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Abstract— Companies spend more and more money on 

computer farms, yet there is never enough computer resources 

around to handle all ongoing projects. Some jobs are queued for 

a long time before they start executing and others crash due to 

lack of disk space, both of which affect project schedules. 

When management asks the engineers why there is a need to 

buy more computer farm resources there are no clear metrics, 

instead the answer is simply “we run more stuff”. If additional 

computer resources are put in place they are consumed almost 

instantly, but no one reports that their projects can deliver 

earlier due to the extra computer resources available. It is very 

hard to do a cost-benefit analysis on computer farm resources. 

This paper tries to solve this for regression testing, which is 

one of the largest usages of a computer farm. First we introduce 

some relevant metrics on Cost and Quality. Using these metrics 

we explore the optimal regression test setup. Finally we point to 

other areas where further optimization can be achieved. 

The metric for computer farm Cost for a regression test setup 

is the total CPU test time. We want to find as many bugs as 

possible using as little computer farm resources as possible. The 

metric for Quality is the test fail ratio, i.e. how many tests fail vs 

the total number of tests run during a period of time.  

We also introduce two secondary metrics, Bug Identification 

Time, i.e. how fast since the bug was introduced that we detect it. 

The more frequently we run the tests the faster we will detect 

bugs, but that has an adverse effect on Cost. After a bug has been 

detected it will be debugged and fixed. The total time from the 

bug was introduced until it was fixed is defined as the Bug Fix 

Time. These two metrics are considered secondary because the 

faster bugs are fixed the better for the Quality. They are not 

needed for the overall cost-benefit analysis, but they help us 

ensure that bugs are turned around fast, which is crucial to 

attain good Quality values. 

Using these metrics we show that the optimal usage of the 

computer farm and for the project is to mix large regression test 

suites, which have good coverage, with short regression test 

suites, which have faster bug turnaround time and use less 

computer resources. This gives us lower Cost, shorter Bug Fix 

Time and higher average Quality. 
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I. INTRODUCTION 

A. Usage of the Computer Farm Today 

During product development of ASIC's or software, new 
bugs are continuously introduced by mistake causing the 
quality of the product to deteriorate. These bugs are called 
regression bugs. Regression bugs are captured by running 
regular test runs, so called regression tests, which typically are 
RTL simulations that are run once or several times per day. 
These regression runs are typically run on a large computer 
farm, a resources that is shared with many other engineers 
within the company.  

Today verification engineers try to run as much as possible 
on the farm to attain good coverage and fast detection of 
regression bugs, with very little feedback on what the cost of 
the computer farm is. This makes it also difficult to plan and 
discuss how much more computer farm resources are needed 
and the benefit of additional computer resources are not always 
clear as they tend to be consumed instantly when deployed. 

Queued jobs on the farm, crashed jobs due to disk space 
limits and constant discussions, sometimes heated, about the 
computer farm is very common in today’s project. The general 
view is that the more computer resources you have the easier it 
is for the projects to meet the release date.  

There are no clear metrics that link the computer farm 
usage to the project schedules today, which means the 
discussions about extra resources are not always on firm 
scientific ground. 

B. Coverage vs Run-Time 

Verification engineers setup up the regression test suites 
with both coverage and computer resources in mind. The goal 
is to find bugs as fast as possible. However, the better a 
regression suite is at finding bugs, i.e. it has a good functional 
coverage, the longer time it takes to run, and this means there is 
a longer wait until a bug is identified. The choice of what 
exactly to run and at what frequency and what the cost is for 
the farm is today an area which is a lot based on gut feeling 
and educated guesses rather than a strict metric-based science. 

Typically a short regression run can achieve say 50% 
relatively fast, but it takes much longer to reach higher levels 
of coverage. In figure 1 we show a typical example where a 2 



hour regression test suite achieves about 50% coverage, but in 
order to achieve 80% coverage you need to run a 10 hour long 
regression test suite. 

