
Optimizing Area and Power Using Formal Methods

Alan Carlin
Freescale Semiconductor
6501 W Wm Cannon Dr

Austin, TX 78736
+1 (512) 895-6113

alan.carlin@freescale.com

Chris Komar
Cadence Design Systems, Inc
1620 W Fountainhead Pkwy

Tempe, AZ 85262
+1 (480) 704-2203

ckomar@cadence.com

Anuj Singhania
Freescale Semiconductor
6501 W Wm Cannon Dr

Austin, TX 78736
+1 (512) 895-3944

anujsinghania@freescale.com

ABSTRACT
Power consumption is a key differentiator for semiconductor
products targeting the embedded market. The combination of
system-level requirements and device-level characteristics presents a
particular challenge for verifying the implementation of low power
design features. Our focus was on the identification of state-retained
power gated (SRPG) flip-flops whose clocks are not controllable
during entry and exit from state-retention low power modes. Flip-
flops which fail the controllability criteria must be replaced with
clock-state independent (CSI) flops in the final netlist. The CSI flops
have no requirements for clock controllability, however, consume
greater power, area, and routing resources. Previously, traditional
simulation based approaches had been used to identify CSI flops on
earlier designs, but clearly missed a significant portion of the
necessary flops. For the Freescale Semiconductor Kinetis™ K40
design, the team adopted a flow based on static formal property
checking to identify a provable minimum set of CSI flops.

The methodology included analysis at the module-level to establish a
baseline for each individual IP, followed by a single SoC-level
analysis to arrive at the actual list of CSI instances for replacement in
the final netlist. Module-level analysis served to highlight
preventable clock controllability issues within the IP, while SoC-
level analysis served to identify connectivity and architectural clock
gating issues that only appear within the larger system. Several
practical aspects of formal analysis needed to be addressed in order
to make the SoC-level flow feasible, particularly with respect to
managing run times and memory consumption.

Finally, Formal Equivalence Verification was successfully used to
manage the implementation process by correlating the CSI flops
identified on the RTL model of the design to instances in the gate
netlist. Formal analysis of the design identified considerably more
CSI flops compared to simulation based approaches, greatly
improving the confidence and reliability of state-retained low power
modes. This flow ultimately enabled a SoC to be realized with an
optimal number of CSI flops, contributing to maximum functionality
with the minimal logic footprint and power consumption.

Keywords
Assertions, SVA, ABV, Formal Verification, Low-Power, SRPG

1. INTRODUCTION
As SoCs become more complex, new challenges are constantly
emerging in developing a functionally correct chip that meets
performance, area and power requirements. In this paper the authors
focus on one specific challenge that has emerged from the low power
dimension, and also ties into the area dimension as well.

One aspect of today’s low power SoCs is that functionality not in use
is shutdown to reduce power. However, there is often a requirement
that these functions, when needed again, can be re-energized and
continue their operations right where they left off. To meet this
requirement, portions of the logic must retain their state while
powered down. A specific type of flip-flop known as state-retained
power gated (SRPG) flop is used for this purpose. An SRPG flop
requires an extra retention signal to indicate when the power is being
shut down; and that the value should be saved and be available when
powered back up.

There are a couple of different types of SRPG flops that can be used
within a SoC, and these are described further below. The challenge
discussed here is finding the optimal combination of these different
SRPG flops to yield a design that utilizes minimal power and area,

without sacrificing any functionality.

2. SRPG BACKGROUND
SRPG flops are used extensively to reduce the leakage current during
low-power modes. The architecture of these SRPG flops is to
operate the slave latch on a powered-up supply and the master latch
on a switchable supply, with the slave latch being completely
detached from master latch through pass-gates on assertion of state-
retention enable pin. For the slave latch to maintain the state in low-
power mode, the latch needs to be put in “non-transparent” mode,
which puts a requirement on the state of the clock to the flop. For
posedge triggered flops, the clock needs to be held low during the
assertion/deassertion of the retention enable. For negedge triggered
flops, the clock needs to be held high during assertion/deassertion of
the retention enable.

