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ABSTRACT  
Power consumption is a key differentiator for semiconductor 
products targeting the embedded market.  The combination of 
system-level requirements and device-level characteristics presents a 
particular challenge for verifying the implementation of low power 
design features.  Our focus was on the identification of state-retained 
power gated (SRPG) flip-flops whose clocks are not controllable 
during entry and exit from state-retention low power modes.  Flip-
flops which fail the controllability criteria must be replaced with 
clock-state independent (CSI) flops in the final netlist.  The CSI flops 
have no requirements for clock controllability, however, consume 
greater power, area, and routing resources.  Previously, traditional 
simulation based approaches had been used to identify CSI flops on 
earlier designs, but clearly missed a significant portion of the 
necessary flops.  For the Freescale Semiconductor Kinetis™ K40 
design, the team adopted a flow based on static formal property 
checking to identify a provable minimum set of CSI flops. 
 
The methodology included analysis at the module-level to establish a 
baseline for each individual IP, followed by a single SoC-level 
analysis to arrive at the actual list of CSI instances for replacement in 
the final netlist.  Module-level analysis served to highlight 
preventable clock controllability issues within the IP, while SoC-
level analysis served to identify connectivity and architectural clock 
gating issues that only appear within the larger system.  Several 
practical aspects of formal analysis needed to be addressed in order 
to make the SoC-level flow feasible, particularly with respect to 
managing run times and memory consumption. 
 
Finally, Formal Equivalence Verification was successfully used to 
manage the implementation process by correlating the CSI flops 
identified on the RTL model of the design to instances in the gate 
netlist.  Formal analysis of the design identified considerably more 
CSI flops compared to simulation based approaches, greatly 
improving the confidence and reliability of state-retained low power 
modes.  This flow ultimately enabled a SoC to be realized with an 
optimal number of CSI flops, contributing to maximum functionality 
with the minimal logic footprint and power consumption.   
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1.  INTRODUCTION 
As SoCs become more complex, new challenges are constantly 
emerging in developing a functionally correct chip that meets 
performance, area and power requirements.  In this paper the authors 
focus on one specific challenge that has emerged from the low power 
dimension, and also ties into the area dimension as well. 
 
One aspect of today’s low power SoCs is that functionality not in use 
is shutdown to reduce power.  However, there is often a requirement 
that these functions, when needed again, can be re-energized and 
continue their operations right where they left off.  To meet this 
requirement, portions of the logic must retain their state while 
powered down.  A specific type of flip-flop known as state-retained 
power gated (SRPG) flop is used for this purpose.  An SRPG flop 
requires an extra retention signal to indicate when the power is being 
shut down; and that the value should be saved and be available when 
powered back up. 
 
There are a couple of different types of SRPG flops that can be used 
within a SoC, and these are described further below.  The challenge 
discussed here is finding the optimal combination of these different 
SRPG flops to yield a design that utilizes minimal power and area, 

without sacrificing any functionality. 
 

2.  SRPG BACKGROUND 
SRPG flops are used extensively to reduce the leakage current during 
low-power modes.  The architecture of these SRPG flops is to 
operate the slave latch on a powered-up supply and the master latch 
on a switchable supply, with the slave latch being completely 
detached from master latch through pass-gates on assertion of state-
retention enable pin.  For the slave latch to maintain the state in low-
power mode, the latch needs to be put in “non-transparent” mode, 
which puts a requirement on the state of the clock to the flop.  For 
posedge triggered flops, the clock needs to be held low during the 
assertion/deassertion of the retention enable.  For negedge triggered 
flops, the clock needs to be held high during assertion/deassertion of 
the retention enable. 
 
In order to hold the system clocks to their inactive state, the SoC 
contains a low-power mode controller.  This controller follows a 
sequence of requests that instruct the system clocks be disabled prior 
to the assertion of retention enable.  Ideally, sufficient time elapses 
following the request to allow system-level clock gating logic to hold 
the system clocks at their inactive state. Retention enable can then 
safely assert without the risk of corrupting non-CSI flops. This 
sequencing of events is illustrated by Figure 1 below. 
 