 

 
Figure 1. Example of Functional Coverage of a Regression Test 

Suite vs Run Time 

 
The longer regression test suite can find more bugs due to 

higher coverage. In this example the longer regression test 
suite has 60% better coverage (80% / 50%), but it takes 400% 
longer time to run (10h / 2h) which means it is much slower at 
reporting bugs because a) it cannot be run as frequently as a 
short test suite and b) you have to wait for the complete test 
suite to finish in order to get the good coverage. 

 

 

Figure 2. Bug Identification Times for short and long regression 

test suites 

 
In Figure 2 we see the same two regression test suites and 

an example Bug Identification Time for usages which are 
typical in the ASIC industry. The short regression test suite 
(called Sanity) is 2 hours long and run every 4 hours. Best-case 
a bug is introduced just when the scheduled run is being kicked 
off, which means it will be reported after 2 hours, the time it 
takes to run the test suite. Worst-case it will take 4 hours before 
the bug is reported, if the bug is introduced two hours before 
the two hour run starts. The average Bug Identification Time is 

consequently 3 hours, i.e. the average between the best and 
worst cases. 

The longer test suite which takes 10 hours to run and has 
80% coverage is kicked off once per night and is consequently 
called a Nightly run. The best-case Bug Identification Time is 
10 hours, worst-case it is 34 hours, thus the average Bug 
Identification Time is 22 hours. 

This means, using the example in Figure 2 the longer 
nightly has a Bug Identification Time of 22 hours instead of 3 
hours (633% slower), but will on average detect 60% more 
bugs because of higher coverage (80% vs 50%). 

C. Launch Frequency vs Bug Identification Time 

The more often you launch a test suite the less time there 
will be between a bug has been committed to the revision 
control system until a failing test is reported (this time is called 
the Bug Identification Time).  

The shorter the test suite the more frequent it can be 
launched which in turn results in a shorter bug identification 
time. Shorter test suites can be launched more frequently and 
also you need to wait less time to get the full report. 

Let’s look at an example: a short test suite which takes only 
2 hours to run and it is run once per 24 hour cycle. Assuming 
the bugs are committed in a uniform random way, this means 
the test suite will start on average 12 hours after the bug was 
committed. As the test suite takes 2 hours to run, the full report 
is available 14 hours after the bug was committed, i.e. the bug 
identification time is 14 hours. This is the left-most data 
sample in Figure 3. 

 

Figure 3. Bug Identification Time (hours) for different launch 

frequencies of a small test suite. The small test suite takes 2 hours 

to run and in this graph the test suite is launched 1 to 12 times 

per 24 hours cycle.  

 

The cost of running the test suite is directly proportional to 
the launch frequency as each time you run the test suite it 
consumes the same number of CPU hours on the computer 
farm. Looking at Figure 3 you can see that see that it is very 
cost-efficient to run this small test suite say 1-5 times per day 
as the bug identification time is reduced fast with higher launch 
frequencies in this interval (14h for once per day down to 4.4h 
for 5 times per day). This is a big difference comparing to the 



interval of 6-12 times per day where the difference in bug 
identification time is only 4h down to 3h. The more frequent 
you launch the test suite the shorter the bug identification time, 
but it is a case of diminishing returns. 

D. Bug Fix Time 

    Bug Fix Time is here defined as the time from a bug is 

committed to the revision control system until a fix for this 

bug is committed at some time later (see Fig 4).  

    Bug Fix Time consists of two parts. The first part is the Bug 

Identification Time (BIT) which is the time from the bug is 

committed until a test failure is reported. During the Bug 

Identification Time a test suite is running, but not necessarily 

right after the bug has been committed as this depends on how 

often the test suite is launched.  

    The second part is here called the Debug Time, which is the 

time from a test failure is reported all the way until a fix has 

been committed. If debugging of regression bugs are done 

manually then there will not be a human being sitting and 

working with this issue for the complete length of the Debug 

Time. Typically it takes some time from the failure occurs 

until the right person has time to take a look at it but in this 

report we call the entire time from the test failure report until 

the fix has been committed for Debug Time. 

    The faster bugs are fixed the better. There are two ways of 

shortening the Bug Fix Time: 1) reducing the Bug 

Identification Time by selecting the optimal set of test suites 

and launch them at optimal intervals and 2) reducing the 

debug time by for example using an automatic debug tool1,2. 

