

Page 1 of 14

Overcoming AXI Asynchronous Bridge Verification Challenges
with AXI Assertion-Based Verification IP (ABVIP) and Formal

Datapath Scoreboards

Bochra ELMERAY, ST-Ericsson, Rabat, Morocco

Phone: +212 5 37 67 85 39

Email: bochra.elmeray@stericsson.com

Joerg MUELLER, Cadence, Munich, Germany

Phone: +49 89 4563 1724

Email: jmueller@cadence.com

1 Abstract

In this paper we will present our experience

in asynchronous AXI bridge verification

using a new methodology based on the use

of assertions and formal analysis for both

datapath and protocol compliance

verification. We also show how new formal

datapath scoreboarding methodologies and

enhanced tools used to perform this

verification unearthed a serious, show-

stopper bug that was not detected by prior

methods.

2 Introduction

Globally-Asynchronous, Locally-

Synchronous (GALS) design techniques are

used to solve problems arising at physical

implementation (mainly timing

convergence, power dissipation, etc.) In the

system on a chip (SoC) design context,

asynchronous bridges are used to realize

GALS, where such bridges allow a master

module and a slave module to communicate

together through the same protocol, but

with asynchronous frequencies. In this case

study, an asynchronous AXI bridge is

instantiated several times in the

communication between the main

interconnect and sub-systems and it is also

used to perform frequency conversion. The

architecture also includes large

asynchronous FIFOs which have two ports:

one for writing data into the FIFO from one

clock domain, and the other for reading

data from the FIFO into the other clock

domain.

In order to guarantee the functionality of

the entire system, the bridge needs to be

exhaustively verified. For this reason formal

analysis was chosen to implement our

verification methodology.

This paper will show how we successfully

performed datapath verification with formal

analysis - which is typically only used for

control logic - to find a serious, show-

stopper bug that was missed by other

methods (and this issue inspired a

significant redesign of our DUT).

Additionally, the more exhaustive nature of

this technique - including both protocol

compliance and end-to-end functional

datapath checking - gave us high

confidence in the efficacy of our

verification.

mailto:bochra.elmeray@stericsson.com
mailto:jmueller@cadence.com

Page 2 of 14

3 GALS bridges Verification

3.1 “AsyncAXI” Bridge

Architecture

The “axi2axi” asynchronous bridge is a

component that mainly performs frequency

conversion. As shown in Figure 1 below, this

block is comprised of three major units:

Write unit: The part responsible for re-

synchronizing all signals relative to write

transactions: write address channel, write

data channel and write response channel

Read unit: The part responsible for re-

synchronizing all signals relative to read

transactions: read address channel and read

data channel

Clocks and Resets unit: The part

responsible for reset synchronization and

clock gating for the write unit and read unit,

respectively.

Figure 1: Axi2Axi functional block diagram

3.2 Verification Objectives and

Challenges

The 2 main objectives in GALS verification

are:

1. Protocol Compliance: Ensure that the

Master and Slave interfaces are

compliant to AXI protocol

2. Data Integrity: Guarantee that the

data transport function of the design

is correctly implemented across the

clock domain boundary by verifying

all datapath channels of this bridge

using scoreboards.

Verification of such designs faces several

challenges:

1. The complexity of the design itself:

in addition to a mix of both control

logic and computation on datapath,

there can be many internal states

created by the number of

synchronization FIFOs in such

designs.

2. Another challenge comes from the

asynchronous nature of these

designs that complicates the

modeling of the clocking behavior

vs. synchronous designs. In short, it

is practically impossible to build a

dynamic simulation environment

that would cover all possible clock

frequency ranges and combinations.

3. The AXI protocol itself supports a

considerable number of signals and

rules that must be completely

verified.

3.3 Traditional Verification

Methodology

In the past, a constrained random

simulation environment was created to

Page 3 of 14

verify protocol compliance and the data

integrity for such designs. The effort to

create such environments was significant

and often failed to find bugs that ideally

should have been discovered earlier “if only

we had written just one more test”. In

particular, verifying the full configuration

space for protocol and clock frequencies

proved to be an unsolvable challenge. In

response formal verification was added to

augment the protocol compliance analysis.

This immediately filled some gaps left open

by the traditional verification approach,

eliminated additional corner case bugs, and

led to earlier verification results.

