
Optimizing Random Test
Constraints Using Machine

Learning Algorithms

Stan Sokorac
stan.sokorac@arm.com

Background

• Modern designs are extremely complex
– Impossible to come up with every possible combination of stimulus

by hand

• Constrained random simulation is a staple of verification
– Generation of random instruction streams controlled through a set of

adjustable constraints
– Great at hitting many common and uncommon design corners

Background

• However, random testing is also inefficient and expensive!

• Random distributions hit most common cases most often,
spending majority of the time testing the same things over
and over
– Hard to find bugs take a long time to find!

Most of the time
spent here

Two Ideas Presented

• A new type of coverage
– A way to extract information about a single test, to provide feedback

on its quality

• A way to use this feedback in machine learning algorithms
– Optimization designed to find hard to find bugs quicker

Test Generation Test Evaluation

Finding hard-to-find bugs

• Non-trivial bugs require a combination of events and state
changes to occur in close proximity

• Most bugs aren’t particularly “deep”
– It takes a couple of things to line up that we usually haven’t thought

to line up

• Verification engineers bias stimulus towards areas that are
likely to cause bugs
– Great use of experience and knowledge to find most bugs
– However, we can’t just keep running the same things

• Need an objective way to evaluate test variety and coverage
– Objective is the key – we must eliminate the bias from hand-written

functional coverage to find the hard-to-find corner cases

Exploring the state space

• One objective view of design coverage is its state
space
– State space of the design is represented by all of its flops
– The total space size is 2flops, which is not practical to track

• The interesting things happen when state changes
– Flop toggle coverage – good start, but too simple, like CCOV

0
11

0

0
0

1

Lining things up

• Approximation for “events lining up” that takes
design state into account:
– Two flops toggling in close proximity in time

• Still fairly simple to track (state space is flops2), but
much more interesting than single flop toggle

• Very objective – requires no understanding of the
design

0->1
11->0

0

0
0

1

Toggle matrix

• Yellow represent areas of
high toggle counts, red
are low, and white are
blank

• Logarithmic scale –
yellows are an order of
magnitude higher than
reds

• This represents one
randomly picked test

Interpreting the results

• How many total toggle pairs a test produces:
– indication of the volume of activity

• How many toggle pairs (bins) are exercised by the test:
– indication of the breadth of the test

• We also need to focus on hard to hit bins that are rarely
exercised
– Don’t bother optimizing for bins that are hit all the time
– Filter anything that is easy to hit – bins hit by more than 50% of the

tests is a good start

Scoring a Test

• Having a “score” for a test good for learning algorithms
• High score means:

– High activity of rare events in the test (volume)
– Many different rare events hit (breadth)

• Then, we calculate the score:

• Rare_Factor / Power_Factor provide easy tuning

Score = (FilteredVolume2 +
Rare_Factor * FilteredBreadth2)Power_Factor

Machine Learning through a
Genetic Algorithm

• A type of reinforced learning algorithm
– Select a random population of tests, and evaluate each
– Create the next generation of tests by:
 mutating (slightly adjusting constraints) current tests
 mating (take an average of two tests) current tests

– The evaluation score dictates the chance of a test
participating in the next generation

• Toggle pair coverage score used to select tests

• Progress is charted through each iteration
• The iterations of interest are the ones that:

– Show spikes over previous iterations
– Show overall highest averages or totals
– Have exposed new fail signatures

– It’s important to monitor number of new
bins hit, as well as bins “lost”, i.e. bins that

we no longer hit in the latest iteration
(see above)

Iteration Performance

Volume vs Breadth over iterations

Does it find bugs?

• Yes! It’s still early, but the data is promising on LSU
and L2
– One of the iterations found a new bug, optimized large run

found 3 more and failed over 450 times

Regression Test
Count

Fail
Count Pass Rate Cycles Unique

Signatures

Regular weekly run 30000 24 99.92 173.6 Million 4

6 iterations of 500 tests 2749 41 98.5 15.4 Million 5

Large run using 6th

iteration test selection 30000 469 98.43 166.1 Million 8

Other ML algorithms – NNs and SVMs

• Genetic algorithms require
feedback on each test, making
iterations slow

• If a neural network could be
trained to predict a score for a
test with reasonable accuracy,
large sets of good tests could
be generated much quicker

• Noisy results (due to random
nature of tests) makes it difficult
to train a network
– Large amount of data needed
– Filtering, principal component

analysis

Other ML algorithms –
Unsupervised Learning

• A clustering algorithm can detect groups of test that
are “similar”
– This can be used to “spread” the tests around
– Run separate optimization on each cluster

• Anomaly detection
– Algorithm that detects tests that are significantly differentfrom

the rest
– This kind of a test is more likely to hit new

corner cases

Next Steps

• This work is in early stages, and there are many
ideas and trials to go through!

• Try other projects and designs
• Use meta-learning to learn the best GA parameters
• Continue to experiment with other ML algortihms

Questions?

	Optimizing Random Test Constraints Using Machine Learning Algorithms
	Background
	Background
	Two Ideas Presented
	Finding hard-to-find bugs
	Exploring the state space
	Lining things up
	Toggle matrix
	Interpreting the results
	Scoring a Test
	Machine Learning through a Genetic Algorithm
	Iteration Performance
	Volume vs Breadth over iterations
	Does it find bugs?
	Other ML algorithms – NNs and SVMs
	Other ML algorithms – Unsupervised Learning
	Next Steps
	Questions?