 

 
Figure 4. Bug Fix Time.  

 

E. Test Fail Ratio 

The faster the Bug Fix Time the lower the Test Fail Ratio. 
Having a low Test Fail Ratio means having a good quality of 
the device under test over time, which helps preventing the 
project from slipping, which is the whole purpose of regression 
testing. Ideally you want a Test Fail Ratio of 0, i.e. all tests are 
passing. 

II. OPTIMISING THE USAGE OF THE COMPUTER 

FARM 

A. Introducing Metrics 

Let us define some useful metrics 

 

Metric Definition 

Cost Total CPU test time 

Bug Identification Time Time from a bug is 

committed to the revision 

control system until a failure 

is reported as a result of 

running a test suite 

Bug Fix Time Bug Identification Time + 

Additional debug time + 

until a fix has been 

committed to the revision 

control system 

Test Fail Ratio (quality) For a given period: The 

number of failing tests / total 

number of tests run. The 

lower the number the better 

the quality. 

Table 1. Metrics for Regression Testing 

 

B. Introducing Equations for Bug Identification Time and 

Cost when running one test suite 

 Let’s start by defining the equations that calculates the 
bug identification time and the cost. The more frequently a test 
suite is run the shorter the bug identification time becomes at a 
higher cost. 

If there is just one test suite then it is fairly straight-forward 
to calculate these metrics (see Fig 5). The average time from 
that a bug has been committed to the revision control system 
until the next launch of the test suite is called “Average 
Commit to Test Launch”, abbreviated ACTL. If for example 
the cycle time we are looking at (“cycle”) is 24h and there is 
just one launch (“L”) per cycle then the ACTL is 12h. We are 
assuming that the bugs are inserted in a uniform random way 
during the cycle, which is why on average a test suite will be 
started 12h after a bug has been committed. 

 

 
 

Figure 5. Equations to calculate Bug Identification Time (hours) 

and Cost (CPU hours) when running one single test suite 

Continuing with the same example, still looking at the 

equations in Fig 5, the next step is to define the “Average Test 



Suite Length” (ATSL). In this example let’s say that the test 

suite length is 2h and because we only run one type of test 

suite the average test suite length also becomes 2h. 

 

The Bug Identification Time (BIT) is simply the average 

commit to test launch (ACTL) which is 12h, added with the 

average test suite length (ATSL), which is 2h, thus making a 

total of 14h. 

 

The Cost is the number of launches (L) multiplied with the 

average test suite length (ATSL) and the average parallel 

CPU’s being used by the test suite. In this example let’s say 

that 100 CPU’s are used in parallel. Consequently the cost is 1 

* 2h * 100 = 200 CPU hours. 

C. Introducing Equations for Bug Identification Time and 

Cost when running two different test suites 

Running two different test suites, with different test suite 

lengths and coverage, complicates the equations.  

     First of all, we make a simplification: we assume that the 

smaller test suite covers a subset of the functional coverage of 

the larger test suite. The only reason to run the smaller test 

suite is that it is faster and the only reason to run the larger test 

suite is that it has higher coverage. Also, we assume the 

functional coverage reflects the capacity to find bugs; halving 

the coverage means only half the number of bugs will be 

found. 

     What does this mean? First, let’s call the short test suite 

“sanity” and the long test suite “nightly” and let’s say the 

short test suite has 50% functional coverage and the nightly 

run has 70% functional coverage. In this case the sanity test 

suite is capable of finding 71.4% (50%/70%) of the bugs that 

the nightly run is capable of finding. If we run sanity more 

often and the nightly less often 71.4% of the bugs will be 

found earlier and the rest will be found later. In Fig 8 we refer 

to this value as the Δcoverage. 

     What we do with the equations in Fig 7 is to look at the 

different coverage tranches. Bugs found with the coverage of 

50% can be found by both the sanity and the nightly run, 

whereas bugs in the 51%-70% coverage tranche can only be 

found by the nightly run.  

