
Optimal Usage of the Computer Farm

for Regression Testing

Daniel Hansson and Patrik Granath

Verifyter AB

Lund, Sweden

daniel.hansson@verifyter.com

Abstract— Companies spend more and more money on

computer farms, yet there is never enough computer resources

around to handle all ongoing projects. Some jobs are queued for

a long time before they start executing and others crash due to

lack of disk space, both of which affect project schedules.

When management asks the engineers why there is a need to

buy more computer farm resources there are no clear metrics,

instead the answer is simply “we run more stuff”. If additional

computer resources are put in place they are consumed almost

instantly, but no one reports that their projects can deliver

earlier due to the extra computer resources available. It is very

hard to do a cost-benefit analysis on computer farm resources.

This paper tries to solve this for regression testing, which is

one of the largest usages of a computer farm. First we introduce

some relevant metrics on Cost and Quality. Using these metrics

we explore the optimal regression test setup. Finally we point to

other areas where further optimization can be achieved.

The metric for computer farm Cost for a regression test setup

is the total CPU test time. We want to find as many bugs as

possible using as little computer farm resources as possible. The

metric for Quality is the test fail ratio, i.e. how many tests fail vs

the total number of tests run during a period of time.

We also introduce two secondary metrics, Bug Identification

Time, i.e. how fast since the bug was introduced that we detect it.

The more frequently we run the tests the faster we will detect

bugs, but that has an adverse effect on Cost. After a bug has been

detected it will be debugged and fixed. The total time from the

bug was introduced until it was fixed is defined as the Bug Fix

Time. These two metrics are considered secondary because the

faster bugs are fixed the better for the Quality. They are not

needed for the overall cost-benefit analysis, but they help us

ensure that bugs are turned around fast, which is crucial to

attain good Quality values.

Using these metrics we show that the optimal usage of the

computer farm and for the project is to mix large regression test

suites, which have good coverage, with short regression test

suites, which have faster bug turnaround time and use less

computer resources. This gives us lower Cost, shorter Bug Fix

Time and higher average Quality.

Keywords—regression testing; computer farm

I. INTRODUCTION

A. Usage of the Computer Farm Today

During product development of ASIC's or software, new
bugs are continuously introduced by mistake causing the
quality of the product to deteriorate. These bugs are called
regression bugs. Regression bugs are captured by running
regular test runs, so called regression tests, which typically are
RTL simulations that are run once or several times per day.
These regression runs are typically run on a large computer
farm, a resources that is shared with many other engineers
within the company.

Today verification engineers try to run as much as possible
on the farm to attain good coverage and fast detection of
regression bugs, with very little feedback on what the cost of
the computer farm is. This makes it also difficult to plan and
discuss how much more computer farm resources are needed
and the benefit of additional computer resources are not always
clear as they tend to be consumed instantly when deployed.

Queued jobs on the farm, crashed jobs due to disk space
limits and constant discussions, sometimes heated, about the
computer farm is very common in today’s project. The general
view is that the more computer resources you have the easier it
is for the projects to meet the release date.

There are no clear metrics that link the computer farm
usage to the project schedules today, which means the
discussions about extra resources are not always on firm
scientific ground.

B. Coverage vs Run-Time

Verification engineers setup up the regression test suites
with both coverage and computer resources in mind. The goal
is to find bugs as fast as possible. However, the better a
regression suite is at finding bugs, i.e. it has a good functional
coverage, the longer time it takes to run, and this means there is
a longer wait until a bug is identified. The choice of what
exactly to run and at what frequency and what the cost is for
the farm is today an area which is a lot based on gut feeling
and educated guesses rather than a strict metric-based science.

Typically a short regression run can achieve say 50%
relatively fast, but it takes much longer to reach higher levels
of coverage. In figure 1 we show a typical example where a 2

hour regression test suite achieves about 50% coverage, but in
order to achieve 80% coverage you need to run a 10 hour long
regression test suite.

Figure 1. Example of Functional Coverage of a Regression Test

Suite vs Run Time

The longer regression test suite can find more bugs due to

higher coverage. In this example the longer regression test
suite has 60% better coverage (80% / 50%), but it takes 400%
longer time to run (10h / 2h) which means it is much slower at
reporting bugs because a) it cannot be run as frequently as a
short test suite and b) you have to wait for the complete test
suite to finish in order to get the good coverage.

