phase.[raise|drop]_objection(<args>)

This direct translation between what is expected syntax

previously to what is UVM syntax does not address the

complete usage. Most users had implemented a style of

objection usage that one can call pessimistic mode. In

many verification environments the objection usage is

per-sequence placed, at worst within the sequence or

more common within pre/post_body() for raising then

dropping objections. It is probably overkill and

engineering paranoia wanting to ensure each sequence

can prolong or protect against simulation terminating

during sequence execution. The code can be optimized

by refactoring for an optimistic mode, whereby only the

highest level sequences need to raise/drop objections

from within pre/post_start(). For the pedantic, prior to

UVM-1.1 it would have been within pre/post_body().

See section on body() callbacks in the methodology

upgrade chapter to learn about how pre/post_body()

are now callbacks for every sequence and

pre/post_start() are only root sequence activated.

3) Sequence Item Port Connections
The pseudo TLM-1 OVM sequence API has been cleaned

to align more closely with other API’s within UVM.

Namely the *_if has been dropped meaning OVM API’s:

seq_item_prod_if, seq_item_cons_if,

seq_item_port.connect_if

Translates to::

seq_item_port, seq_item_export,

seq_item_port.connect

4) Data objects for constrained random
verification

Some parts of OVM were more trial and error than driven

by definitive users criterion. One such area was the

creation of ovm_transaction class, it was considered

useful at one point to have a lower level object that did

not have the overhead of sequence_item members yet

could be used for transaction recording and derived from

for monitoring purposes. At the time of UVM review it

was noted that overhead of using sequence_item object

rather than transaction was minimal and created less

divergent code as most users would anyway derive from

sequence_item to add in their object members required

for constrained random and coverage driven verification.

The ovm_transaction class is deprecated and should be

replaced with uvm_sequence_item. The following

statement

class my_trans extends ovm_transaction;

should be modified as follows:

class my_trans extends uvm_sequence_item;

Some advanced users had been accessing non-public

API’s of the OVM library. The area that seemed most

common was the usage of `OVM_FIELD_DATA within data

objects. This macro is deprecated from UVM however

with some reviews of the macro usage it is normally

possible to use `M_UVM_FIELD_DATA instead

5) Sequence, Sequencer Automation and
Relationship

As part of the review and improvement process when

creating UVM the sequence utility macros were enhanced

for a more flexible and complete usage model. Fristly,

the sequence and sequencer automation macros now

align with their internal base-class types of uvm_object

and uvm_component respectively. Secondly, the

separation of the sequencer registration and the

sequence data automation gives the sequence the

freedom to not be tightly coupled with a single

sequencer. In OVM for the sequence one would have

written the syntax:

`ovm_sequence_utils(arg1, arg2)

Now with UVM-1.X the syntax becomes:

`uvm_object_utils()

`uvm_declare_p_sequencer(arg2)

Similarly, for the sequencer the OVM syntax was:

`ovm_sequencer_utils

This in UVM becomes:

`uvm_component_utils

6) Default Sequence, counting and the sequence
library

OVM had a default_sequence which was set to

ovm_random_sequence as default. This allowed users to

use the internal count variable to control how many

sequence_items were generated. UVM has enhanced the

usage of default_sequence to be per runtime phase

aware and it no longer defaults to ovm_random_sequence.

Therefore, there is no longer a requirement to have the

count variable within the library. If users require a count

variable it would belong in their sequences outside of the

library code. In summary code such as

set_config_int(<sqcnr>, “count”, 0)is no longer

valid and should be removed.

To configure the default_sequence per phase there are a

variety of techniques available within UVM. If a user in

the OVM code had the following:

set_config_string(“<hier_to_sqncr>”,

default_sequence, “<seq_type>”);

They could use the UVM configuration database:

uvm_config_db#(uvm_object_wrapper)::set(this,

“<hier_to_sqncr>.run_phase”,

“default_sequence,

<seq_type>::type_id::get());

Alternatively use the factory to find the type:

uvm_config_db#(uvm_object_wrapper)::set(this,

“<hier_to_sqncr>.run_phase”,

“default_sequence,

factory.find(“<seq_type>”));

Or supply path of a sequence rather than factory:

myseq_type my_seq=new(“my_seq”);

uvm_config_db#(uvm_sequence_base)::set(this,

“<hier_to_sqncr>.run_phase”,

“default_sequence”, “my_seq”).

Occasionally, it is better reuse and readability to have

seq.start() in each of your testcases to start different

sequences per test:

myseq_type my_seq= new(“my_seq”);

my_seq.start(my_sqcnr, null);

This leads directly onto how to categorize sequences into

a library for reuse. In OVM there were many caveats and

tight coupling between objects preventing arbitrary reuse

of sequences and sequence libraries across arbitrary

sequencer. The OVM sequencer based sequence library is

deprecated and replaced with a more reusable

implementation. As shown above sequences can be

spawned by simply calling start(). Also, see the

methodology section on using UVM-1.x sequence library.

The main code that affects users is the removal of the

sequence library macros in OVM, which means the code

must be removed to work with UVM

`ovm_update_sequence_lib() and

`ovm_update_sequence_lib_and_item(<arg>)

F. TLM API inclusion and usage
The TLM directories and files were an area where OVM

did not use ovm_ or OVM_ nomenclature. This was

addressed by UVM therefore OVM syntax tlm_* or TLM_*

has been fixed in UVM to become uvm_tlm_* or

UVM_TLM_*. User including, importing or using the TLM

files and features of OVM would need to modify their

code to use the corrected UVM prefix nomenclature with

TLM.

The UVM library also addressed the OVM

export_connections* and import_connections* by

deprecating these and replacing them by having calls

within connect().

IV. CONCLUSION
Knowledge of what, how and where modification are

required de-risks the migration process from OVM to

UVM. At AMD and within Synopsys there are technologies

and resources that make the OVM to UVM transition

painless and can even be done unbeknown to the user.

For AMD the UVM upgrade is a long term strategy that

needs to coincide with project specific needs and

requirements. The process has been proven and well

understood thereby enabling users to take advantage of

the OVM bugs addressed by UVM and the new features

UVM brings for advanced verification.

V. ACKNOWLEDGEMENTS
The authors would like to acknowledge the contributions

of John Fowler, who architected and implemented much

of the AMD transition kit. Also, Janick Bergeron provided

significant material for the definitive guide. Numerous

AMD, Synopsys colleagues and various companies aided

by qualifying the scripts developed preceding this paper.

The scripts were coupled with the OVM to UVM upgrade

guide and with the UVMKit, to all of those users involved

we owe much appreciation as they drove the requirement

for creating this paper. Also a huge thank you must go

out to all Accellera members whom are continuing to

strive for a better UVM that can fulfill many users

verification needs.

VI. REFERENCES

1. UVM-1.1.c User guide by Accellera

2. UVM-1.1.c Accellera source code

3. OVM-2.1.2 Release notes by OVM team

4. OVM-2.1.2 VCS source

5. AMD internal TWiki by John Fowler & Justin Refice

6. OVM to UVM Upgrade guide by Adiel Khan

7. http://eda.org/svdb UVM Mantis by Accellera