   An example of two test suites is shown in Figure 6. A short 

sanity run takes two hours to run and is run twice per day 

while a longer nightly run (8 hours) is run once per day. What 

is the average time from that a bug is committed to the 

revision control system until it is reported? Assuming a 

uniform bug distribution over time the bug can come at any 

point during the 24h cycle. The probability that a bug that is 

covered by both the sanity run and the nightly run (the so 

called sanity coverage tranche) will first be reported by the 

nightly test suite is 4/24 (max CTLStoN / cycle) of the causes 

because there are only 4 hours per day where the next run is 

the nightly run (see the blue section marked “nightly” in the 

“Next launch” column). The chance on that other hand that the 

bug will be reported by a sanity run is 20/24, i.e. (max CTLStoS 

+ max CTLStoN)/cycle. This region is marked yellow in the 

“Next launch” column. The probability of being reported by 

either the sanity runs or the nightly runs depend on 

scheduling, i.e. at what time you have chosen to launch the 

respective test suite. That in turn depends on the lengths of the 

various test suites. The shorter the test suites the closer you 

can run them.  

   The column “Wait for Report” shows the waiting time 

between bugs being committed and reported, which is slightly 

different between the different types of test suites. The 

maximum waiting time or maximum Bug Identification Time, 

BIT (see max BITStoS, max BITStoSN and max BITNtoS in Fig 6) 

depends on scheduling but the minimum waiting time is 

determined completely by the length of the test suite. The 

latter happens when the bug was committed just before the 

checkout was done on which the test suite is sub-sequentially 

run. 

 

 
Figure 6. The max Commit To Launch (max CTL) and max Bug 

Identification Time (max BIT) for the 3 sequences of test suites 

(sanity to sanity, sanity to nightly, nightly to sanity) when having 

2 Test Suites (“sanity”, “nightly”).  

 

Calculating total Bug Identification Time (BIT) for both the 

test suites involves two steps: 1) to calculate the BIT for the 

sanity coverage tranche and the BIT for the nightly coverage 

tranche separately and 2) adding them together according to 

their weight given by the coverage.  

   Calculating the BIT for the nightly coverage tranche is easy 

because there is only one test suite, the nightly test suite, 



which covers this tranche. Consequently we can use the same 

equation as we did for one test suite (compare Fig 5 with the 

definition of BITnightly in Fig 7).  

   Calculating the BIT for the sanity coverage tranche is more 

elaborate as we have to take into account two test suites, 

sanity and nightly, which both covers the sanity coverage 

tranche. Having two different test suites means there are 3 

possible sequences between them: sanity followed by sanity, 

sanity followed by nightly and nightly followed by sanity. 

This is true for any number of sanity and nightly test suite runs 

as long as 1) there are fewer nightly runs than sanity runs and 

2) the test suites are interleaved as much as possible. Fulfilling 

these two conditions makes sense because both produce a 

lower overall bug identification time. Note that if both 

conditions are fulfilled then there is no sequence where a 

nightly run is followed by another nightly run.  

    For each of the 3 test suite sequences we need to 1) 

calculate the probability that a bug appears in one of these 3 

test suite sequences multiplied with 2) the average BIT for 

each of the 3 sequences. This is reflected in the equation for 

BITsanity in Fig 7 where each line represents one of the 2 test 

suite sequences, starting with sanity to sanity. For both the 

probability and the average BIT the key value is the max 

commit to launch, max CTL, which is the time from a bug is 

committed until the next test suite is launched. The max CTL 

depends on the length of the previously launched test suite 

plus the free time when no test suites are launched until the 

next test suite is launched. The max CTL for the 3 test suite 

sequences are shown in both Fig 6 and Fig 7.  

   To calculate the probability you take max CTL for one of 

the 3 test suite sequences multiplied with how many times this 

sequence occurs per cycle divided by the cycle time. This 

gives you the proportion of the cycle time that you are in one 

of the 3 test suite sequences (see BITsanity in Fig 7). Note that 

Lnightly reflects how many times you transition from sanity to 

nightly (or the other way around) because one of the 

conditions for the equations is that the test suites are 

interleaved. Consequently (Lsanity - Lnightly) reflects how many 

times the test sequence from sanity to sanity occurs, because 

those are the only once that are not transitions to or from the 

nightly run. 