Although a commercial AXI Verification IP

(VIP) component (1) and formal tool (2) were

used, the then extant “off the shelf” solution

did not go far enough for the following

reasons:

1. Due to the complexity of this design

(which had many internal states, and

a lot of control logic and

computation) some assertions were

proven only up to a certain depth

(the tool calls this result “explored”)

and never passed or failed for the

complete state space.

2. The debugging was extremely

difficult and slow in this particular

environment because the signal level

representation of the

counterexamples required

significant protocol and design

expertise to perform any meaningful

analysis.

3. The environment only performed

partial checking. Specifically, it only

checked for protocol compliance and

did not consider any end-to-end

functionality like the data transport

over a clock domain crossing.

4. No verification plan existed for

guiding the verification and

measuring progress (which is

included in a metric-driven

verification flow).

These deficiencies, and the desire to

completely verify the design in one

environment, caused us to rethink our

strategy and adopt a new approach for the

verification of this bridge. This new

approach is completely based on formal

verification without the need of a dynamic

simulation environment, and brings to bear

a lot of innovative techniques to address

known formal analysis challenges.

4 AXI Bridge Formal

Verification Experience

4.1 New Verification Strategy

The new verification strategy is mainly

based on 2 innovations:

a) A new version of the AXI3 Assertion-

Based Verification IP (ABVIP) which

enabled a full formal verification of

protocol compliance against the

ARM AXI specification.

b) A new methodology for verifying

asynchronous datapaths, based on

Page 4 of 14

concepts inspired by academia,

which uses sequences of symbols to

verify data integrity more efficiently

with formal verification.

These components are now embedded in a

formal-aware metric driven verification and

regression environment, taking advantage

of debugging capabilities supported by the

formal tool.

4.2 Datapath Verification

The methodology employed for formally

verifying datapaths is based on the

“sequences of symbols” method introduced

in research first by Wolper (3) in 1986, then

applied by Stangier (4) in 2001, and

converted to be usable in industrial settings

by Mueller (5) in 2011.

4.2.1 Symbol

A symbol is a non-deterministic constant. It

is implemented as a signal that is stable but

unassigned in HDL. For example, in Verilog

this could be written as:

 wire [31:0] symbol;

 assert property($stable(symbol));

4.2.2 Sequences

The symbol is used to form input/output

streams of certain shapes (sequences) and

reduces the view of the entire value space

down to 2 distinct value sets:

a) Value equal to symbol (S)

b) All other values (.)

Examples of sequences used:

 first_symbol: S......

 always_symbol: SSSSSSS

 never_smbol:

 one_symbol: ...S...

 consecutive_symbol: ...SS...

For every such sequence there is an

associated set of a constraint and an

assertion. Separating the sequence checking

into these 2 components simplifies the

checking and removes the dependency on

multiple clock domains in the properties.

Example code fragments of the “one symbol

only” sequence checking components:

assume property (@(posedge in_clk)

 in_symbol_seen && in_dvalid

 |-> in_data != symbol);

assert property (@(posedge out_clk)

 out_symbol_seen && out_dvalid

 |-> out_data != symbol);

This code enforces that the symbol, once it

was seen (as indicated by the flag “…seen”),

will not appear a second time.

4.2.3 Checks

The check itself drives these sequences into

the input and then compares against the

output of the datapath (Figure 2).

Figure 2: Datapath verification based on

symbols

If the sequences don’t match, then this

points to an error in the DUT transport

function. The real power of this approach

Page 5 of 14

comes from the fact that formal verification

checks all possible values at any point in

time with just one formal proof. This is

possible because the formal engine can

initialize the symbol to any value and place

it at any position in the input stream as

required to find a violation of the check.

4.2.4 Formal Scoreboard

Several of the datapath checks with

differing characters are assembled in a

formal scoreboard package (provided by the

tool vendor), that is instantiated for each

bus as shown in Figure 3.

Figure 3: Cadence’s Incisive Formal

Scoreboard package

For the AXI bridge discussed here there are

a total of 7 datapaths and, thus, 7

scoreboard instances:

1. Write Address ID

2. Write Data ID

3. Write Response ID

4. Write Data

5. Read Address ID

6. Read Response ID

7. Read Data

This new methodology enabled more

complete verification by fully covering and

concluding the previously missing

functional end-to-end checks.