In order to hold the system clocks to their inactive state, the SoC
contains a low-power mode controller. This controller follows a
sequence of requests that instruct the system clocks be disabled prior
to the assertion of retention enable. Ideally, sufficient time elapses
following the request to allow system-level clock gating logic to hold
the system clocks at their inactive state. Retention enable can then
safely assert without the risk of corrupting non-CSI flops. This
sequencing of events is illustrated by Figure 1 below.

Figure 1. Low power sequencing

While this requirement may sound simple enough to fulfill, it is not
always possible to ensure the correct state of the clock. For example,
in the case of a clock tree derived from divider logic, the possibility
exists that the clock will incorrectly stop at either a high or low state.
For this and other situations described later, there is a special SRPG
flop, referred to as a CSI (clock state independent) flop to tolerate
these cases in the design. CSI flops are larger in size and consume
more power compared to regular SRPG flops, but will be able to
maintain the state whether the clock is held high or low during the
assertion/deassertion of retention enable.

Note that the state-retention scheme needs to guarantee the state of
system is exactly the same before and after exit from the low-power
mode. Corruption of data in even one flop can be potentially
hazardous to the system. Of course, a low-risk approach could be to
only use CSI SPRG flops. However, the impact on die-size and
routing resources would be prohibitive. Therefore, a technique to
find the minimal set of CSI flops is needed to achieve an optimal
result in terms of power and area.

3. OVERVIEW OF FORMAL
As with any verification problem there are two requirements for a
solution. The first requirement is to provide a means to check that a
design under test (DUT) matches its specification. In the simplest
form, engineers visualize waveforms to verify the correctness DUT.
In more advanced forms of checking, there are automated means
such as assertions to ensure the DUT truly reflects the designer’s
intent. Assertions are an executable specification and represent the
golden reference to measure if the design behavior is correct.

The second requirement for a verification solution is a means to
exercise the DUT in a meaningful and sufficient way. While most
people are comfortable with simulation, there are certain verification
problems that even the most advanced, constraint-based random
testbench methodologies would have difficulty achieving sufficient
coverage of the DUT’s behavior. This is where formal verification
can be very powerful. Unlike simulation, formal will, by default,
exercise all possible DUT states to see if the behavior described by
an assertion is maintained by the DUT. While this exhaustive
approach can have difficulty scaling to solve large problems, setting
logical boundaries on a problem space can enable formal technology
to deliver mathematically certain results making a formal approach
extremely productive.

4. ASSERTION FLOW
As discussed in the previous section, formal methods were used as
the engine to exercise the design in a meaningful and sufficient way.
Therefore the challenge for this problem was to create the set of

assertions for the formal engines to target. This was done in a two
step approach.

4.1 Assertion Generation
The first step required identifying all the unique clock trees within
the DUT and generating the associated assertions. A unique clock
tree is defined as the clock network that is derived from a common
source driver. Given this shared input, all flops driven by this clock
tree can be checked by one assertion.

Since there are different requirements for the clock state depending
on the polarity of the clock, the next step is to distinguish whether
the clock trees were posedge or negedge triggered. As noted in
Section 2 above, in the case of a posedge clock tree the clock must
be low when the retention signal is asserted. Conversely, for a
negedge clock tree the clock must be high when the retention signal
is asserted.

The formal tool used for this flow, Cadence’s Incisive Formal
Verifier (IFV), can identify unique clock networks and their
respective polarity. Specifically, via the tool’s TCL interface the
reporting of the unique clock trees drove the programmatic
generation of the assertions. (For the purposes of the given example,
the clock tree name corresponding to a unique clock tree identified
by the tool will simply be labeled ”unique_clk_tree”.) The process of
identifying the unique clocks trees and generating the assertions is
shown in Figure 2 below.