   The other part of the formula for the BITsanity in Fig 7 is the 

average BIT for each of the 3 test sequences. The average BIT 

is the average commit to launch (max CTL / 2) plus the test 

suite length (TSL) of the subsequent test suite. 

   The last step is to calculate the Bug Identification Time 

(BIT) where the BITsanity and BITnightly weighed together 

according to their contribution to the two different coverage 

tranches called “sanity” and “nightly”. Also the cost is 

calculated by adding the cost of each test suite separately. 

 

 

 
 
Figure 7. Equations to calculate the Bug Identification Time 

(BIT) and Cost for 2 Test Suites (“sanity”, “nightly”)  

 

   What is the optimal scheduling for the two test suites? The 

max CTL matters both for the probability of being in one of 

the 3 test sequences and also for the average BIT for that test 

sequence. There is consequently a square dependency on the 

max CTL for each test sequence, which means there is an 

optimal solution to be found for the BITsanity. 

   Using the Lagrange multiplier [3] we find the optimal 

solution for the BITsanity (see Fig 8). The constraint we are 

using is that the sum of the max CTL for the 3 test sequences 

equals the cycle, which is something that you can see an 

example of in Fig 6. The first step using the Lagrange 

multiplier is to calculate the partial derivatives for BITsanity as 

well as the constraint formula G (see Fig 8). The second step 

is to plug these derivatives into the Lagrangian formula 

(gradient BITsanity = λ * gradient G). The result is that the 

optimum value is achieved when (max CTL + TSL) for each 

of the 3 test suite sequences equal each other. Another way to 



express this is that the max BIT for each test sequence should 

equal each other (see Fig 6 where both the max BIT and max 

CTL for each test suite sequence is marked). Solving these 

equations (step 3 in Fig 8) we are able to define the optimal 

free times between the test suites, when nothing should run: 

TfreeSanity, the free time between sanity runs and TfreeTrans, the 

optimal free time between nightly and sanity runs.  

   In Fig 8 you can see that TfreeSanity is set to the total available 

free time plus a compensation factor divided by the total 

number of runs. Correspondingly TfreeTrans is set to the total 

available free time minus a compensation factor divided by 

the total number of runs. This compensation factor is set to the 

difference in test suite lengths multiplied with the number of 

test suite launches that is not related to the test suite sequence 

whose free time is being calculated. 

 

 

Figure 8. Equations to calculate the optimal placement for 2 Test 

Suites (“sanity”, “nightly”). The result is the optimal free time 

when nothing is being run between two sanity runs (TfreeSanity) 

and the optimal free time between a sanity run and a nightly run 

(TfreeTrans). The Lagrange multiplier is used to prove that the min 

BITsanity is achieved when (max CTL + TSL) for each of the 3 

test sequences are equal to each other. 

 

D. Introducing Equations for Bug Identification Time and 

Cost when running three different test suites 

Running three different test suites expands on the equations 

described when running two test suites, but the principle is the 

same. Now there are three test suites, with different test suite 

lengths and coverage, and consequently there will be 3 

coverage tranches which the equation needs to look at. 

   Another difference is that there are now two types of total 

free time between the test suite runs: one which takes into 

account the test suites that affect the sanity coverage tranche 

(all test suites) and the other which takes only account of the 

test suites affecting the nightly tranche (nightly and weekend). 

   A third point which needs expanding is the number of 

transitions, which was 2 in the case of 2 test suites and are 

now 9 in the case of 3 test suites.  

   We are not presenting the formulas in this section as they 

becomes very large, but there are no new principles as such. 

We have implemented them in computer program and the 

results for the 3 test suites is presented later in this paper. 

 

E. Bug Fix Time 

The Bug Fix Time is simply the sum of the Bug Identification 

Time plus the Debug Time.  

F. Test Fail Ratio 

The Test Fail Ratio is defined as all failing tests for a given 

period, divided by all tests that was run in this period. See Fig 

9. For example, if 10 tests are run each day and 1 test fails 

every other day then the Test Fail Ratio would be 5%. 