 
 

Figure 1.  Low power sequencing 

 
While this requirement may sound simple enough to fulfill, it is not 
always possible to ensure the correct state of the clock.  For example, 
in the case of a clock tree derived from divider logic, the possibility 
exists that the clock will incorrectly stop at either a high or low state.  
For this and other situations described later, there is a special SRPG 
flop, referred to as a CSI (clock state independent) flop to tolerate 
these cases in the design.  CSI flops are larger in size and consume 
more power compared to regular SRPG flops, but will be able to 
maintain the state whether the clock is held high or low during the 
assertion/deassertion of retention enable. 
 
Note that the state-retention scheme needs to guarantee the state of 
system is exactly the same before and after exit from the low-power 
mode.  Corruption of data in even one flop can be potentially 
hazardous to the system.  Of course, a low-risk approach could be to 
only use CSI SPRG flops. However, the impact on die-size and 
routing resources would be prohibitive.  Therefore, a technique to 
find the minimal set of CSI flops is needed to achieve an optimal 
result in terms of power and area.   
 

3.  OVERVIEW OF FORMAL 
As with any verification problem there are two requirements for a 
solution.  The first requirement is to provide a means to check that a 
design under test (DUT) matches its specification.  In the simplest 
form, engineers visualize waveforms to verify the correctness DUT.  
In more advanced forms of checking, there are automated means 
such as assertions to ensure the DUT truly reflects the designer’s 
intent.  Assertions are an executable specification and represent the 
golden reference to measure if the design behavior is correct. 
 
The second requirement for a verification solution is a means to 
exercise the DUT in a meaningful and sufficient way.  While most 
people are comfortable with simulation, there are certain verification 
problems that even the most advanced, constraint-based random 
testbench methodologies would have difficulty achieving sufficient 
coverage of the DUT’s behavior.  This is where formal verification 
can be very powerful.  Unlike simulation, formal will, by default, 
exercise all possible DUT states to see if the behavior described by 
an assertion is maintained by the DUT.  While this exhaustive 
approach can have difficulty scaling to solve large problems, setting 
logical boundaries on a problem space can enable formal technology 
to deliver mathematically certain results making a formal approach 
extremely productive. 

 

4.  ASSERTION FLOW 
As discussed in the previous section, formal methods were used as 
the engine to exercise the design in a meaningful and sufficient way.  
Therefore the challenge for this problem was to create the set of 

assertions for the formal engines to target.  This was done in a two 
step approach.  
 

4.1  Assertion Generation 
The first step required identifying all the unique clock trees within 
the DUT and generating the associated assertions.  A unique clock 
tree is defined as the clock network that is derived from a common 
source driver.  Given this shared input, all flops driven by this clock 
tree can be checked by one assertion. 
 
Since there are different requirements for the clock state depending 
on the polarity of the clock, the next step is to distinguish whether 
the clock trees were posedge or negedge triggered. As noted in 
Section 2 above, in the case of a posedge clock tree the clock must 
be low when the retention signal is asserted.  Conversely, for a 
negedge clock tree the clock must be high when the retention signal 
is asserted. 
 
The formal tool used for this flow, Cadence’s Incisive Formal 
Verifier (IFV), can identify unique clock networks and their 
respective polarity.  Specifically, via the tool’s TCL interface the 
reporting of the unique clock trees drove the programmatic 
generation of the assertions.  (For the purposes of the given example, 
the clock tree name corresponding to a unique clock tree identified 
by the tool will simply be labeled ”unique_clk_tree”.) The process of 
identifying the unique clocks trees and generating the assertions is 
shown in Figure 2 below. 
 