Figure 2. Bug Identification Times for short and long regression

test suites

In Figure 2 we see the same two regression test suites and

an example Bug Identification Time for usages which are
typical in the ASIC industry. The short regression test suite
(called Sanity) is 2 hours long and run every 4 hours. Best-case
a bug is introduced just when the scheduled run is being kicked
off, which means it will be reported after 2 hours, the time it
takes to run the test suite. Worst-case it will take 4 hours before
the bug is reported, if the bug is introduced two hours before
the two hour run starts. The average Bug Identification Time is

consequently 3 hours, i.e. the average between the best and
worst cases.

The longer test suite which takes 10 hours to run and has
80% coverage is kicked off once per night and is consequently
called a Nightly run. The best-case Bug Identification Time is
10 hours, worst-case it is 34 hours, thus the average Bug
Identification Time is 22 hours.

This means, using the example in Figure 2 the longer
nightly has a Bug Identification Time of 22 hours instead of 3
hours (633% slower), but will on average detect 60% more
bugs because of higher coverage (80% vs 50%).

C. Launch Frequency vs Bug Identification Time

The more often you launch a test suite the less time there
will be between a bug has been committed to the revision
control system until a failing test is reported (this time is called
the Bug Identification Time).

The shorter the test suite the more frequent it can be
launched which in turn results in a shorter bug identification
time. Shorter test suites can be launched more frequently and
also you need to wait less time to get the full report.

Let’s look at an example: a short test suite which takes only
2 hours to run and it is run once per 24 hour cycle. Assuming
the bugs are committed in a uniform random way, this means
the test suite will start on average 12 hours after the bug was
committed. As the test suite takes 2 hours to run, the full report
is available 14 hours after the bug was committed, i.e. the bug
identification time is 14 hours. This is the left-most data
sample in Figure 3.

Figure 3. Bug Identification Time (hours) for different launch

frequencies of a small test suite. The small test suite takes 2 hours

to run and in this graph the test suite is launched 1 to 12 times

per 24 hours cycle.

The cost of running the test suite is directly proportional to
the launch frequency as each time you run the test suite it
consumes the same number of CPU hours on the computer
farm. Looking at Figure 3 you can see that see that it is very
cost-efficient to run this small test suite say 1-5 times per day
as the bug identification time is reduced fast with higher launch
frequencies in this interval (14h for once per day down to 4.4h
for 5 times per day). This is a big difference comparing to the

interval of 6-12 times per day where the difference in bug
identification time is only 4h down to 3h. The more frequent
you launch the test suite the shorter the bug identification time,
but it is a case of diminishing returns.

D. Bug Fix Time

 Bug Fix Time is here defined as the time from a bug is

committed to the revision control system until a fix for this

bug is committed at some time later (see Fig 4).

 Bug Fix Time consists of two parts. The first part is the Bug

Identification Time (BIT) which is the time from the bug is

committed until a test failure is reported. During the Bug

Identification Time a test suite is running, but not necessarily

right after the bug has been committed as this depends on how

often the test suite is launched.

 The second part is here called the Debug Time, which is the

time from a test failure is reported all the way until a fix has

been committed. If debugging of regression bugs are done

manually then there will not be a human being sitting and

working with this issue for the complete length of the Debug

Time. Typically it takes some time from the failure occurs

until the right person has time to take a look at it but in this

report we call the entire time from the test failure report until

the fix has been committed for Debug Time.

 The faster bugs are fixed the better. There are two ways of

shortening the Bug Fix Time: 1) reducing the Bug

Identification Time by selecting the optimal set of test suites

and launch them at optimal intervals and 2) reducing the

debug time by for example using an automatic debug tool1,2.

Figure 4. Bug Fix Time.

E. Test Fail Ratio

The faster the Bug Fix Time the lower the Test Fail Ratio.
Having a low Test Fail Ratio means having a good quality of
the device under test over time, which helps preventing the
project from slipping, which is the whole purpose of regression
testing. Ideally you want a Test Fail Ratio of 0, i.e. all tests are
passing.

II. OPTIMISING THE USAGE OF THE COMPUTER

FARM

A. Introducing Metrics

Let us define some useful metrics

Metric Definition

Cost Total CPU test time

Bug Identification Time Time from a bug is

committed to the revision

control system until a failure

is reported as a result of

running a test suite

Bug Fix Time Bug Identification Time +

Additional debug time +

until a fix has been

committed to the revision

control system

Test Fail Ratio (quality) For a given period: The

number of failing tests / total

number of tests run. The

lower the number the better

the quality.

