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Abstract-As integrated circuits have become progressively more complex, constrained-random stimulus [1][2][3]
has become ubiquitous as a means of stimulating a design’s functionality and ensuring it fully meets expectations. In
theory, random stimulus allows all possible combinations to be exercised given enough time, but in practice with
highly complex designs a purely random approach will have difficulty in exercising all possible combinations in a
timely fashion. As a result, it is often necessary to steer the Design Verification (DV) environment to generate hard-to-
hit combinations. The resulting constrained-random approach is powerful but often relies on extensive expertise to
guide the DV environment in order to fully exercise the design. As designs become more complex, the guidance
aspect becomes progressively more challenging and time consuming, often resulting in design schedules in which the
verification time to hit all possible design coverage points is the dominant schedule limitation. This paper describes
an approach which leverages existing constrained-random DV environment tools, but which further enhances them
using reinforcement machine learning. This approach provides better than random results in a highly automated
fashion thereby ensuring DV objectives of full design coverage can be achieved on an accelerated timescale and with
fewer resources.
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1. INTRODUCTION

The first part of this paper presents an overview of the challenges in verifying complex IC’s such as a
Microprocessor, GPU or SOC. The second part of the paper demonstrates real-world examples of using
Machine Learning to improve functional coverage thereby achieving results better than constrained-random
techniques.

Two hardware verification examples are presented, one of a Cache Controller design and one using the
open-source RISC-V CVA6 (formerly known as Ariane) [5] design and Google’s RISC-V Random Instruction
Generator [6][7]. We demonstrate that a machine-learning based approach can perform significantly better on
functional coverage and reaching complex hard-to-hit states than a random or constrained-random approach.

Software and hardware systems are playing an increasingly greater role in our daily life. Thus, verifying
these complex systems and ensuring their safe behaviour is becoming significantly more important. According
to a recently published DARPA report [4], the cost of verifying an IC is approaching greater than half of the
total cost of design. The cost of verification in the software segment is also increasing exponentially.

We conclude the paper with future possibilities of the application of our technology to other domains such as
Software verification.

11. DV COVERAGE AND CONSTRAINED RANDOM VERIFICATION

Design verification (DV) of integrated circuits typically involves generating stimulus of input signals and
then evaluating the resulting output signals against expected values. This allows design simulations to be
conducted to determine whether the design is operating correctly. Simulation failures indicate that one or more
bugs are present in the design and hence the design must be modified in order to fix the bug and the
simulation(s) are then re-run to verify the fix and uncover more bugs.

Writing specific tests by hand is no longer sufficient to verify all possible functionality of today’s complex
chip designs. In order to fully exercise all possible combinations, a constrained-random approach is typically
employed whereby input stimulus combinations and sequences are generated randomly but with an extensive set



of environment-controls to allow the simulation to be steered in ways which allow for a rich and diverse set of
input stimuli to be generated.

However, passing some fixed set of simulations is insufficient to demonstrate that a design is free from bugs.
It is also necessary to determine whether the set of simulations run on the design are sufficient to fully cover the
entirety of the functionality of the design required to satisfy the design objectives. The extent to which a set of
simulations covers desired design functionality is termed coverage and there are a number of different methods
by which coverage can be measured and tracked.

A commonly used simple method for tracking coverage involves determining whether each line of code in a
design evaluates both to a ‘1’ and a ‘0’ at least once each during the set of simulations. However, this method
can be insufficient to guarantee full coverage as there may be conditions which are deemed necessary for the
design to handle for which there may not be a corresponding line of code which exactly encapsulates the
condition. Common examples are cases where there may be a confluence of two or more conditions which can
happen in the same cycle. Each condition may have a corresponding line of code but there may not be a line of
code which fully expresses all conditions occurring simultaneously. It may also be necessary to generate certain
sequences over time which again may not have corresponding design code which captures the objective.

For example, a cache memory in a microprocessor often has a limitation in the number of read/write
operations it can handle simultaneously. The number of potential read/write operations will often exceed this
limit. For example, the cache may be able to process two accesses in a single cycle whereas there may be read/
write requests from one or more load instructions, a store buffer, a victim buffer and a snoop (cache coherence)
queue. In this case there is often arbitration logic to determine which accesses proceed to the cache and which
are stalled to be handled in subsequent clock cycles. To verify the design, all combinations of simultaneous
cache access requests must be tested including all requesters active in the same clock cycle.