4.3 Protocol Checking

Checking protocol compliance of standard

bus protocols is much easier today than 8

years ago because of the existence of pre-

validated verification components –

Assertion-Based Verification IP (ABVIP) -

that implement the compliance rules in an

executable form (1). Our current

environment includes 2 instances of a

newer AXI3 ABVIP attached to the two

interfaces of the bridge and provides both

checking and constraining for legal AXI

traffic.

4.3.1 Divide and Conquer

For protocol checking our verification

approach was to separate multiple

functional cases in a divide and conquer

manner. This helps to simplify debugging

and reduce the wall clock run time of the

formal proofs. It was determined that the

available parameters of the ABVIP could be

utilized for these separations.

4.3.2 ABVIP Parameters

The parameters used for partitioning our

verification included the following:

 Pipeline Depth: This parameter was

used to control the maximum

number of pending transactions.

While the design requires 8

transactions to fill the internal

pipeline buffers, the parameter was

reduced to 2 for many cases that did

Page 6 of 14

not focus on stressing pipeline

management capabilities.

 Byte Strobes: This parameter allows

turning on byte strobe driving and

checking. Since this is an

“expensive” feature for formal tools

to compute, a separate test was

created to focus on this

functionality.

 Exclusive Accesses: Similar to byte

strobes, this functionality received a

dedicated test because of the

complexity it introduces even for

unrelated functionality.

 Data before Control and Write/Read

Interleaving: The AXI protocol allows

data before control and out-of-

order responses. The separation of

these modes was required for

compares because the previous

version of the ABVIP used did not

provide the full set of combinations

(see Table 1).

4.3.3 Environment Constraints

In addition to ABVIP parameters reset and

clock constraints were also used to create

simplified and dedicated environments to

focus on specific features.

 Reset: In all functional modes, the

reset pin was tied off. However, to

complete the verification, a

dedicated reset test was also added

that allowed the reset pin to toggle

and evaluate all scenarios under

reset.

 Clock: The formal tool offered

complete freedom on specifying

master and slave clock waveforms,

or leaving them as completely

independent and asynchronous1

pins. That was a mandatory

requirement to stress the clock

domain crossing functionality inside

the bridge. Following Steffenhagen’s

“Clocking Strategies” (6) a simple

“sync” mode where both clocks were

equal and an “async” mode where

both clocks were unconstrained (but

fair) was created.

4.4 Verification environment

4.4.1 Partitioning

The number of possible combinations of

these checks, parameters and constraints

was huge. Since there is so much

redundancy in many of the combinations,

there was an effort to define a reasonable

subset of setups.

1
 “asynchronous” in that context means that any

ordering of events is allowed. It does not refer to
metastability, glitches or similar effects.

Page 7 of 14

Figure 4: Async AXI verification

As shown in Figure 4 the resulting

verification environment is separated into

two big partitions: One for protocol

checking and one for datapath verification.

4.4.2 Protocol Partition

For protocol checking the following setups

were created:

Prove_sync: In this test, all assertions

assuming master and slave clocks are

synchronous.

Prove_async: In this test, all assertions

assuming clocks are fully asynchronous.

Prove_rst: In this test, the reset signal is

unconstrained and the reset checks are

enabled in the ABVIP.

Prove_excl: In this test, exclusive accesses

for generation and checking were enabled.

Prove_full: In this test, the goal was to

stress the pipeline in the bridge. The

maximum pending transaction parameter of

the ABVIP was changed to 8.

Prove_bytsrobe: In this test, bytestrobe

calculation and checking is enabled.

4.4.3 Datapath Partition

For datapath checks, a separate setup for

each data transport path identified was

created; referring to the AXI signals awid,

wid, bid, arid, rid, rdata, and wdata on

either side of the bridge accordingly.

4.4.4 Conclusion

The conclusion upon review and analysis

was that the overlay of results from all

these setups is sufficient for the verification

needs, while still remaining in a manageable

range of tests.

4.4.5 Regression Management

All of the tests were organized in a formal

regression suite. Tests were distributed on

a server farm and the results were brought

back together in one unified view using a

regression and analysis tool called “Incisive

Enterprise Manager”. The screenshot below

shows an intermediate state of our

verification. At that stage the total number

of runs in this regression summed up to

192 individual formal and assertion-driven

simulations (ADS) (as per Section 4.5 below)

runs, with 168 passed and 24 failed (see

Figure 5).