Table 1. Metrics for Regression Testing

B. Introducing Equations for Bug Identification Time and

Cost when running one test suite

 Let’s start by defining the equations that calculates the
bug identification time and the cost. The more frequently a test
suite is run the shorter the bug identification time becomes at a
higher cost.

If there is just one test suite then it is fairly straight-forward
to calculate these metrics (see Fig 5). The average time from
that a bug has been committed to the revision control system
until the next launch of the test suite is called “Average
Commit to Test Launch”, abbreviated ACTL. If for example
the cycle time we are looking at (“cycle”) is 24h and there is
just one launch (“L”) per cycle then the ACTL is 12h. We are
assuming that the bugs are inserted in a uniform random way
during the cycle, which is why on average a test suite will be
started 12h after a bug has been committed.

Figure 5. Equations to calculate Bug Identification Time (hours)

and Cost (CPU hours) when running one single test suite

Continuing with the same example, still looking at the

equations in Fig 5, the next step is to define the “Average Test

Suite Length” (ATSL). In this example let’s say that the test

suite length is 2h and because we only run one type of test

suite the average test suite length also becomes 2h.

The Bug Identification Time (BIT) is simply the average

commit to test launch (ACTL) which is 12h, added with the

average test suite length (ATSL), which is 2h, thus making a

total of 14h.

The Cost is the number of launches (L) multiplied with the

average test suite length (ATSL) and the average parallel

CPU’s being used by the test suite. In this example let’s say

that 100 CPU’s are used in parallel. Consequently the cost is 1

* 2h * 100 = 200 CPU hours.

C. Introducing Equations for Bug Identification Time and

Cost when running two different test suites

Running two different test suites, with different test suite

lengths and coverage, complicates the equations.

 First of all, we make a simplification: we assume that the

smaller test suite covers a subset of the functional coverage of

the larger test suite. The only reason to run the smaller test

suite is that it is faster and the only reason to run the larger test

suite is that it has higher coverage. Also, we assume the

functional coverage reflects the capacity to find bugs; halving

the coverage means only half the number of bugs will be

found.

 What does this mean? First, let’s call the short test suite

“sanity” and the long test suite “nightly” and let’s say the

short test suite has 50% functional coverage and the nightly

run has 70% functional coverage. In this case the sanity test

suite is capable of finding 71.4% (50%/70%) of the bugs that

the nightly run is capable of finding. If we run sanity more

often and the nightly less often 71.4% of the bugs will be

found earlier and the rest will be found later. In Fig 8 we refer

to this value as the Δcoverage.

 What we do with the equations in Fig 7 is to look at the

different coverage tranches. Bugs found with the coverage of

50% can be found by both the sanity and the nightly run,

whereas bugs in the 51%-70% coverage tranche can only be

found by the nightly run.

 An example of two test suites is shown in Figure 6. A short

sanity run takes two hours to run and is run twice per day

while a longer nightly run (8 hours) is run once per day. What

is the average time from that a bug is committed to the

revision control system until it is reported? Assuming a

uniform bug distribution over time the bug can come at any

point during the 24h cycle. The probability that a bug that is

covered by both the sanity run and the nightly run (the so

called sanity coverage tranche) will first be reported by the

nightly test suite is 4/24 (max CTLStoN / cycle) of the causes

because there are only 4 hours per day where the next run is

the nightly run (see the blue section marked “nightly” in the

“Next launch” column). The chance on that other hand that the

bug will be reported by a sanity run is 20/24, i.e. (max CTLStoS

+ max CTLStoN)/cycle. This region is marked yellow in the

“Next launch” column. The probability of being reported by

either the sanity runs or the nightly runs depend on

scheduling, i.e. at what time you have chosen to launch the

respective test suite. That in turn depends on the lengths of the

various test suites. The shorter the test suites the closer you

can run them.

 The column “Wait for Report” shows the waiting time

between bugs being committed and reported, which is slightly

different between the different types of test suites. The

maximum waiting time or maximum Bug Identification Time,

BIT (see max BITStoS, max BITStoSN and max BITNtoS in Fig 6)

depends on scheduling but the minimum waiting time is

determined completely by the length of the test suite. The

latter happens when the bug was committed just before the

checkout was done on which the test suite is sub-sequentially

run.