 

 

 
 
Figure 9. The Test Fail ratio is failing tests divided by all tests for 

a given period. 

 

 

III. METHODOLOGY 

A. How the measurements was done 

We implemented the equations in an excel sheet where we 
calculated exhaustively all combinations. We sorted the results 
after cost and then after bug identification time. This allowed 
us to create a sub-list of the optimal regression test setup for 
each cost. We present this both as a list and as a graph. 

IV. RESULTS 

The result is a model (based on the equations) which allows us 

to optimize each specific regression test setup. By entering the 



test suite lengths, the parallel CPU usage and the coverage for 

the test suite(s) the model will provide the optimal launch 

frequency for each test suite. 

A. One Test Suite 

     When there is only one test suite used for regression testing 

then the only question is how frequently it should be launched 

compared to what it costs. The cost is directly proportional to 

the number of launches. It does not matter what the coverage 

is or what the average parallel CPU usage is when there is 

only one test suite in order to answer this question. Also, the 

test suite time only matters to determine the max number of 

launches per cycle, but it tells you nothing about the optimal 

usage. 

     As the bug identification time only depends on how often it 

is launched the graphs looks very similar for different 

scenarios (see Fig 10 and Fig 11). Consequently we can 

formulate a generic answer when you are running only one 

test suite:  

 Up to about 5 times/cycle: The Bug Identification 

Time is substantially reduced for each extra time you 

run the test suite. 

 From about 6 times/cycle: The Bug Identification is 

still reduced for each extra time you run the test 

suite, but only by a fraction of the test suite length 

 
Figure 10. Sanity Run: One short test suite (2h) that is launched 

X times per day 

 

 
Figure 11. Nightly Run: One longer test suite (10h) that is 

launched X times per week 

B. Two Test Suites 

When there are two test suites, with different test suite lengths 

and different functional coverage then it becomes more 

complicated (see Fig 12).  

 

 
Figure 12. Two test suites: a nightly run (10h) and a sanity run 

(2h, 50% coverage). The graph shows the bug identification time 

depending on how often the sanity is run for each time the 

nightly is run. It also shows the effect of differences in functional 

coverage, the coverage for the nightly run varies between 60% 

and 100% while the coverage for the sanity run is fixed at 50%. 

 
Fig 12 shows how the bug identification time depends on 1) 

how often you run the test suites and 2) the difference in 
functional coverage between the larger “nightly” test suite and 
the smaller “sanity” test suite.  

The graph shows that the more often you run the “sanity” 
test suite (the x-axis), the lower the bug identification time is. 
In all data points the nightly test suite is run once per 24h and 
the sanity is run as many times as indicated by the x-axis. E.g. 
at 0 sanity runs there is only one nightly run per 24h and no 
sanity runs.  

The graph shows also shows the impact of the difference in 
coverage between the sanity and the nightly test suites. The 
sanity run is fixed at 50% functional coverage and the coverage 
of the nightly run varies between 60% and 100%. The only 
thing that matters is the relation between the test suites. When 
the nightly test suite has 100% coverage then the assumption is 
that it will reveal twice as many bugs as the sanity test run 
which has 50% coverage. The graph shows that the larger the 
difference is in terms of coverage between the test suites the 
worse it is, i.e. the bug identification time becomes longer. The 
reason is that a higher portion of the bugs will only be 
discovered by the nightly run which is run less frequently. 

What conclusions can we make from the graph? The first 
conclusion is that it is always better to run the longer test suite 
(nightly) just once and the shorter test suites (sanity) several 
times per cycle. In Fig 12 you can see that it is only better to 
run the nightly test suite twice (the dashed line) – and the 
sanity 0 times - when the difference in coverage is close to 
double (90%-100%) that of the sanity run (50%) and when the 
sanity run is only run once. However, if you run the sanity test 



suites twice or more per cycle then this always provides a 
better result. 