In order to handle these cases, it has become increasingly common to encapsulate a functional condition
involving a number of existing signals in the design in a functional coverage statement. Each functional
coverage statement typically represents a condition which the design must be able to handle functionally but for
which no signal is already present in the design. Many such functional coverage statements may be written in
order to capture cases which the design must be able to handle. The set of functional simulations run on the
design must then be able to ensure that all functional coverage statements are hit at least once during the set of
simulations.

I1I1. DESIGN VERIFICATION PROBLEM

As IC designs have become increasingly complex, it has become common for the list of functional coverage
statements to become significantly large. Moreover, with increasing complexity many of the functional coverage
statements represent conditions which occur very rarely in simulation. For example, if a functional coverage
statement represents a set of unrelated events to all occur together in the same clock cycle and each of the events
is itself rarely hit in simulation, the resulting functional coverage statement will be exceedingly rare.

Since all functional coverage statements must be “hit” in order to ensure complete verification coverage of
the design, each functional coverage statement which is not hit must be analyzed in order to determine why it
was not hit. The simulation input parameters may then need to be tuned in order to improve the chances of
hitting the coverage statement condition and the set of simulations re-run. This can be a very difficult and time-
consuming process which requires significant verification team resource and which can both delay the
completion of design verification as well as increasing the possibility of taping out a design with an
undiscovered bug since generating large numbers of difficult to hit cases improves the chances of hitting a rare
design bug prior to tapeout.

Tuning of the simulation environment in order to make a rare condition more likely to be hit includes the
following:

1. Adjusting verification parameters in order to adjust input conditions (for example generating more of a
particular type of transaction or series of transactions which are more likely to lead to the particular case of
interest).

2. Adjusting verification responses to design outputs (for example delaying or speeding up simulation
environment responses to design requests for data).

3. Modifying configuration parameters of the design (for example enabling or disabling design modes or
features which may influence how likely certain internal conditions are to occur).



V. THE SOLUTION - USING ML ALGORITHMS TO STEER THE DV ENVIRONMENT

Machine learning can greatly improve the means by which full coverage is achieved in such cases by
providing a mechanism by which coverage may be tracked, verification control parameters monitored and the
interaction between them learned and then improved.

The means by which this is achieved is as follows:

e A set of simulations is run on the design in which simulation and/or design parameters which may be
expected to influence coverage are varied randomly. Examples of such parameters are included in the
numbered list of the prior section.

e For cach individual simulation run the following set of verification input data is captured:
o Verification parameters controlling input parameters
o Verification environment parameters
o Design configuration parameters
o Coverage results listing all functional coverage statements and whether each one was hit or
not during the simulation

e The results from all simulations are then run through a machine learning algorithm which tracks
coverage results as a function of input data for verification.

e Over a series of a number of sets of simulations the ML algorithm learns which combinations of
subsets of verification input data are required in order to hit each functional coverage statement. The
list of functional coverage statements tracked by the ML algorithm may be filtered to exclude
functional coverage statements which are hit frequently in order to focus on the set of extremely rare
and difficult to hit cases

e Once trained, the ML algorithm generates a set of verification input data recommendations which will
increase the chances of hitting functional coverage statements

This ML approach may be used to greatly increase the chances of hitting rare functional coverage statements
thereby accelerating the process by which a design is deemed fully verified as well as increasing the probability
that hard to hit bugs will be uncovered earlier in the design process.

V. NEAR MISS TRACKING FOR VERY HARD TO HIT CASES

The algorithm described in the prior section relies on the fact that all functional coverage statements will be
hit at some point over a sufficiently large number of simulation runs. ML then ensures they are hit more often.
This will typically be the case even for quite rare events when multiple simulation runs are run regularly (e.g.
each night) over a relatively long timeframe (e.g. several weeks).

However, in some cases a functional coverage statement may represent a confluence of events which
themselves are so rare that the chances of all occurring in the same cycle are vanishingly small and as a result
may not occur over the duration of a typical design project even with a rigorous verification environment with
an extensive dedicated datacenter.

In such cases it may be useful to extend the ML algorithm described in the prior section in order to track
“near misses” where a particular functional coverage statement represented by the AND of a number of signals
is never — or very rarely — hit but for which the individual terms in the AND’ed list of signals are hit. This may
be termed a “near miss”.

In addition to tracking the list of functional coverage statements, the ML algorithm identifies hard to hit
functional coverage statements and expands those statements in order to additionally track any component
signals which may be AND’ed together. These component signals are then tracked by the ML algorithm in the
same way as described in the prior section.