Notice that the flow above does not discuss any mechanism to input
low power intent (CPF or UPF). Consequently, the user must supply
the name of the retention signal as well as its associated clock
(retention_clk) to the TCL script. With this information from the
user, and the clock trees reported by the tool, the TCL script will
generate one SystemVerilog assertion (SVA) for each unique clock
tree of the form:

Posedge clock network:
a_SRPG_<unique_clk_tree>_p : assert property
(@(posedge <retention_clk> or negedge <retention_clk>)
$rose(retention) |-> !unique_clk_tree && !$past(unique_clk_tree));

Incisive Formal
Verifier

Assertion
Generation

Script
(TCL)

Vunit
Containing

SVA

Figure 2. Generating assertions

Design
Under
Test
(RTL)

LOW POWER

RETENTION

CLOCK

CLOCK ENABLE

Negedge clock network:
a_SRPG_<unique_clk_tree>_n : assert property
(@(posedge <retention_clk> or negedge <retention_clk>)
$rose(retention) |-> unique_clk_tree && $past(unique_clk_tree));

The output of the process above is a Property Specification Language
(PSL) “vunit” that contains the assertions for all the identified clock
trees. (Note the “posedge” assertion example is checking the exact
behavior described in Figure 1 for the CLOCK unique_clk_tree.) A
PSL vunit was used to simplify dealing with the out of module
references to the unique clock networks. While it might seem more
intuitive to use a SystemVerilog bind file as a container and binding
mechanism for the SVA, bind files can be cumbersome to automate
as an explicit port map needs to be defined and mapped. For
convenience, hierarchical paths were used to reference the signals
within the design, and the entire vunit was easily bound to the top-
most level of design hierarchy.

4.2 Assertion Evaluation
The next step of the flow is to incorporate the vunit containing the
generated assertions and to rerun the tool as shown in Figure 3
below.

At this point the user receives the results of each assertion. For
assertions that Pass, the user is guaranteed that the required SRPG
behavior is met and no further action is needed. In design terms, this
means that a CSI flop is not needed for the flops driven by the
respective clock tree checked in the assertion. Conversely, for
assertions that Fail the user must debug the properties in order to
determine the reason for the failure and/or to identify any corrective
action. For example, a failure could simply indicate that a CSI flop is
needed. However, it could also indicate a bug in the logic intended
to control the clocks during the activation/deactivation of the
retention signal.

A third category of results is known as “Explored”. The definition of
an Explored is that after some effort by the tool, the assertion could
not be exhaustively proven for all states of the design. The good
news is that up to the point where the tool halted its analysis, the
assertion did not Fail. This inconclusive result will be discussed
further in the next section.

5. PROVING PROPERTIES
For convenience, the properties were grouped by module instance at
the SoC-level. A single analysis job would cover an entire hierarchy,
enabling the complete analysis to be performed incrementally. This
instance-level grouping also enabled prioritization of the effort so
that higher risk modules could be analyzed and debugged first, with
smaller or lower risk instances being evaluated later.

There are two other benefits to partitioning the properties by module
instance: each group of properties can be analyzed independently,
allowing parallel jobs to be run on the dispatch system to increase
overall throughput. Similarly, the debug effort can be distributed
amongst multiple engineers so people can work in parallel, and the
output can be vectored to the individuals most familiar with a given
module or clock generation architecture.

Running property groups as separate jobs also allows meaningful
statistics to be gathered on the run-times of those property groups.
This information can be used to further partition the groups in order
to level the run-times; and thus minimize the time-to-results when
jobs can be executed in parallel. Run-time information can also
suggest issues in the design itself—disproportionately high run-times
often have an identifiable cause. Table 1 illustrates how significantly
the nature of the design can affect the run-times, even after steps
have been taken to optimize the analysis.

Table 1. Total property run-times by module

Module Run-Time Pass Fail Explore

Serial IO 4700 sec 404 40 0

Serial IO 3300 sec 275 0 0

Serial IO 2200 sec 8 10 4

Processor 1800 sec 593 5 0

Parallel IO 1600 sec 25 54 0

Intelligently partitioning the properties, and prioritizing the debug
work, also tends to reduce the overall effort required. There is often
a common failure mode amongst several properties, or several
modules, and addressing similar modules or similar failures can
frequently result in addressing an entire category of similar failures
with a single corrective action.