Page 8 of 14

Figure 5: Example Regression Results Table

Analyzing such a high number of tests

could easily frustrate and/or tire out the

verification engineer, risking the accidental

overlooking of important results. The

unified results displays provided by this tool

allowed us to get an overview of the current

state of the verification that’s also back

annotated into the original verification plan.

This clear view of the overall project status

and ongoing positive results vs. the plan

gave us a high level of confidence in our

formal environment.

4.5 Hybrid Use Models

To address the lingering doubt about the

formal analyses that yielded the

inconclusive “explored” results, a mixed

simulation and formal (a/k/a “hybrid”) use

model for further bug hunting was adopted.

As a result, we were able to solve assertions

that were previously explored and find more

bugs in the process.

4.5.1 Assertion-Driven Simulation (ADS)

Assertion-driven simulation (ADS) uses a

seed based property constraint solver to

generate a trace for a simulation from the

same environment that’s used for formal

verification (PSL/SVA constraints). Unlike

formal proofs, it only computes solutions

for these constraints and not for the design,

so it is independent of the actual design

size and complexity. Similar to regular

simulation, this technology is capable of

detecting deep assertion failures and passes

for covers. (However, it cannot provide

passes for assertions and failures for

covers.)

In this case study, the use of assertion-

driven simulation technology was very

useful during the initial environment

creation phase because it provided instant

feedback on the constraints. The waveform

trace provided by the tool enabled a user to

confirm visually the environment (i.e.

constraints) was actually modeling what it

was supposed to model. This helped saving

cycles that otherwise would have been

wasted with invalid proofs. This efficiency

enabled to reduce setup time and

consequently the overall time to reach to

conclusive results.

4.5.2 Constraint Minimization

Underconstraining is a common method to

improve inconclusive formal results and

turn them into passes. In the environment

created here many of the ABVIP constraints

that were active during a proof were

actually not needed, i.e. when we disabled

them, the assertion was still passing, and

runtime was actually faster due to the

reduced complexity. But manually creating

Page 9 of 14

these minimal constraint sets is tedious and

error prone since it can lead to invalid

counter examples if a required constraint

was omitted.

To automate this task, the formal tool

supports several constraint minimization

technologies required to verify the difficult

assertions. Internally it uses a sophisticated

iteration algorithm utilizing formal and

simulation engines that calculates this

minimal set of constraints automatically

(Iterative Constraint Minimization - Applied

for US patent). It is particularly interesting

that this algorithm can produce also valid

failures, not only passes, unlike our manual

minimization approach.

This new constraint minimization feature

helped to conclude on some properties that

were previously exploring.

4.5.3 Replay

Another feature that utilizes both formal

and simulation capabilities is called

“Replay”. It takes the information obtained

by the formal engine during a proof of one

specific assertion and uses it as a guide for

a constrained random simulation (ADS).

While running this re-simulation it enables

all the other assertions, which now become

subject to additional failures. In the later

stages of the verification this enabled us to

find additional failures for previously

inconclusive properties.

4.6 Debugging Enhancements

4.6.1 Signal Level Challenge

Although the performance of the tool is

very important, many hours were spent

analyzing and understanding waveforms. At

the start of the project the tool produced

signal level waveform layouts without any

high level information like in a transaction-

based simulation environment. Looking at

these signals and composing the

overlapping AXI transactions from the

waveform was extremely difficult, and

figuring out the state of the system with

respect to ongoing and unfinished

transactions was almost impossible.

The tool offered the capability to manually

create waveform configuration files that

would format the data in a better way, but it

would be significant effort and hardly

reusable if the topology or a parameter

changes.

4.6.2 Transaction Level Analysis and

Protocol Aware Debug

During the project we collaborated with the

tool and ABVIP provider to implement

automatic formatting of the waveforms,

meaning the tool would automatically

identify the given protocol being used from

the instantiated ABVIP, and thus provide

protocol specific grouping, formatting,

coloring and a transaction level view of the

signal level activity.

