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Background

• Modern designs are extremely complex
– Impossible to come up with every possible combination of stimulus 

by hand

• Constrained random simulation is a staple of verification
– Generation of random instruction streams controlled through a set of 

adjustable constraints
– Great at hitting many common and uncommon design corners



Background

• However, random testing is also inefficient and expensive!

• Random distributions hit most common cases most often, 
spending majority of the time testing the same things over 
and over
– Hard to find bugs take a long time to find!

Most of the time 
spent here



Two Ideas Presented

• A new type of coverage
– A way to extract information about a single test, to provide feedback 

on its quality

• A way to use this feedback in machine learning algorithms
– Optimization designed to find hard to find bugs quicker

Test Generation Test Evaluation



Finding hard-to-find bugs

• Non-trivial bugs require a combination of events and state 
changes to occur in close proximity

• Most bugs aren’t particularly “deep”
– It takes a couple of things to line up that we usually haven’t thought 

to line up

• Verification engineers bias stimulus towards areas that are 
likely to cause bugs
– Great use of experience and knowledge to find most bugs
– However, we can’t just keep running the same things

• Need an objective way to evaluate test variety and coverage
– Objective is the key – we must eliminate the bias from hand-written 

functional coverage to find the hard-to-find corner cases



Exploring the state space

• One objective view of design coverage is its state 
space
– State space of the design is represented by all of its flops
– The total space size is 2flops, which is not practical to track

• The interesting things happen when state changes
– Flop toggle coverage – good start, but too simple, like CCOV
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Lining things up

• Approximation for “events lining up” that takes 
design state into account:
– Two flops toggling in close proximity in time

• Still fairly simple to track (state space is flops2), but 
much more interesting than single flop toggle

• Very objective – requires no understanding of the 
design

0->1
11->0

0

0
0

1



Toggle matrix

• Yellow represent areas of 
high toggle counts, red 
are low, and white are 
blank

• Logarithmic scale –
yellows are an order of 
magnitude higher than 
reds

• This represents one 
randomly picked test



Interpreting the results

• How many total toggle pairs a test produces:
– indication of the volume of activity

• How many toggle pairs (bins) are exercised by the test:
– indication of the breadth of the test

• We also need to focus on hard to hit bins that are rarely 
exercised
– Don’t bother optimizing for bins that are hit all the time
– Filter anything that is easy to hit – bins hit by more than 50% of the 

tests is a good start



Scoring a Test

• Having a “score” for a test good for learning algorithms
• High score means:

– High activity of rare events in the test (volume)
– Many different rare events hit (breadth)

• Then, we calculate the score:

• Rare_Factor / Power_Factor provide easy tuning

Score = (FilteredVolume2 + 
Rare_Factor * FilteredBreadth2)Power_Factor



Machine Learning through a 
Genetic Algorithm

• A type of reinforced learning algorithm
– Select a random population of tests, and evaluate each
– Create the next generation of tests by:
 mutating (slightly adjusting constraints) current tests
 mating (take an average of two tests) current tests

– The evaluation score dictates the chance of a test 
participating in the next generation

• Toggle pair coverage score used to select tests



• Progress is charted through each iteration
• The iterations of interest are the ones that:

– Show spikes over previous iterations
– Show overall highest averages or totals
– Have exposed new fail signatures

– It’s important to monitor number of new
bins hit, as well as bins “lost”, i.e. bins that

we  no longer hit in the latest iteration
(see above)

Iteration Performance



Volume vs Breadth over iterations



Does it find bugs?

• Yes! It’s still early, but the data is promising on LSU 
and L2
– One of the iterations found a new bug, optimized large run 

found 3 more and failed over 450 times

Regression Test 
Count

Fail 
Count Pass Rate Cycles Unique 

Signatures

Regular weekly run 30000 24 99.92 173.6 Million 4

6 iterations of 500 tests 2749 41 98.5 15.4 Million 5

Large run using 6th

iteration test selection 30000 469 98.43 166.1 Million 8



Other ML algorithms – NNs and SVMs

• Genetic algorithms require 
feedback on each test, making 
iterations slow

• If a neural network could be 
trained to predict a score for a 
test with reasonable accuracy, 
large sets of good tests could 
be generated much quicker

• Noisy results (due to random 
nature of tests) makes it difficult 
to train a network
– Large amount of data needed
– Filtering,  principal component 

analysis



Other ML algorithms –
Unsupervised Learning

• A clustering algorithm can detect groups of test that 
are “similar”
– This can be used to “spread” the tests around
– Run separate optimization on each cluster

• Anomaly detection
– Algorithm that detects tests that are significantly differentfrom 

the rest
– This kind of a test is more likely to hit new

corner cases



Next Steps

• This work is in early stages, and there are many 
ideas and trials to go through!

• Try other projects and designs
• Use meta-learning to learn the best GA parameters
• Continue to experiment with other ML algortihms



Questions?
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