Figure 6. The max Commit To Launch (max CTL) and max Bug

Identification Time (max BIT) for the 3 sequences of test suites

(sanity to sanity, sanity to nightly, nightly to sanity) when having

2 Test Suites (“sanity”, “nightly”).

Calculating total Bug Identification Time (BIT) for both the

test suites involves two steps: 1) to calculate the BIT for the

sanity coverage tranche and the BIT for the nightly coverage

tranche separately and 2) adding them together according to

their weight given by the coverage.

 Calculating the BIT for the nightly coverage tranche is easy

because there is only one test suite, the nightly test suite,

which covers this tranche. Consequently we can use the same

equation as we did for one test suite (compare Fig 5 with the

definition of BITnightly in Fig 7).

 Calculating the BIT for the sanity coverage tranche is more

elaborate as we have to take into account two test suites,

sanity and nightly, which both covers the sanity coverage

tranche. Having two different test suites means there are 3

possible sequences between them: sanity followed by sanity,

sanity followed by nightly and nightly followed by sanity.

This is true for any number of sanity and nightly test suite runs

as long as 1) there are fewer nightly runs than sanity runs and

2) the test suites are interleaved as much as possible. Fulfilling

these two conditions makes sense because both produce a

lower overall bug identification time. Note that if both

conditions are fulfilled then there is no sequence where a

nightly run is followed by another nightly run.

 For each of the 3 test suite sequences we need to 1)

calculate the probability that a bug appears in one of these 3

test suite sequences multiplied with 2) the average BIT for

each of the 3 sequences. This is reflected in the equation for

BITsanity in Fig 7 where each line represents one of the 2 test

suite sequences, starting with sanity to sanity. For both the

probability and the average BIT the key value is the max

commit to launch, max CTL, which is the time from a bug is

committed until the next test suite is launched. The max CTL

depends on the length of the previously launched test suite

plus the free time when no test suites are launched until the

next test suite is launched. The max CTL for the 3 test suite

sequences are shown in both Fig 6 and Fig 7.

 To calculate the probability you take max CTL for one of

the 3 test suite sequences multiplied with how many times this

sequence occurs per cycle divided by the cycle time. This

gives you the proportion of the cycle time that you are in one

of the 3 test suite sequences (see BITsanity in Fig 7). Note that

Lnightly reflects how many times you transition from sanity to

nightly (or the other way around) because one of the

conditions for the equations is that the test suites are

interleaved. Consequently (Lsanity - Lnightly) reflects how many

times the test sequence from sanity to sanity occurs, because

those are the only once that are not transitions to or from the

nightly run.

 The other part of the formula for the BITsanity in Fig 7 is the

average BIT for each of the 3 test sequences. The average BIT

is the average commit to launch (max CTL / 2) plus the test

suite length (TSL) of the subsequent test suite.

 The last step is to calculate the Bug Identification Time

(BIT) where the BITsanity and BITnightly weighed together

according to their contribution to the two different coverage

tranches called “sanity” and “nightly”. Also the cost is

calculated by adding the cost of each test suite separately.

Figure 7. Equations to calculate the Bug Identification Time

(BIT) and Cost for 2 Test Suites (“sanity”, “nightly”)

 What is the optimal scheduling for the two test suites? The

max CTL matters both for the probability of being in one of

the 3 test sequences and also for the average BIT for that test

sequence. There is consequently a square dependency on the

max CTL for each test sequence, which means there is an

optimal solution to be found for the BITsanity.

 Using the Lagrange multiplier [3] we find the optimal

solution for the BITsanity (see Fig 8). The constraint we are

using is that the sum of the max CTL for the 3 test sequences

equals the cycle, which is something that you can see an

example of in Fig 6. The first step using the Lagrange

multiplier is to calculate the partial derivatives for BITsanity as

well as the constraint formula G (see Fig 8). The second step

is to plug these derivatives into the Lagrangian formula

(gradient BITsanity = λ * gradient G). The result is that the

optimum value is achieved when (max CTL + TSL) for each

of the 3 test suite sequences equal each other. Another way to

express this is that the max BIT for each test sequence should

equal each other (see Fig 6 where both the max BIT and max

CTL for each test suite sequence is marked). Solving these

equations (step 3 in Fig 8) we are able to define the optimal

free times between the test suites, when nothing should run:

TfreeSanity, the free time between sanity runs and TfreeTrans, the

optimal free time between nightly and sanity runs.