Page 10 of 14

Figure 6: Counter-example waveform formatted per AXI specification

Hence, for every ABVIP instantiated in the

environment, the debug waveform now

automatically applies groups and

transaction-like fibers for the AXI Read and

Write channels. Sub channels details

underneath the fibers are enriched with

mnemonic maps for protocol fields like of

burst, lock, etc. for easier readability (See

Error! Reference source not found.).

A second, complementary register window

provides a view of the state of the bus with

respect to ongoing and outstanding

transactions in form of a table. The position

of the cursor in the waveform window (red

line in Error! Reference source not found.)

determines the time at which the status is

reflected in the corresponding table (see

Figure 7).

Page 11 of 14

Figure 7: AXI3 formatted data tables

All of these capabilities provided a huge

productivity improvement during debugging

because the “time-to-understand” the

scenario and protocol violation is

significantly reduced.

Time saved during debugging freed up time

for other verification activities; so this is

also to be understood as a contribution to

the overall improvement of our results.

5 The Show-Stopper Bug

The new environment described above

allowed us to detect a critical corner case

bug - a fatal limitation in locked access of

the bridge.

5.1 Description

The problem was detected in the exclusive

accesses setup: Such exclusive accesses

utilize a dedicated signal to lock a

destination (slave) to a specific origin

(master) exclusively for the duration of a

sequence of accesses. There were several

assertions that caught this bug, many of

which failed with an average runtime of 1

minute, demonstrating that the bridge

interfaces did not obey the AXI protocol in

an extreme corner case.

To explain the violation in more detail, we

present the counter example of one of

those failing assertions. This particular

assertion checks that transactions driven by

Page 12 of 14

an AXI master within a locked sequence

have the same ID value across their read

and write transfers, referring to AXI

specification (6) section 6.3, pg 6-7.

Figure 8: Counter example of bug found

The exact counter example of the failing

assertion is captured in Figure 8. It shows

such a locked sequence with a locked read

and write transfer with ID 1 entering the

bridge between 4ms and 10ms (signals with

suffix S), and corresponding transfers

leaving the bridge through the master

interface at 12ms (signals with suffix M).

The IDs are expected to be identical within

the output sequence and carry a 1, but the

actual WIDM signal belonging to this

sequence carries a 0, which is a protocol

violation originating inside the bridge.

Analysis showed that this was caused by a

very specific coincidence: There is an

additional write data with ID 0 entering the

bridge at 2ms without a corresponding

write request, before the locked sequence

begins. This will trigger the error in the

bridge and subsequently manifest itself as a

protocol violation on the other side.

Similar counterexamples also appeared for

the other assertion failures.

5.2 Conclusion

This violation could occur because of a

designer’s assumption that the bridge

would be mainly used to transfer control

information from a slave to a master

interface, rather than data packets utilizing

locked accesses. In the worst case this bug

could lead to loss of data, and even cause

the system to hang. Unfortunately the

previous simulation-based environment was

not designed to stimulate such a scenario.

This is the reason why the bug escaped so

far, and a great example of how the more

exhaustive nature of formal can save the

day.

Page 13 of 14

6 Comparing Formal Results

The new ABVIP together with the tool

enhancements improved the number of

concluded assertions and increased the

reported depth for almost all remaining

explored assertions significantly - some

even doubled.

6.1 Old vs. New Verification

Environment

This new verification environment is much

stronger, as it introduces several

verification enhancements that do not exist

in the old one, starting by protocol

checking, asynchronous clock setup,

datapath verification, etc. Hence, it was

difficult to make a real apples-to-apples

comparison between results of the two

environments. In order to compare

something sufficiently correlated we

decided to focus on 2 configurations in

both environments that are somewhat

similar with respect to the scope of their

checks:

1. Interleaving disabled and Data

before Control enabled.

2. Interleaving enabled and Data before

Control disabled.

6.2 Results

Table 1 presents comparison results by

number of assertions for the old and new

environment:

 Config 1 Config2

old new old new

Total 115 144 108 141

Pass 75

(65%)

108

(75%)

74

(68%)

109

(77%)

Fail 8

(7%)

9

(6%)

3

(3%)

9

(6%)

Explored 32

(28%)

27

(19%)

31

(29%)

23

(16%)

Table 1: Comparison old vs. new

Environment

 (The explored results were obtained with 1

hour tool effort per property)

According to this comparison we can see an

improvement in all categories of results,

especially when we are considering that the

total number increased in the new ABVIP.