 
Notice that the flow above does not discuss any mechanism to input 
low power intent (CPF or UPF). Consequently, the user must supply 
the name of the retention signal as well as its associated clock 
(retention_clk) to the TCL script.  With this information from the 
user, and the clock trees reported by the tool, the TCL script will 
generate one SystemVerilog assertion (SVA) for each unique clock 
tree of the form: 
 
Posedge clock network: 
a_SRPG_<unique_clk_tree>_p : assert property 
(@(posedge <retention_clk> or negedge <retention_clk>) 
$rose(retention) |-> !unique_clk_tree && !$past(unique_clk_tree)); 
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Figure 2.  Generating assertions 
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Negedge clock network: 
a_SRPG_<unique_clk_tree>_n : assert property 
(@(posedge <retention_clk> or negedge <retention_clk>) 
$rose(retention) |-> unique_clk_tree && $past(unique_clk_tree)); 

 
The output of the process above is a Property Specification Language 
(PSL) “vunit” that contains the assertions for all the identified clock 
trees. (Note the “posedge” assertion example is checking the exact 
behavior described in Figure 1 for the CLOCK unique_clk_tree.) A 
PSL vunit was used to simplify dealing with the out of module 
references to the unique clock networks.  While it might seem more 
intuitive to use a SystemVerilog bind file as a container and binding 
mechanism for the SVA, bind files can be cumbersome to automate 
as an explicit port map needs to be defined and mapped.  For 
convenience, hierarchical paths were used to reference the signals 
within the design, and the entire vunit was easily bound to the top-
most level of design hierarchy. 
 

4.2  Assertion Evaluation 
The next step of the flow is to incorporate the vunit containing the 
generated assertions and to rerun the tool as shown in Figure 3 
below. 

 

 
At this point the user receives the results of each assertion.  For 
assertions that Pass, the user is guaranteed that the required SRPG 
behavior is met and no further action is needed.  In design terms, this 
means that a CSI flop is not needed for the flops driven by the 
respective clock tree checked in the assertion.  Conversely, for 
assertions that Fail the user must debug the properties in order to 
determine the reason for the failure and/or to identify any corrective 
action. For example, a failure could simply indicate that a CSI flop is 
needed.  However, it could also indicate a bug in the logic intended 
to control the clocks during the activation/deactivation of the 
retention signal. 
 
A third category of results is known as “Explored”.  The definition of 
an Explored is that after some effort by the tool, the assertion could 
not be exhaustively proven for all states of the design.  The good 
news is that up to the point where the tool halted its analysis, the 
assertion did not Fail.  This inconclusive result will be discussed 
further in the next section. 

 

5.  PROVING PROPERTIES 
For convenience, the properties were grouped by module instance at 
the SoC-level.  A single analysis job would cover an entire hierarchy, 
enabling the complete analysis to be performed incrementally.  This 
instance-level grouping also enabled prioritization of the effort so 
that higher risk modules could be analyzed and debugged first, with 
smaller or lower risk instances being evaluated later. 
 
There are two other benefits to partitioning the properties by module 
instance: each group of properties can be analyzed independently, 
allowing parallel jobs to be run on the dispatch system to increase 
overall throughput.  Similarly, the debug effort can be distributed 
amongst multiple engineers so people can work in parallel, and the 
output can be vectored to the individuals most familiar with a given 
module or clock generation architecture. 
 
Running property groups as separate jobs also allows meaningful 
statistics to be gathered on the run-times of those property groups.  
This information can be used to further partition the groups in order 
to level the run-times; and thus minimize the time-to-results when 
jobs can be executed in parallel.  Run-time information can also 
suggest issues in the design itself—disproportionately high run-times 
often have an identifiable cause.  Table 1 illustrates how significantly 
the nature of the design can affect the run-times, even after steps 
have been taken to optimize the analysis. 
 