6. METHODOLOGY
Recalling that CSI flops require more area and power than their
equivalent standard SRPG flops, the objective is to minimize the
number of these flops required in the final netlist. The official
analysis for cell substitution must be performed on the final
integrated SoC design and fed into synthesis to ensure that the logic
and hierarchies match for post-synthesis substitution and equivalency
checking. The final design also incorporates all of the clock
generation, gating, and distribution structures that are critical to the
analysis.

Instead of waiting for a completely integrated SoC design, module-
level analysis can provide a valuable preview of the expected results
at the SoC-level. In fact, module-level analysis can typically be
performed months before the host SoC is available, providing time to
identify problems and take corrective actions. The module-level
analysis environment typically assumes generic low-power modes,

Figure 3. Evaluating the assertions

Incisive Formal
Verifier

Vunit
Containing

SVA

Results
Passed
Failed
Explored

Design
Under
Test
(RTL)

along with simplified clock generation and gating logic. Despite
these simplifications, such experiments are valuable as they often
reveal how well the endpoints within the module will perform with
the external gating logic under nearly-ideal conditions.

Any significant degree of CSI flop requirements identified at the
module-level should be corrected within the design, and the analysis
repeated. It is highly unlikely that SoC-level analysis will yield
results better than those seen at the module-level, barring some form
of unanticipated clock network issue. Thus, this process is the best
opportunity to easily make changes to the logic to improve the
results. Also, since the module-level environment is a generic and
simplified model of its eventual integration, the IP owners can
assume primary responsibility for performing the analysis and
improving the results. Enabling the IP owners to run the analysis in
a standalone fashion makes it easier for them to deliver the IP at the
level of quality expected for their SoC deliverables.

Once the bulk of the IP within a SoC has seen some level of module-
level analysis, the clock manipulation logic within individual
modules becomes less of a concern. Instead, the low-power mode
gating of the system clocks, and their correct distribution to the
modules, becomes the next highest risk area. Weaknesses in the
handshaking between the low-power mode controller and the clock
generation logic, as well as defects in the system-level clock gating
logic itself, must be found. Clock distribution problems typically
involve the passage of an uncontrolled clock directly to an IP input,
instead of being passed through the system clock generation logic
where they can be gated. Polarity mismatches in the inactive state of
the clock signals during low-power modes are also common.

Controllability issues identified at the SoC-level tend to be more
difficult to correct because there are more parties involved. For
example, the low-power mode controller may not always be
sequencing the system in the anticipated fashion, or the clock gating
logic may require more time to properly gate the slowest clocks to an
inactive state. Module clock inputs that require the same frequency
and phase may differ in internal polarity—in which case they have
different inactive states, and require separate gating logic and
routing. Often it is not always be clear which module is at fault,
since individually every component behaves according to its
requirements, but once integrated holes in said requirements become
apparent. Performing the SoC-level analysis in close cooperation
with the owner of the system clock generation module and/or clock
tree architects is valuable for their ability to resolve issues identified
in the system, and also because their detailed knowledge can help to
trace an assertion failure to a root cause.

7. COMMON PROBLEMS CAUGHT
The majority of the system clock generation is centralized within a
dedicated module for the entire SoC. This module also includes
most of the low-power sequencing of the system clocks. As a result,
the typical problems with clock controllability when entering low-
power modes fell into two categories: clocks being divided or
inverted locally within a module, and clocks being sourced directly
from an uncontrollable source.

Manipulating clocks locally within a module is not a problem if steps
are taken to make endpoint flip-flops be consistent and predictable
when entering low-power modes. Solutions include clock dividers
designed in such a way that the output clock stops at the inactive
state prior to mode entry (although this also requires some form of
handshaking with the low-power mode entry controller). If the
dividers can not reach and hold an inactive state within a short
number of cycles, the divider output needs to be bypassed with the

system clock input under the control of the mode controller.
Frequently, clock dividers without any form of bypass or shutdown
control are encountered in the design and can be addressed by using
a CSI flop as shown in Figure 4 below.