Many previously explored assertions moved

to a conclusive Pass or Fail state, and the

exploration depth of the remaining ones

increased significantly (not shown here).

7 Future Enhancements

This positive experience with formal

scoreboarding and ABVIP is encouraging us

to count on mixed formal and simulation-

based tools in future verification projects.

The quality of the results was a tremendous

improvement over our prior methodology,

and in parallel the performance was such

that these new methods can reduce the

effort spent in other environments.

However, some bounded proofs can still

remain, and it will take some understanding

and design knowledge to interpret an

explored depth in order to be confident in

Page 14 of 14

the results. In short, while this is not a

completely push-button flow, we believe

anyone will also see similar benefits from

replicating our approach.

8 Summary

The experience described is one of several

successful applications of formal

verification on complicated designs like

GALS bridges, and represents a very

positive experience of datapath verification

using formal. We found a serious show-

stopper bug that was missed by other

methods (inspiring a significant redesign of

our DUT). Additionally, the completeness of

this setup – including both protocol

compliance and end-to-end functional

datapath checking of both sides of the

bridge - gave us complete confidence that

we didn’t need to spend more resources on

verification.

Overall, we estimate that the specific AXI

protocol and functional verification task is

three-times faster using formal analysis,

formal scoreboard and ABVIP vs. a

testbench simulation with dynamic VIP and

scoreboard approach.

9 References
1. Cadence. AXI Assertion-Based VIP User Guide.

s.l. : support.cadence.com. Product Version 1.0.

2. —. Incisive Enterprise verifier XL User Guide.

s.l. : support.cadence.com, 2012. Product

Version 12.2.

3. Expressing interesting properties of programs

in propositional temporal logic. Wolper, Pierre.

New York : Proc. POPL ’86, pp. 184–193, 1986.

4. Applying Formal Verification with Protocol

Compiler. Stangier, Christian and Holtmann,

Ullrich. s.l. : Proc. Euromicro Symp. Digital

Systems Design, 2001.

5. Mueller, Joerg. Quickly Find Data Transport

Bugs with Formal Scoreboarding.

www.cadence.com. [Online] 11 17, 2011.

http://www.cadence.com/cadence/events/Pag

es/event.aspx?eventid=560.

6.6. Formal verification of an asynchronous

STBUS bridge with IFV. Steffenhagen, Arthur

and Mueller, Joerg. s.l. : CDNLive EMEA, 2010.

7. ARM. AMBA AXI Protocol Specification v1.

s.l. : www.arm.com, ARM IHI 0022B.

10 Acknowledgements

The authors would like to thank Rachida El

Idrissi, Chris Komar, and Joseph Hupcey III

for providing feedback during the creation

of this paper.

	1 Abstract
	2 Introduction
	3 GALS bridges Verification
	3.1 “AsyncAXI” Bridge Architecture
	3.2 Verification Objectives and Challenges
	3.3 Traditional Verification Methodology

	4 AXI Bridge Formal Verification Experience
	4.1 New Verification Strategy
	These components are now embedded in a formal-aware metric driven verification and regression environment, taking advantage of debugging capabilities supported by the formal tool.

	4.2 Datapath Verification
	The methodology employed for formally verifying datapaths is based on the “sequences of symbols” method introduced in research first by Wolper (3) in 1986, then applied by Stangier (4) in 2001, and converted to be usable in industrial settings by Muel...
	4.2.1 Symbol
	4.2.2 Sequences
	assert property (@(posedge out_clk) out_symbol_seen && out_dvalid |-> out_data != symbol);
	This code enforces that the symbol, once it was seen (as indicated by the flag “…seen”), will not appear a second time.
	4.2.3 Checks
	The check itself drives these sequences into the input and then compares against the output of the datapath (Figure 2).
	If the sequences don’t match, then this points to an error in the DUT transport function. The real power of this approach comes from the fact that formal verification checks all possible values at any point in time with just one formal proof. This is ...
	4.2.4 Formal Scoreboard
	For the AXI bridge discussed here there are a total of 7 datapaths and, thus, 7 scoreboard instances:
	This new methodology enabled more complete verification by fully covering and concluding the previously missing functional end-to-end checks.