Table 1.  Total property run-times by module 
 

Module Run-Time Pass Fail Explore 

Serial IO 4700 sec 404 40 0 

Serial IO 3300 sec 275 0 0 

Serial IO 2200 sec 8 10 4 

Processor 1800 sec 593 5 0 

Parallel IO 1600 sec 25 54 0 

 
Intelligently partitioning the properties, and prioritizing the debug 
work, also tends to reduce the overall effort required.  There is often 
a common failure mode amongst several properties, or several 
modules, and addressing similar modules or similar failures can 
frequently result in addressing an entire category of similar failures 
with a single corrective action. 
 

6.  METHODOLOGY 
Recalling that CSI flops require more area and power than their 
equivalent standard SRPG flops, the objective is to minimize the 
number of these flops required in the final netlist.  The official 
analysis for cell substitution must be performed on the final 
integrated SoC design and fed into synthesis to ensure that the logic 
and hierarchies match for post-synthesis substitution and equivalency 
checking.  The final design also incorporates all of the clock 
generation, gating, and distribution structures that are critical to the 
analysis. 
 
Instead of waiting for a completely integrated SoC design, module-
level analysis can provide a valuable preview of the expected results 
at the SoC-level.  In fact, module-level analysis can typically be 
performed months before the host SoC is available, providing time to 
identify problems and take corrective actions.  The module-level 
analysis environment typically assumes generic low-power modes, 

Figure 3.  Evaluating the assertions 
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along with simplified clock generation and gating logic.  Despite 
these simplifications, such experiments are valuable as they often 
reveal how well the endpoints within the module will perform with 
the external gating logic under nearly-ideal conditions. 
 
Any significant degree of CSI flop requirements identified at the 
module-level should be corrected within the design, and the analysis 
repeated.  It is highly unlikely that SoC-level analysis will yield 
results better than those seen at the module-level, barring some form 
of unanticipated clock network issue.  Thus, this process is the best 
opportunity to easily make changes to the logic to improve the 
results.  Also, since the module-level environment is a generic and 
simplified model of its eventual integration, the IP owners can 
assume primary responsibility for performing the analysis and 
improving the results.  Enabling the IP owners to run the analysis in 
a standalone fashion makes it easier for them to deliver the IP at the 
level of quality expected for their SoC deliverables. 
 
Once the bulk of the IP within a SoC has seen some level of module-
level analysis, the clock manipulation logic within individual 
modules becomes less of a concern.  Instead, the low-power mode 
gating of the system clocks, and their correct distribution to the 
modules, becomes the next highest risk area.  Weaknesses in the 
handshaking between the low-power mode controller and the clock 
generation logic, as well as defects in the system-level clock gating 
logic itself, must be found.  Clock distribution problems typically 
involve the passage of an uncontrolled clock directly to an IP input, 
instead of being passed through the system clock generation logic 
where they can be gated.  Polarity mismatches in the inactive state of 
the clock signals during low-power modes are also common. 
 
Controllability issues identified at the SoC-level tend to be more 
difficult to correct because there are more parties involved.  For 
example, the low-power mode controller may not always be 
sequencing the system in the anticipated fashion, or the clock gating 
logic may require more time to properly gate the slowest clocks to an 
inactive state.  Module clock inputs that require the same frequency 
and phase may differ in internal polarity—in which case they have 
different inactive states, and require separate gating logic and 
routing.  Often it is not always be clear which module is at fault, 
since individually every component behaves according to its 
requirements, but once integrated holes in said requirements become 
apparent.  Performing the SoC-level analysis in close cooperation 
with the owner of the system clock generation module and/or clock 
tree architects is valuable for their ability to resolve issues identified 
in the system, and also because their detailed knowledge can help to 
trace an assertion failure to a root cause. 
 

7.  COMMON PROBLEMS CAUGHT 
The majority of the system clock generation is centralized within a 
dedicated module for the entire SoC.  This module also includes 
most of the low-power sequencing of the system clocks.  As a result, 
the typical problems with clock controllability when entering low-
power modes fell into two categories: clocks being divided or 
inverted locally within a module, and clocks being sourced directly 
from an uncontrollable source. 
 