 In Fig 8 you can see that TfreeSanity is set to the total available

free time plus a compensation factor divided by the total

number of runs. Correspondingly TfreeTrans is set to the total

available free time minus a compensation factor divided by

the total number of runs. This compensation factor is set to the

difference in test suite lengths multiplied with the number of

test suite launches that is not related to the test suite sequence

whose free time is being calculated.

Figure 8. Equations to calculate the optimal placement for 2 Test

Suites (“sanity”, “nightly”). The result is the optimal free time

when nothing is being run between two sanity runs (TfreeSanity)

and the optimal free time between a sanity run and a nightly run

(TfreeTrans). The Lagrange multiplier is used to prove that the min

BITsanity is achieved when (max CTL + TSL) for each of the 3

test sequences are equal to each other.

D. Introducing Equations for Bug Identification Time and

Cost when running three different test suites

Running three different test suites expands on the equations

described when running two test suites, but the principle is the

same. Now there are three test suites, with different test suite

lengths and coverage, and consequently there will be 3

coverage tranches which the equation needs to look at.

 Another difference is that there are now two types of total

free time between the test suite runs: one which takes into

account the test suites that affect the sanity coverage tranche

(all test suites) and the other which takes only account of the

test suites affecting the nightly tranche (nightly and weekend).

 A third point which needs expanding is the number of

transitions, which was 2 in the case of 2 test suites and are

now 9 in the case of 3 test suites.

 We are not presenting the formulas in this section as they

becomes very large, but there are no new principles as such.

We have implemented them in computer program and the

results for the 3 test suites is presented later in this paper.

E. Bug Fix Time

The Bug Fix Time is simply the sum of the Bug Identification

Time plus the Debug Time.

F. Test Fail Ratio

The Test Fail Ratio is defined as all failing tests for a given

period, divided by all tests that was run in this period. See Fig

9. For example, if 10 tests are run each day and 1 test fails

every other day then the Test Fail Ratio would be 5%.

Figure 9. The Test Fail ratio is failing tests divided by all tests for

a given period.

III. METHODOLOGY

A. How the measurements was done

We implemented the equations in an excel sheet where we
calculated exhaustively all combinations. We sorted the results
after cost and then after bug identification time. This allowed
us to create a sub-list of the optimal regression test setup for
each cost. We present this both as a list and as a graph.

IV. RESULTS

The result is a model (based on the equations) which allows us

to optimize each specific regression test setup. By entering the

test suite lengths, the parallel CPU usage and the coverage for

the test suite(s) the model will provide the optimal launch

frequency for each test suite.

A. One Test Suite

 When there is only one test suite used for regression testing

then the only question is how frequently it should be launched

compared to what it costs. The cost is directly proportional to

the number of launches. It does not matter what the coverage

is or what the average parallel CPU usage is when there is

only one test suite in order to answer this question. Also, the

test suite time only matters to determine the max number of

launches per cycle, but it tells you nothing about the optimal

usage.

 As the bug identification time only depends on how often it

is launched the graphs looks very similar for different

scenarios (see Fig 10 and Fig 11). Consequently we can

formulate a generic answer when you are running only one

test suite:

 Up to about 5 times/cycle: The Bug Identification

Time is substantially reduced for each extra time you

run the test suite.

 From about 6 times/cycle: The Bug Identification is

still reduced for each extra time you run the test

suite, but only by a fraction of the test suite length

Figure 10. Sanity Run: One short test suite (2h) that is launched

X times per day

Figure 11. Nightly Run: One longer test suite (10h) that is

launched X times per week

B. Two Test Suites

When there are two test suites, with different test suite lengths

and different functional coverage then it becomes more

complicated (see Fig 12).

Figure 12. Two test suites: a nightly run (10h) and a sanity run

(2h, 50% coverage). The graph shows the bug identification time

depending on how often the sanity is run for each time the

nightly is run. It also shows the effect of differences in functional

coverage, the coverage for the nightly run varies between 60%

and 100% while the coverage for the sanity run is fixed at 50%.

Fig 12 shows how the bug identification time depends on 1)

how often you run the test suites and 2) the difference in
functional coverage between the larger “nightly” test suite and
the smaller “sanity” test suite.