Figure 4. Locally divided clock

Although it is not a recommended practice, it may be possible to
locally invert clocks within a module without issue. Posedge and
negedge flops can even be sourced from the same system clock
input. However, from the perspective of the system clock generator,
all of the flip-flop endpoints must share the same inactive edge of the
input clock. This requires that all posedge flops use the non-inverted
clock, and all negedge flops use a locally inverted clock (or vice-
versa). Either way, it is possible to idle the system clock at a known
state that places all flip-flop clock endpoints to their inactive state. If
this is not possible, local clock inversion may require the use of CSI
flops as show below in Figure 5.

Figure 5. Locally inverted clock

The most obvious source of uncontrolled clocks when entering low-
power modes are clock signals that are not sourced from the central
clock generation module. These include primary input pins, internal
PLLs, and various modules residing in a different power domain that
contain no controlling/gating logic. Since these sources cannot, or
should not, be shut off upon entry to a low-power mode, remedial
steps are the only course of action to guarantee a reliable mode entry.
The uncontrolled clock signals may be routed through the clock
generation module so that they may be gated prior to fanning out to
switchable modules. Or the fanout of the uncontrolled clocks can
simply be limited to an acceptable level of endpoints—such
endpoints will undoubtedly require CSI flops. Both approaches may
even be combined, especially in the case of internal PLLs, where
some portion of the clock tree requires minimal latency or custom
layout.

Module boundary

CLOCK TREE

SRPG
FF

 retention

latch

CLOCK ENABLE

Clock gating cell

CSI
SRPG

FF

 retention

CLOCK TREE

SRPG
FF

 retention

latch

CLOCK ENABLE

Clock gating cell

CSI
SRPG

FF

 retention

Module boundary

8. MANAGING RUN TIMES
Capacity and wall-clock run-times must always be a consideration
with static formal tools. For this application, the actual property
being proven is quite trivial—the clock must be inactive for a couple
of cycles prior to low-power mode entry. The real effort in the proof
must therefore lie in the two remaining areas of investigation:
sensitizing the properties by entering the low-power mode, and the
logic involved in controlling the clock signals. The logic for these
portions of the design can be quite extensive, occasionally causing
the assertion results to end up as “Explored” described in section 4.
While giving the tool more time to run might have allowed the
assertions to converge, this approach was not feasible.
Consequently, we systematically employed the following run-time
management techniques..

The configuration and entry into low-power modes was taken as a
given for the clock endpoint controllability analysis. Simulation
regressions were testament to the correct sequencing of the power,
mode, clock, and wakeup logic within the design. As a result, the
majority of that logic could be excluded from formal analysis of the
clock endpoints. These modules were either “black-boxed” to
completely removed them from consideration, or individual signals
were selectively cut and treated as primary inputs. Relevant signals
could then be constrained appropriately to prime the design for entry
into a specific low-power mode. The only control left to the tool was
the decision of when to initiate the low-power mode entry sequence;
the entry sequence would then complete in a short and predictable
number of cycles following the request.

Also note that the clock controllability logic itself can influence the
tool’s analysis effort and run-times. While considerable care must be
taken applying optimizations here (since this is the very logic that
defines the clock behavior on entry into low-power modes), such
optimizations can – and did -- have a significant impact on run-times.

The primary means of optimizing the clock control logic analysis
was the use of cutpoints. Cutpoints create a virtual primary input to
the design at a specific hierarchical location, eliminating the need to
analyze the cone of influence up to that point. The primary
consequence of cutpoint insertion is that the analysis of downstream
logic is considerably easier and faster. The secondary consequence
of inserting a cutpoint is that the analysis becomes more pessimistic;
the design can now be analyzed assuming the worst-possible case
behavior of a cutpointed signal, often exceeding the possible
conditions that the actual design can generate. Cutpoints must
therefore be employed judiciously, since analyzing the entire design
under worst-possible case conditions would yield 100% CSI flop
substitution—rendering the effort invested into the formal analysis
entirely pointless since complete substitution requires no analysis
whatsoever.