Manipulating clocks locally within a module is not a problem if steps 
are taken to make endpoint flip-flops be consistent and predictable 
when entering low-power modes.  Solutions include clock dividers 
designed in such a way that the output clock stops at the inactive 
state prior to mode entry (although this also requires some form of 
handshaking with the low-power mode entry controller).  If the 
dividers can not reach and hold an inactive state within a short 
number of cycles, the divider output needs to be bypassed with the 

system clock input under the control of the mode controller.  
Frequently, clock dividers without any form of bypass or shutdown 
control are encountered in the design and can be addressed by using 
a CSI flop as shown in Figure 4 below. 
 
 

 
 

Figure 4.  Locally divided clock 

 
Although it is not a recommended practice, it may be possible to 
locally invert clocks within a module without issue.  Posedge and 
negedge flops can even be sourced from the same system clock 
input.  However, from the perspective of the system clock generator, 
all of the flip-flop endpoints must share the same inactive edge of the 
input clock.  This requires that all posedge flops use the non-inverted 
clock, and all negedge flops use a locally inverted clock (or vice-
versa).  Either way, it is possible to idle the system clock at a known 
state that places all flip-flop clock endpoints to their inactive state.  If 
this is not possible, local clock inversion may require the use of CSI 
flops as show below in Figure 5. 
 

 
 

Figure 5.  Locally inverted clock 

 
The most obvious source of uncontrolled clocks when entering low-
power modes are clock signals that are not sourced from the central 
clock generation module.  These include primary input pins, internal 
PLLs, and various modules residing in a different power domain that 
contain no controlling/gating logic.  Since these sources cannot, or 
should not, be shut off upon entry to a low-power mode, remedial 
steps are the only course of action to guarantee a reliable mode entry.  
The uncontrolled clock signals may be routed through the clock 
generation module so that they may be gated prior to fanning out to 
switchable modules.  Or the fanout of the uncontrolled clocks can 
simply be limited to an acceptable level of endpoints—such 
endpoints will undoubtedly require CSI flops.  Both approaches may 
even be combined, especially in the case of internal PLLs, where 
some portion of the clock tree requires minimal latency or custom 
layout. 
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8.  MANAGING RUN TIMES 
Capacity and wall-clock run-times must always be a consideration 
with static formal tools.  For this application, the actual property 
being proven is quite trivial—the clock must be inactive for a couple 
of cycles prior to low-power mode entry.  The real effort in the proof 
must therefore lie in the two remaining areas of investigation: 
sensitizing the properties by entering the low-power mode, and the 
logic involved in controlling the clock signals.  The logic for these 
portions of the design can be quite extensive, occasionally causing 
the assertion results to end up as “Explored” described in section 4.  
While giving the tool more time to run might have allowed the 
assertions to converge, this approach was not feasible.  
Consequently, we systematically employed the following run-time 
management techniques.. 
 
The configuration and entry into low-power modes was taken as a 
given for the clock endpoint controllability analysis.  Simulation 
regressions were testament to the correct sequencing of the power, 
mode, clock, and wakeup logic within the design.  As a result, the 
majority of that logic could be excluded from formal analysis of the 
clock endpoints.  These modules were either “black-boxed” to 
completely removed them from consideration, or individual signals 
were selectively cut and treated as primary inputs.  Relevant signals 
could then be constrained appropriately to prime the design for entry 
into a specific low-power mode.  The only control left to the tool was 
the decision of when to initiate the low-power mode entry sequence; 
the entry sequence would then complete in a short and predictable 
number of cycles following the request. 
 
Also note that the clock controllability logic itself can influence the 
tool’s analysis effort and run-times.  While considerable care must be 
taken applying optimizations here (since this is the very logic that 
defines the clock behavior on entry into low-power modes), such 
optimizations can – and did -- have a significant impact on run-times. 
 