	4.3 Protocol Checking
	Checking protocol compliance of standard bus protocols is much easier today than 8 years ago because of the existence of pre-validated verification components – Assertion-Based Verification IP (ABVIP) - that implement the compliance rules in an execu...
	4.3.1 Divide and Conquer
	4.3.2 ABVIP Parameters
	4.3.3 Environment Constraints

	4.4 Verification environment
	4.4.1 Partitioning
	4.4.2 Protocol Partition
	4.4.3 Datapath Partition
	4.4.4 Conclusion
	4.4.5 Regression Management
	All of the tests were organized in a formal regression suite. Tests were distributed on a server farm and the results were brought back together in one unified view using a regression and analysis tool called “Incisive Enterprise Manager”. The screens...

	4.5 Hybrid Use Models
	4.5.1 Assertion-Driven Simulation (ADS)
	4.5.2 Constraint Minimization
	4.5.3 Replay

	4.6 Debugging Enhancements
	4.6.1 Signal Level Challenge
	Although the performance of the tool is very important, many hours were spent analyzing and understanding waveforms. At the start of the project the tool produced signal level waveform layouts without any high level information like in a transaction-b...
	The tool offered the capability to manually create waveform configuration files that would format the data in a better way, but it would be significant effort and hardly reusable if the topology or a parameter changes.
	4.6.2 Transaction Level Analysis and Protocol Aware Debug
	During the project we collaborated with the tool and ABVIP provider to implement automatic formatting of the waveforms, meaning the tool would automatically identify the given protocol being used from the instantiated ABVIP, and thus provide protocol ...
	/
	Hence, for every ABVIP instantiated in the environment, the debug waveform now automatically applies groups and transaction-like fibers for the AXI Read and Write channels. Sub channels details underneath the fibers are enriched with mnemonic maps for...
	A second, complementary register window provides a view of the state of the bus with respect to ongoing and outstanding transactions in form of a table. The position of the cursor in the waveform window (red line in Error! Reference source not found.)...
	All of these capabilities provided a huge productivity improvement during debugging because the “time-to-understand” the scenario and protocol violation is significantly reduced.
	Time saved during debugging freed up time for other verification activities; so this is also to be understood as a contribution to the overall improvement of our results.

	5 The Show-Stopper Bug
	The new environment described above allowed us to detect a critical corner case bug - a fatal limitation in locked access of the bridge.
	5.1 Description
	The problem was detected in the exclusive accesses setup: Such exclusive accesses utilize a dedicated signal to lock a destination (slave) to a specific origin (master) exclusively for the duration of a sequence of accesses. There were several asserti...
	To explain the violation in more detail, we present the counter example of one of those failing assertions. This particular assertion checks that transactions driven by an AXI master within a locked sequence have the same ID value across their read an...
	The exact counter example of the failing assertion is captured in Figure 8. It shows such a locked sequence with a locked read and write transfer with ID 1 entering the bridge between 4ms and 10ms (signals with suffix S), and corresponding transfers l...
	Analysis showed that this was caused by a very specific coincidence: There is an additional write data with ID 0 entering the bridge at 2ms without a corresponding write request, before the locked sequence begins. This will trigger the error in the br...
	Similar counterexamples also appeared for the other assertion failures.

	5.2 Conclusion
	This violation could occur because of a designer’s assumption that the bridge would be mainly used to transfer control information from a slave to a master interface, rather than data packets utilizing locked accesses. In the worst case this bug could...

	6 Comparing Formal Results
	The new ABVIP together with the tool enhancements improved the number of concluded assertions and increased the reported depth for almost all remaining explored assertions significantly - some even doubled.
	6.1 Old vs. New Verification Environment
	This new verification environment is much stronger, as it introduces several verification enhancements that do not exist in the old one, starting by protocol checking, asynchronous clock setup, datapath verification, etc. Hence, it was difficult to ma...
	1. Interleaving disabled and Data before Control enabled.
	2. Interleaving enabled and Data before Control disabled.

	6.2 Results
	Table 1 presents comparison results by number of assertions for the old and new environment:

	7 Future Enhancements
	This positive experience with formal scoreboarding and ABVIP is encouraging us to count on mixed formal and simulation-based tools in future verification projects. The quality of the results was a tremendous improvement over our prior methodology, and...

	8 Summary
	9 References
	10 Acknowledgements