The insertion of cutpoints for our analysis was performed in three
distinct phases, each targeting a different degree of performance
optimization. First, the source for all of the system clocks were cut
prior to their entry point to the clock gates within the central clock
generation module. As the purpose of those clock gates is to stop the
output clock to its inactive state prior to low-power mode entry, the
actual clock signal that they are gating should be irrelevant. In our
system, the clock gates, themselves, are the last stage in a series of
clock sources, clock selection logic, and programmable clock
dividers. As a result, a cutpoint immediately before the gating cells
eliminates a surprising amount of complex logic related to producing
the actual clock signal as shown in Figure 6 below.

Figure 6. Bypassing system clock generation

The second phase of cutpoint insertion was targeted at general
system controllability. Cutpoints were inserted, with accompanying
constraints, to keep the system out of reset, out of test modes, and
prevent premature wakeup from low-power modes—none of these
situations are interesting for the analysis. Also, all of the primary
system and peripheral busses were cut at the initiator. Many
modules have some degree of sensitivity to their system or
configuration busses, and cutpoints here allowed the tool to directly
control bus transactions to the targets; no analysis of the initiators
was required to wring out a useful sequence of transactions. Figure 7
illustrates some of these cutpoints, in order to highlight the degree of
upstream logic being optimized out of the analysis.

Figure 7. Bus Connectivity Optimization

The third and final phase of cutpoint insertion was targeted at
specific clock proofs that exhibited excessively high run-times, or
failed to converge to a definitive Pass/Fail. This required individual
investigation of each offending assertion, tracing the clock tree, and
trying to identify locations where the tool may be spending too much
time. Fortunately, some common patterns emerged: there was
always a gate, multiplexor, or divider in the clock path; there was
always a state machine generating control signals for the logic in the
clock path; and the original designer for the module was usually not
available for consultation. The simplest resolution was to add a cut-
point to the inputs for the logic in the clock path. This removed the
state machines from the cone of influence, which improved the run-
time(s) significantly. However, the proofs became more pessimistic,
and the risk of false-failures became a definite possibility.

Despite these risks, the run-time improvements resulting from the
intelligent use of black-boxes and cutpoint insertion were
undeniable. Proofs that ran out of memory or failed to converge
after hours of analysis often resolved in seconds after cutpoints were
been applied. Constraints must be applied with the greatest care
possible to ensure that you do not invalidate the results of your
analysis. Cutpoints, however, increase pessimism and generally
reduce run-times, making them relatively safer to employ. It is
nearly impossible to precisely quantify, but our best guess is that no

System
Clock
divider

MASTER CLOCK
SOURCE (PLL)

Peripheral
Clock
divider

SYSTEM CLOCK ENABLE

Clock
Gating

cell

Clock
Gating

cell

PERIPHERAL CLOCK ENABLE

Denotes a formal analysis cutpoint

clock
trees

System
module System

module System
module

Peripheral
module Peripheral

module Peripheral
module

System
Bus

Matrix

Configuration
Bus

Interface

Denotes a formal analysis cutpoint

Peripheral
module Peripheral

module Peripheral
module

Bus Initiator

Bus Initiator

Bus Initiator

Bus Target

Bus Target

more than 2% of our final CSI flop count is the result of cutpoint-
induced pessimism. In contrast, had cutpoints not been used, the
resulting non-convergent proofs would have increased our CSI flop
count by 10% or more. In short, adoption of this technique itself
resulted in significant power and area savings onboard the SoC.

9. RTL-TO-GATE EQUIVALENCE
In addition to identifying the unique clock trees, the formal analysis
flow also generates a list of flip-flop instances that need to be
mapped to CSI flops. Given this list, there are still three more
hurdles to overcome: ensuring the instance path is understood by the
implementation tools, forcing the implementation tools to use CSI
flops on those defined instances, and checking that only and all the
defined list of instances are mapped to the CSI flops.