The primary means of optimizing the clock control logic analysis 
was the use of cutpoints.  Cutpoints create a virtual primary input to 
the design at a specific hierarchical location, eliminating the need to 
analyze the cone of influence up to that point.  The primary 
consequence of cutpoint insertion is that the analysis of downstream 
logic is considerably easier and faster.  The secondary consequence 
of inserting a cutpoint is that the analysis becomes more pessimistic; 
the design can now be analyzed assuming the worst-possible case 
behavior of a cutpointed signal, often exceeding the possible 
conditions that the actual design can generate.  Cutpoints must 
therefore be employed judiciously, since analyzing the entire design 
under worst-possible case conditions would yield 100% CSI flop 
substitution—rendering the effort invested into the formal analysis 
entirely pointless since complete substitution requires no analysis 
whatsoever. 
 
The insertion of cutpoints for our analysis was performed in three 
distinct phases, each targeting a different degree of performance 
optimization.  First, the source for all of the system clocks were cut 
prior to their entry point to the clock gates within the central clock 
generation module.  As the purpose of those clock gates is to stop the 
output clock to its inactive state prior to low-power mode entry, the 
actual clock signal that they are gating should be irrelevant.  In our 
system, the clock gates, themselves, are the last stage in a series of 
clock sources, clock selection logic, and programmable clock 
dividers.  As a result, a cutpoint immediately before the gating cells 
eliminates a surprising amount of complex logic related to producing 
the actual clock signal as shown in Figure 6 below. 
 

 
 

Figure 6.  Bypassing system clock generation 

 
The second phase of cutpoint insertion was targeted at general 
system controllability.  Cutpoints were inserted, with accompanying 
constraints, to keep the system out of reset, out of test modes, and 
prevent premature wakeup from low-power modes—none of these 
situations are interesting for the analysis.  Also, all of the primary 
system and peripheral busses were cut at the initiator.  Many 
modules have some degree of sensitivity to their system or 
configuration busses, and cutpoints here allowed the tool to directly 
control bus transactions to the targets; no analysis of the initiators 
was required to wring out a useful sequence of transactions.  Figure 7 
illustrates some of these cutpoints, in order to highlight the degree of 
upstream logic being optimized out of the analysis. 

 
 

Figure 7.  Bus Connectivity Optimization 

 
The third and final phase of cutpoint insertion was targeted at 
specific clock proofs that exhibited excessively high run-times, or 
failed to converge to a definitive Pass/Fail.  This required individual 
investigation of each offending assertion, tracing the clock tree, and 
trying to identify locations where the tool may be spending too much 
time.  Fortunately, some common patterns emerged: there was 
always a gate, multiplexor, or divider in the clock path; there was 
always a state machine generating control signals for the logic in the 
clock path; and the original designer for the module was usually not 
available for consultation.  The simplest resolution was to add a cut-
point to the inputs for the logic in the clock path.  This removed the 
state machines from the cone of influence, which improved the run-
time(s) significantly.  However, the proofs became more pessimistic, 
and the risk of false-failures became a definite possibility. 
 
Despite these risks, the run-time improvements resulting from the 
intelligent use of black-boxes and cutpoint insertion were 
undeniable.  Proofs that ran out of memory or failed to converge 
after hours of analysis often resolved in seconds after cutpoints were 
been applied.  Constraints must be applied with the greatest care 
possible to ensure that you do not invalidate the results of your 
analysis.  Cutpoints, however, increase pessimism and generally 
reduce run-times, making them relatively safer to employ.  It is 
nearly impossible to precisely quantify, but our best guess is that no 
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more than 2% of our final CSI flop count is the result of cutpoint-
induced pessimism.  In contrast, had cutpoints not been used, the 
resulting non-convergent proofs would have increased our CSI flop 
count by 10% or more.  In short, adoption of this technique itself 
resulted in significant power and area savings onboard the SoC. 
 