After sufficient training this will therefore result in the component signals of the hard to hit functional
coverage statements being hit more frequently as the ML algorithm adjusts the verification input data. The result
will be a greatly increased likelihood of hitting the very rare full functional coverage statement in subsequent
verification runs.

VI. EXTENSIONS TO INCREASE THE LIKELIHOOD OF HITTING BUGS

The method described thus far is likely to increase the chances of discovering bugs earlier in the design
cycle since it increases the chances of hitting functional coverage statements which are often identified by



design/verification teams as being tricky cases to deal with or cases deemed to be interesting, hard to hit, or
unusual in some way.

This has the effect of improving the richness and depth of DV simulations by helping to steer the verification
stimulus into increasingly obscure corners of the design thereby uncovering bugs quickly.

However, the method described thus far can also be extended to directly target bugs by treating a simulation
failure due to a bug in the same way as a functional coverage statement. In this way the ML algorithm will learn
combinations of verification input data which result in the discovery of a design bug and thereby, over time,
steer the DV environment in ways which make discovery of further bugs more likely.

For example: if the combination of certain design modes being enabled together with a certain DV
environment parameter causes a section of the design to be exercised more often, then if that section of the
design happens to be buggy then we will be more likely to find a bug if the DV environment steers simulations
in that direction.

Over time the buggy section of the design is gradually improved until no more bugs are found, at which
point the ML environment learns to steer the DV environment in a different and more fruitful direction.

VII. MACHINE LEARNING MODELS

This section describes the Simulation environment with Machine Learning (ML) that was used to generate
the input settings for the devices under test. The Cache-Controller and the RISC-V CVAG6 (formerly Ariane) [5]
design, were set up in a simulation environment as depicted in Figure 1.
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Fig. 1 Design Verification Simulation Flow using Machine Learning

The first input to the simulation environment are Random input configuration parameters ( knob settings )
that drives the simulation of the device under test. The output of the simulation based on the random knob
settings is fed into a Deep Learning Neural net. This Neural Network now serves as a function approximator, i.e
it learns the function that maps the input configuration parameters to the target parameter that we want to
optimize. This target parameter could represent a certain scalar value that represents the functional coverage or
the number of bugs encountered given the input configuration. Whatever the target variable of interest is

Neural Networks are quite adept at learning the relationship between the input parameters and the target.
This neural network , once trained, can be used to generate new knob settings along with a prediction for what
the target variable value is for that particular input knob setting. We can then pass the best input knob settings
based on predicted target variable value as the next input to the simulation environment, and this process
continues.

We used multiple ML architectures to generate the sequence of input knob settings for the two test cases
described in this paper.

A.  Supervised Learning

The supervised learning-based ML algorithm works by first creating a simulator Neural Network as a
function approximator [10][11][17]. Given an initial random setting of input knobs and their corresponding
output, the Neural Network fits a function to map the relation between the input knobs and the output. Once
trained, the Neural Network simulates the output for any new unseen setting of input knobs. The objective now
is to explore the input state-space of this function to find the points of maxima at the output.

In this paper we use a random search, to find the inputs that correspond to the highest values of the output
(FIFO depth or RISC-V victim buffer count, described in section VIII and section IX) as predicted by the



simulator neural network. We then use these knob settings as input stimulus to the next iteration of the
simulator. The simulator then produces a new set of outputs that is used to identify the ground truth values of the
output and this process continues.

This process is terminated when there is a state of minimum entropy [18] and no information gain.

B.  Reinforcement Learning

Reinforcement Learning (RL)is an area of machine learning applicable to domains which can be modelled as
an interaction between an agent that is trying to learn the optimum behaviour (best action) to optimize a reward
variable within a certain environment. RL has been quite successfully applied in popular games like Chess, Go
[13] and DOTA [14] achieving a level of performance far beyond any human.

In an RL setup of an agent in an environment, the agent uses a trial-and-error approach, where it selects an
action and then receives feedback in terms of 1) a reward/penalty for that action, 2) the new state of the
environment as a result of the action. (See Figure 2 below)
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Fig. 2 RL Agent and Environment interaction

The specific RL algorithm of interest is Q-Learning. In Q-Learning the goal is to maximize the cumulative
discounted reward which is given by the following Bellman Equation.

O(swar)=FE[re1+yre2+yirtss+..|s,ar]

for a given state s, and action a at time ¢, with the discount factor y.