Although the assertion analysis flow was independent of low-power
intent specification, our implementation methodology is based on
Common Power Format (CPF) to define, implement and verify the
power intent of the design. CPF provides a method to define the
state retention elements in the library and the design-level state
retention rules. State-retention cells can have a user-defined text
attribute which allows flexibility to refer to a group of cells with the
same attribute. For example, we chose to define the non-CSI flops in
the library with the attribute “srpg_noncsi” and the CSI flops with
the attribute “srpg_csi”. Retention rules can be generic covering all
sequential instances in a design or can be targeted for a specific list
of sequential instances. We defined retention rules for all sequential
instances excluding the required CSI list in a generic rule with cells
having the attribute “srpg_noncsi”, and used a targeted retention rule
for CSI list of instances with cells having attribute “srpg_csi”. With
these rules, implementation tools were able to map the registers in
RTL to functionally equivalent CSI or non-CSI flops.

There are some differences in name mapping between RTL
elaboration by verification and implementation tools. For example,
the verification tools inserted a logical hierarchy for every “generate”
style construct; whereas the implementation tools did not insert these
additional hierarchies but named the register in a unique way to
incorporate the label from generate statements. Implementation tools
may also use a different hierarchy separators or array delimiters. To
resolve these issues, we post-processed the CSI register list generated
by the formal analysis to generate a list in accordance with the
naming conventions used by the implementation tools.

As we used a post-processed instance list for driving the
implementation and an unprocessed version for RTL simulation, we
required a way to check the consistency of the retention rule
mapping between RTL verification and the implementation. We
used Conformal from Cadence to perform this analysis and to ensure
that the implementation has CSI flops on all required instances. The
unprocessed list of instances was used for Conformal and a list of

name mapping rules were defined in tool framework to match the
post-processing done on the instance list. Provided with the design
netlist (from implementation tools), the CPF (for retention rules) and
the name mapping rules, the tool is capable of checking each
instance in design and reporting incorrect substitution of CSI with
non-CSI flops.

10. CONCLUSION
Compared to earlier simulation based techniques, formal techniques
at the SoC-level were able to detect approximately five times as
many flops with CSI requirements. No flops identified with
simulation were missed by formal, which was an important initial
validation of the flow. Formal analysis results were also completely
reproducible between revisions of the design and testbench,
something that was rarely achieved with simulation regressions.
This complete and exhaustive analysis allowed us to replace a
specific list of identified cells, instead of simply replacing entire
levels of suspect hierarchy. In the end, the results of formal analysis
allows us to replace only the minimum necessary set of flop
instances, and have far higher confidence in the finished product.

We have taped-out multiple products successfully with this flow, and
the silicon validation results have been entirely positive. More
importantly, the thoroughness of formal analysis has allowed us to
confidently reduce the CSI flop counts over time. Designs have been
adjusted specifically to improve the clock controllability in low-
power modes because of the significant area savings that has been
demonstrated. This has been a valuable contribution to our low-
power implementation methodology, and one that will continue to
enhance our low-power product families.

Moving forward, we hope to improve our low-power implementation
tools to reduce the perplexing variety in net and hierarchy naming
conventions. Mapping the hierarchical instances between the various
views of the design is a critical step in applying the information
derived from formal analysis, and unexpected name changes create
undesirable opportunities for errors. Reading the CPF file into the
formal analysis steps would also help to ensure that the low-power
mode signaling and sequencing precisely matches the eventual
implementation.

11. ACKNOWLEDGMENTS
Thanks to Jose Barandiaran of Cadence Design Systems, Inc. for his
expertise in TCL to make this flow a reality. Also thanks to Joseph
Hupcey III of Cadence Design Systems, Inc. and Hugo Cavalcanti of
Freescale Semiconductor for their feedback in reviewing the paper.

12. REFERENCES
Padhye, et al., State retention within a data processing system, U.S. Patent
7,183,825, February 27, 2007.