The graph shows that the more often you run the “sanity”
test suite (the x-axis), the lower the bug identification time is.
In all data points the nightly test suite is run once per 24h and
the sanity is run as many times as indicated by the x-axis. E.g.
at 0 sanity runs there is only one nightly run per 24h and no
sanity runs.

The graph shows also shows the impact of the difference in
coverage between the sanity and the nightly test suites. The
sanity run is fixed at 50% functional coverage and the coverage
of the nightly run varies between 60% and 100%. The only
thing that matters is the relation between the test suites. When
the nightly test suite has 100% coverage then the assumption is
that it will reveal twice as many bugs as the sanity test run
which has 50% coverage. The graph shows that the larger the
difference is in terms of coverage between the test suites the
worse it is, i.e. the bug identification time becomes longer. The
reason is that a higher portion of the bugs will only be
discovered by the nightly run which is run less frequently.

What conclusions can we make from the graph? The first
conclusion is that it is always better to run the longer test suite
(nightly) just once and the shorter test suites (sanity) several
times per cycle. In Fig 12 you can see that it is only better to
run the nightly test suite twice (the dashed line) – and the
sanity 0 times - when the difference in coverage is close to
double (90%-100%) that of the sanity run (50%) and when the
sanity run is only run once. However, if you run the sanity test

suites twice or more per cycle then this always provides a
better result.

The second question is how often you should run the sanity
run in such a setup. The coverage differences between the test
suites affects the answer but not in any way that fundamentally
changes the question. You should aim to run the sanity run
roughly 2-4 times per cycle and the nightly run once. In this
range it is beneficial for each extra run you do, but after that it
quickly drops off. Compare this to the conclusion for one test
suite which was to run “up to about 5 times/cycle”. Running
the sanity test suite 4 times plus the nightly once means 5 test
suite runs per cycle.

Note that these conclusions did not consider the cost of
running the two test suites, which is much larger for the nightly
test suite than for the shorter sanity test suite as it uses less
CPU hours and licenses. The cost makes no difference in this
case as we reached the conclusion to just run the more
expensive nightly test suite once by just looking at the bug
identification time. We must run the nightly run at least once,
otherwise there is a loss of coverage.

C. Three Test Suites

Having three test suites of different lengths and coverage
means there are many different combinations of setting up the
regression runs. The model is however able to list the best
alternatives in order of cost.

In this example there are three test suites: sanity (length 2h,
40% coverage), nightly (length 10h, 60% coverage) and
weekend (length 40h, 70% coverage) and the cycle is 1 week.

Cost BIT Launch Frequencies

(x-axis) (y-axis) Sanity Nightly Weekend

52 66.26 1 1 1

54 56.05 2 1 1

56 52.88 3 1 1

58 50.76 4 1 1

60 49.25 5 1 1

62 48.12 6 1 1

64 47.24 7 1 1

66 45.91 3 2 1

68 44.38 4 2 1

70 43.24 5 2 1

72 42.35 6 2 1

74 41.64 7 2 1

76 41.06 8 2 1

78 40.58 9 2 1

80 39.92 5 3 1

82 39.21 6 3 1

84 38.63 7 3 1

86 38.15 8 3 1

88 37.74 9 3 1

90 37.39 10 3 1

92 37.09 11 3 1

94 36.68 7 4 1

96 36.27 8 4 1

98 35.93 9 4 1

100 35.63 10 4 1

102 35.36 11 4 1

104 35.13 12 4 1

106 34.92 8 5 1

108 34.63 9 5 1

110 34.37 10 5 1

112 34.14 11 5 1

114 33.94 12 5 1

116 33.76 13 5 1

118 33.60 14 5 1

120 33.41 10 6 1

122 33.21 11 6 1

124 33.04 12 6 1

126 32.88 13 6 1

128 32.74 9 3 2

130 32.48 10 3 2

132 32.10 6 4 2

134 31.78 7 4 2

136 31.50 8 4 2

138 31.27 9 4 2

140 31.06 10 4 2

142 30.87 11 4 2

144 30.60 7 5 2

146 30.30 8 5 2

148 30.12 9 5 2

150 29.95 10 5 2

152 29.80 11 5 2

154 29.67 12 5 2

156 29.33 8 6 2

158 29.18 9 6 2

160 29.05 10 6 2

162 28.93 11 6 2

164 28.82 12 6 2

166 28.73 13 6 2

168 28.60 9 7 2

Figure 13. The optimal launch frequency for three test suites in

order of cost. For example, if you want a Bug Identification Time

of max 33h then the best setup is to run the Sanity run 13 times

per week, the Nightly 6 times per week and the Weekend run just

once per week. This setup will run some test suite 75% of the

time (126h out of 168h, which is a full week).