9.  RTL-TO-GATE EQUIVALENCE 
In addition to identifying the unique clock trees, the formal analysis 
flow also generates a list of flip-flop instances that need to be 
mapped to CSI flops.  Given this list, there are still three more 
hurdles to overcome: ensuring the instance path is understood by the 
implementation tools, forcing the implementation tools to use CSI 
flops on those defined instances, and checking that only and all the 
defined list of instances are mapped to the CSI flops. 
 
Although the assertion analysis flow was independent of low-power 
intent specification, our implementation methodology is based on 
Common Power Format (CPF) to define, implement and verify the 
power intent of the design.  CPF provides a method to define the 
state retention elements in the library and the design-level state 
retention rules.  State-retention cells can have a user-defined text 
attribute which allows flexibility to refer to a group of cells with the 
same attribute.  For example, we chose to define the non-CSI flops in 
the library with the attribute “srpg_noncsi” and the CSI flops with 
the attribute “srpg_csi”.  Retention rules can be generic covering all 
sequential instances in a design or can be targeted for a specific list 
of sequential instances.  We defined retention rules for all sequential 
instances excluding the required CSI list in a generic rule with cells 
having the attribute “srpg_noncsi”, and used a targeted retention rule 
for CSI list of instances with cells having attribute “srpg_csi”.  With 
these rules, implementation tools were able to map the registers in 
RTL to functionally equivalent CSI or non-CSI flops. 
 
There are some differences in name mapping between RTL 
elaboration by verification and implementation tools.  For example, 
the verification tools inserted a logical hierarchy for every “generate” 
style construct; whereas the implementation tools did not insert these 
additional hierarchies but named the register in a unique way to 
incorporate the label from generate statements.  Implementation tools 
may also use a different hierarchy separators or array delimiters. To 
resolve these issues, we post-processed the CSI register list generated 
by the formal analysis to generate a list in accordance with the 
naming conventions used by the implementation tools. 
 
As we used a post-processed instance list for driving the 
implementation and an unprocessed version for RTL simulation, we 
required a way to check the consistency of the retention rule 
mapping between RTL verification and the implementation.  We 
used Conformal from Cadence to perform this analysis and to ensure 
that the implementation has CSI flops on all required instances.  The 
unprocessed list of instances was used for Conformal and a list of 

name mapping rules were defined in tool framework to match the 
post-processing done on the instance list.  Provided with the design 
netlist (from implementation tools), the CPF (for retention rules) and 
the name mapping rules, the tool is capable of checking each 
instance in design and reporting incorrect substitution of CSI with 
non-CSI flops. 
 

10.  CONCLUSION 
Compared to earlier simulation based techniques, formal techniques 
at the SoC-level were able to detect approximately five times as 
many flops with CSI requirements.  No flops identified with 
simulation were missed by formal, which was an important initial 
validation of the flow.  Formal analysis results were also completely 
reproducible between revisions of the design and testbench, 
something that was rarely achieved with simulation regressions.  
This complete and exhaustive analysis allowed us to replace a 
specific list of identified cells, instead of simply replacing entire 
levels of suspect hierarchy.  In the end, the results of formal analysis 
allows us to replace only the minimum necessary set of flop 
instances, and have far higher confidence in the finished product. 
 
We have taped-out multiple products successfully with this flow, and 
the silicon validation results have been entirely positive.  More 
importantly, the thoroughness of formal analysis has allowed us to 
confidently reduce the CSI flop counts over time.  Designs have been 
adjusted specifically to improve the clock controllability in low-
power modes because of the significant area savings that has been 
demonstrated.  This has been a valuable contribution to our low-
power implementation methodology, and one that will continue to 
enhance our low-power product families. 
 
Moving forward, we hope to improve our low-power implementation 
tools to reduce the perplexing variety in net and hierarchy naming 
conventions.  Mapping the hierarchical instances between the various 
views of the design is a critical step in applying the information 
derived from formal analysis, and unexpected name changes create 
undesirable opportunities for errors.  Reading the CPF file into the 
formal analysis steps would also help to ensure that the low-power 
mode signaling and sequencing precisely matches the eventual 
implementation. 
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