These reward values can be stored in a lookup table or Q-Table when the problem has a limited state size
and small action space. However, this approach falls short for more complex problems.

Q-Learning [10] when applied to very large action and state spaces uses a DNN (Deep Neural Network)
instead of a finite table lookup which is called a DQN (Deep Q-Network) [12]. The DNN acts as a Q-value
function approximator and learns the Q-values for each action at a given state once trained.

In addition to the DNN, an additional experience buffer which contains experiences ((s, a, 1, s°) tuples) are
stored which are then randomly sampled to train the DQN. This is to avoid learning from consecutive samples
which may have strong correlations between them. In addition to the random search method on a simulator
neural network, we can use a DQN (Deep Q-Network) to find the best set of input knobs (stimulus).

All the possible combinations of the input knobs can be considered the action space for the problem, which
can be modelled as a single step Markov Decision Process, where the RL agent will learn the best policy to
maximize the rewards (FIFO depth or RISC-V victim buffer count, described in section VIII and section IX).

VIII. CACHE CONTROLLER DESIGN - EXPERIMENT #1

The first experiment was a Cache Controller design shown in Figure 3. The controller supports up to four
CPU ports. CPU transactions received over the input ports go through an arbitration stage before being output to
up to four separate caches. Input transaction collisions are checked at the input stage where four FIFOs - one per
CPU port - hold transactions which fail collision checks with transactions from other CPU ports and hence must
be serviced later.
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Fig. 3 Cache Controller with 4 CPU ports

This design was chosen as a proof of concept example as the input FIFOs are only allocated in the event of
an incoming transaction address conflict, which tends to be rare in a random transaction stream with random
addresses. Also, even when the FIFO is loaded in the event of a conflict the lifetime of a transaction in the FIFO
tends to be short since the FIFO entry will be de-allocated as soon as it can be processed and sent to the cache in
a cycle with no address conflicts with other CPU transactions. As a result, in the presence of a stream of random
input transactions with random addresses the FIFOs tend to have very low occupancy. This represents a
common issue for DV where a queue/buffer can be so difficult to fill in the presence of random traffic that it
seldom or perhaps never reaches a full state even across a very large number of simulations. This has
implications for DV coverage since the FIFO must be filled in order to ensure correct operation. Filling the
FIFO on a regular basis is also desirable in order to uncover bugs related to upstream back pressure on the
transaction flow resulting from a FIFO full condition.

A suitable DV environment was developed for the cache controller in which transactions of various types
could be generated on each CPU port and the corresponding output port transactions checked for correct
functionality. The DV environment supported constrained-random verification as described in section II. In
particular, suitable controls were provided to vary the relative weights of CPU transaction types and also to
constrain transaction addresses in ranges corresponding to the tag, index and offset address of the target caches.
Each simulation run involved randomly selecting values for these DV environment controls followed by a
simulation involving playing a transaction stream generated based on the controls against the cache controller
design and recording the resulting occupancy of the input FIFOs.

After a suitable number of simulation runs were completed, the resulting DV control settings and the
corresponding FIFO occupancy simulation results were fed to a DNN (Deep Neural Network - see prior section)
which, once trained, generated a set of recommended settings to use in a subsequent set of runs. After
completing this second set of simulation runs using the settings from the ML agent, the results were again fed
into the ML agent which generated a subsequent improved set of recommended settings. This process is
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summarized in Figure 4 below.
Fig. 4 Cache Controller Design ML Flow

Figure 5 below shows the resulting FIFO occupancy for each subsequent iteration (red curve). Note that the ML
agent quickly learns how to adjust the DV environment control settings in order to maximize the FIFO
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A set of runs using purely random settings without the benefit of ML-based stimulus is also shown for
comparison (blue curve).

Histograms for the percentage of simulation cycles during which the FIFOs were full are shown below both
for purely random (Figure 6) and with ML stimulus (Figure 7). Note the trend to higher FIFO full percentages
after ML generated stimulus.

2000
1800
1600
1400
1200
1000

Number of rows/
configurations

0 —_——
(25,51 (7.5, 10] (12.5,15] (17.5,20] (22.5, 25] (27.5,30]
[0, 2.5] (5,7.5] (10, 12.5] (15,17.5] (20, 22.5] (25,27.5]

Percent of occurrence of fifo full over 4 CPUs
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Fig. 7 Cache Controller Percent occurrence of FIFO Full using ML generated stimulus

Figure 8 below shows the percentage occurrence of FIFO full as a function of ML optimization iteration
number. ML optimization is seen to significantly increase the percentage occurrence of FIFO-Full after just a
few iterations.
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Fig.8 Cache Controller Percent occurrence of FIFO Full using ML
Figure 9 shows the average FIFO depth reached across 4 CPU’s using randomly generated stimulus settings.
The histogram shows that the majority of the distribution resulted in a low average FIFO depth.