Figure 14. Optimal launch frequencies for three test suites in

order of cost. This graph uses the same values as the table in Fig

10.

In Fig 14 you can see that the benefit of higher costs starts
to flatten out in a similar pattern as we saw for 1 and 2 test
suites. However now we have many data series on top of each
other that together covers all possible combinations of launch
frequencies. You can distinguish the individual data series in
Fig 14 starting at S=1 N=1 W=1 and ending at S=58 N=1
W=1, which follows the same patterns we have seen earlier in
this paper. Only first combinations of this data series is optimal
(marked red), before it is overtaken by the next data series
which has N=2 and W=1 (one of its data points, S=21 N=2
W=1 is highlighted).

If you look in the table in Fig 13 you will see that all
optimal combinations of launch frequencies follows this
familiar pattern. There is a lot to gain to pick a combinations of
launch frequencies with a bug identification time lower than
roughly 40 hours as it is very cheap to achieve major
improvements in the bug identification time for the lower cost
options. In this region the number of nightly runs is 1.5 – 6
times higher than the number of weekend runs and the number
of sanity runs is 1.3 – 3.7 times higher than the number of
nightly runs.

Note that both Fig 13 and Fig 14 only allow up to 168
hours of run as this is the number of hours per week and no
overlap is allowed between the regression test suites. Having
test suites of different sizes running at the same time is less
optimal than making sure they do not overlap in time. If two
test suites do not overlap in time then the larger test suite will
cover the same area as the shorter test suite (and more), which
for those bugs that are revealed by this overlapping coverage
would be like running the smaller test suite one extra time. If
overlap is allowed this benefit is lost.

Another comment is that in this example we assume that all
test suites are using the same number of CPU’s in parallel. The
only difference are the lengths of the test suites. This is not a
limit of the equations presented earlier, it is just an assumption
in this example.

What data point should we select in Fig 14? Any choice on
the red line is an optimal choice which is th-+

e best choice for a given cost. How many test hours (cost)
are you willing to spend? The answer to that is probably
somewhere between running 50% of the time (84h) because
you get so much value for money up to roughly that time and
less than 100% of the time. Even if you want to run 100% of
the time it may not be possible because of the load on the
computer farm. There is always some amount of queueing
during peak hours. In this example let’s say we want to run
some kind of test suite 75% of the time, in which case the
optimal choice is S=13 N=6 W=1.

Using this example we get a feeling for how to pick an
optimal combination of launch frequencies. However to get the
exact optimal setup for a specific case you need to feed in the
data into the model.

D. Test Fail Ratio vs Bug Fix Time

The faster bugs are fixed the better for the quality. The Test

Fail Ratio (i.e. the quality over time) is directly proportional to

the Bug Fix Time (see Fig 15).

Figure 15 The Test Fail Ratio (i.e. the quality over time) is

directly proportional to the Bug Fix Time. In this example the

Bug Identification Time is the same in both scenarios but the

debug time is 4x shorter in the lower scenario, which leads to a

2.5x shorter Bug Fix Time, which in turn leads to a 2.5x lower

Test Fail Ratio.

 This The Bug Fix Time can be shortened by shortening

either the Bug Identification Time or the Debug Time. Figure

15 shows an example of how by only shortening the Debug

Time this greatly affects the Test Fail Ratio.
This is important as the Test Fail Ratio affects the length of

the project. The fewer issues there are the faster the project can
advance as there are less hurdles to overcome. Ultimately the
goal is to release the product when the Test Fail Ratio is at a
minimum, preferably at 0. The whole reason that regression
testing is being performed is to keep the Test Fail Ratio low,
i.e. to quickly detected and fix issues, in order for a project to
release as early as possible.

 This paper has shown that the way to do this is to
optimize the Bug Identification Time vs the Cost and by
reducing the Debug Time.

REFERENCES

[1] PinDown from Verifyter, http://www.verifyter.com

[2] Onpoint from Venssa, http://www.venssa.com

[3] Langrange Multiplier: https://en.wikipedia.org/wiki/Lagrange_multiplier

http://www.venssa.com/