Figure 10 shows the average FIFO depth across 4 CPU’s using ML generated knob settings. This indicates a
significant increase in the occurrence of high FIFO depths.
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The results shown in Figures 4 through 10 demonstrate how an ML-based approach can quickly and
automatically optimize design coverage parameters resulting in better design coverage and accelerated stress
testing of a design.

IX. RISC-V CVA6 DESIGN - EXPERIMENT #2

The second experiment was the open-source RISC-V CVA6 (formerly known as Ariane) 64-bit Design [5]
[8] shown in Figure 11 and 12. It is a PULP platform based CPU core design comprising front end fetch and
decode including ICACHE, branch prediction, out-of-order execution, a load-store unit including DCACHE,
TLBs and exception handling.



ARIANE: Linux Capable 64-bit core

= Application class processor = 6-stage pipeline

= Linux Capable = In-order issue
= M, S and U privilege modes = Out-of-order write-back
« TLB = In-order commit
= Tightly integrated D$ and I1$ = Branch-prediction
= Hardware PTW = Scoreboarding

= Optimized for performance = Designed for extendability
= Frequency: > 1.5 GHz (22 FDX)
= Area: 185 kGE
= Critical path: ~ 25 logic levels

Fig. 11 RISC-V CVAG (formerly Ariane) Core Specification: Source [8]

This design was chosen for experiment #2 in order to determine how the ML techniques described thus far -
and demonstrated in experiment #1 - scale to significantly more complex real designs. This RISC-V design has
a cache size of 2MB and a total number of lines of code (verilog) of around 78k, which could be synthesized
into approximately 385 Mega Transistors (185K Gate Equivalent) [8][9].
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Fig.12 RISC-V CVAG6 block diagram : Source [5]

The load-store unit (LSU) has an accompanying data cache (D$) which stores recently accessed data lines
from memory. The D$ has an associated victim buffer (VB) which temporarily stores modified lines evicted
from the D$ prior to writing the modified data back to main memory. The lines are evicted when a new cache
line is brought into the D$ which then replaces a modified line which is currently stored. A modified line is a
cache line which has been written to within the cache but whose corresponding update(s) have not been
reflected in the main memory. As a result, when a modified line is evicted from the D$ it must be written back to
main memory and the VB holds a number of such lines until the write has been completed.

The process of evicting a modified line from the D$ and successfully writing it back to main memory in the
presence of subsequent cache accesses and external snoops (cache coherence activity generated on behalf of
other system agents attempting to access the same data) can be complex, and is sometimes subject to design
issues/bugs. The out-of-order execution and memory accesses add an additional layer of complexity. In order to
evict a modified line it must first be removed from the D$, written into the VB, held in the VB until the memory
write-back is scheduled, moved to the bus unit and finally written to main memory or an external cache.
Movement of an entire cache line at each of these steps typically takes multiple clock cycles, and the line must
be kept coherent at each stage of each transfer in the presence of unrelated read/write requests to the same
address from the CPU core as well as snoop activity from other agents in the system. In order to adequately
verify this process, the resulting large number of steps necessary to complete the entire operation must be tested
against the actions necessary to complete the internal CPU read/write accesses or external snoop activity. The
resulting cross product of verification test cases is very large and complex. Some steps in the cache line transfer
may depend on the availability of chip resource such as internal busses, buffers and queues. This creates a
multitude of different conditions which could lead to design bugs and hence must be thoroughly tested thereby



adding another layer to the DV cross-product of cases already mentioned. The presence of buffers and queues,
including the VB itself, results in special conditions required in the design to handle cases where the buffers/
queues fill up thereby requiring subsequent traffic inflows to cease.

In order to aid and accelerate full verification of the logic associated with the VB we require the ability to
generate large numbers of victims in order to increase the chances of hitting the various cross-product cases of
victim activity along with read-write and snoop requests. These victims should also be subject to the various
resource constraints present in the design which can cause victim processing to be delayed under certain
circumstances thereby exercising design mechanisms for handling resource conflicts, stalls and flow control
issues.

In order to accomplish these design objectives, it is highly desirable for DV to ensure a large number of victims
are generated during a simulation and that the victim buffer occupancy is high in order to properly stress the
design and ensure it is free of bugs in this area. This can be difficult to achieve in random and constrained
random DV environments since the full set of conditions required to generate sufficient modified lines, high
cache replacement rates and potentially delayed draining of victims from the VB may not occur without
intervention from a DV engineer. This makes optimization of victim buffer occupancy in the RISC-V design an
ideal proof-of-concept experiment for ML based stimulus generation.

A suitable DV environment was developed for the RISC-V design. An open-source instruction generator
(IG) [7] was used to generate pseudo-random instruction sequences which were then used to drive simulations.
This IG is very flexible in terms of controlling types of tests, we mainly focussed on
‘riscv_load _store test’ (new class added to libraries in Google’s test environment). A set of DV controls
associated with the IG provided weights which control the relative percentage of load-store instructions versus
all other instructions (2 knobs for this) in combination with weights controlling the relative percentage of
different load-store instruction types (4 knobs for this: one for weight of load, store, branch and jump each).
These instruction control weights combined to provide a set of controls for varying instruction types while still
allowing for randomization within the bounds of the relative weights specified. In addition, a set of controls
were developed which constrained transaction addresses in ranges corresponding to the tag and index of the D$
(2 knobs here). Each constrained randomized test would contain 8 knobs and corresponding 2 simulation output
metrics - average number of victims and percentage of hitting maximum of victim buffer depth. This training
data gets fed into the ML agent to generate the next set of 8 knobs.
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Fig. 13 RISC-V and Google Instruction Generator with ML
generated knobs

Using this DV environment the effectiveness of ML generated settings could be compared with the standard
random approach using a similar approach to that previously described in section VII and summarized in Figure
13.

For each individual simulation a set of IG controls was generated randomly and used by the IG to generate a
constrained-random instruction sequence which was then used to drive a simulation run. The average occupancy
of the DS victim buffer was monitored during the simulation run.

After a number of simulation runs were completed, the resulting DV control settings and the corresponding
VB occupancy simulation results were fed to an ML agent which, once trained, generated a set of recommended
settings to use in a subsequent set of runs. This process was then repeated with each new set of simulations



providing an additional iteration through the ML generated settings.
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Number of Iterations Fig.14 Victim buffer occupancy for random instruction

generation versus ML generated settings

The results from ML based optimization (orange curve) are compared with random testing (blue curve) in
Figure 14 above. For each subsequent iteration through ML-based optimization the average victim occupancy
increases.

Figure 15 shows a histogram of the number of occurrences of each victim occupancy range for the original
set of random runs and Figure 16 shows the third iteration of ML optimization. It is clear from these histograms
that ML optimization has resulted in a shift to higher VB occupancy with the average VB occupancy increasing
from 0.95 to 1.471 after just three iterations, a gain of almost 55%.
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Fig.16 Google Instruction Generator with ML generated settings for RISC-V



These results demonstrate that ML based optimization can scale to complex designs and help solve real-world
DV problems.

CONCLUSIONS
We have demonstrated that Machine Learning techniques can significantly reduce the time to find hard to

reach conditions in verification of complex IC’s by generating input stimulus that performs significantly better
than constrained-random inputs.

The cost of verifying hardware and software is increasing significantly with each generation of devices. The
number of chips being produced is increasing due to the exponential growth in connected devices (IOT) and
Machine Learning Applications. The number of mobile apps being produced and software content generally are
growing exponentially. It is more critical than ever to automate software and hardware verification to test hard
to hit conditions in order to make software and hardware work in a safe predictable manner.

Machine Learning based stimulus generation can do better than random and has significant implications on
other areas, such as verification of Python/JavaScript Software, Android and IOS applications, network
verification, pharmaceutical drug discovery, new material discovery etc.

A popular Android testing framework [19] that generates Random UI events to test mobile applications.
Using a Machine Learning based approach as we have described can show significant improvement on the
Android UI testing framework. Ul testing with random events is analogous to testing the RISC-V with random
instructions generated by the Google instruction generator.

Machine Learning based stimulus generation can lead to a dramatic increase in efficiency for discovering
hardware and software bugs, new drugs, new materials and much more.

We believe that machine learning based verification is the most feasible path forward to address the growing
complexity of verifying software and hardware systems.
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