The second question is how often you should run the sanity 
run in such a setup. The coverage differences between the test 
suites affects the answer but not in any way that fundamentally 
changes the question. You should aim to run the sanity run 
roughly 2-4 times per cycle and the nightly run once. In this 
range it is beneficial for each extra run you do, but after that it 
quickly drops off. Compare this to the conclusion for one test 
suite which was to run “up to about 5 times/cycle”. Running 
the sanity test suite 4 times plus the nightly once means 5 test 
suite runs per cycle. 

Note that these conclusions did not consider the cost of 
running the two test suites, which is much larger for the nightly 
test suite than for the shorter sanity test suite as it uses less 
CPU hours and licenses. The cost makes no difference in this 
case as we reached the conclusion to just run the more 
expensive nightly test suite once by just looking at the bug 
identification time. We must run the nightly run at least once, 
otherwise there is a loss of coverage. 

C. Three Test Suites 

Having three test suites of different lengths and coverage 
means there are many different combinations of setting up the 
regression runs. The model is however able to list the best 
alternatives in order of cost. 

In this example there are three test suites: sanity (length 2h, 
40% coverage), nightly (length 10h, 60% coverage) and 
weekend (length 40h, 70% coverage) and the cycle is 1 week. 

Cost BIT Launch Frequencies

(x-axis) (y-axis) Sanity Nightly Weekend

52 66.26 1 1 1

54 56.05 2 1 1

56 52.88 3 1 1

58 50.76 4 1 1

60 49.25 5 1 1

62 48.12 6 1 1

64 47.24 7 1 1

66 45.91 3 2 1

68 44.38 4 2 1

70 43.24 5 2 1

72 42.35 6 2 1

74 41.64 7 2 1

76 41.06 8 2 1

78 40.58 9 2 1

80 39.92 5 3 1

82 39.21 6 3 1

84 38.63 7 3 1

86 38.15 8 3 1

88 37.74 9 3 1

90 37.39 10 3 1

92 37.09 11 3 1

94 36.68 7 4 1

96 36.27 8 4 1

98 35.93 9 4 1

100 35.63 10 4 1

102 35.36 11 4 1

104 35.13 12 4 1

106 34.92 8 5 1

108 34.63 9 5 1

110 34.37 10 5 1

112 34.14 11 5 1

114 33.94 12 5 1

116 33.76 13 5 1

118 33.60 14 5 1

120 33.41 10 6 1

122 33.21 11 6 1

124 33.04 12 6 1

126 32.88 13 6 1

128 32.74 9 3 2

130 32.48 10 3 2

132 32.10 6 4 2

134 31.78 7 4 2

136 31.50 8 4 2

138 31.27 9 4 2

140 31.06 10 4 2

142 30.87 11 4 2

144 30.60 7 5 2

146 30.30 8 5 2

148 30.12 9 5 2

150 29.95 10 5 2

152 29.80 11 5 2

154 29.67 12 5 2

156 29.33 8 6 2

158 29.18 9 6 2

160 29.05 10 6 2

162 28.93 11 6 2

164 28.82 12 6 2

166 28.73 13 6 2

168 28.60 9 7 2  



Figure 13. The optimal launch frequency for three test suites in 

order of cost. For example, if you want a Bug Identification Time 

of max 33h then the best setup is to run the Sanity run 13 times 

per week, the Nightly 6 times per week and the Weekend run just 

once per week. This setup will run some test suite 75% of the 

time (126h out of 168h, which is a full week). 

 

Figure 14. Optimal launch frequencies for three test suites in 

order of cost. This graph uses the same values as the table in Fig 

10.  

In Fig 14 you can see that the benefit of higher costs starts 
to flatten out in a similar pattern as we saw for 1 and 2 test 
suites. However now we have many data series on top of each 
other that together covers all possible combinations of launch 
frequencies. You can distinguish the individual data series in 
Fig 14 starting at S=1 N=1 W=1 and ending at S=58 N=1 
W=1, which follows the same patterns we have seen earlier in 
this paper. Only first combinations of this data series is optimal 
(marked red), before it is overtaken by the next data series 
which has N=2 and W=1 (one of its data points, S=21 N=2 
W=1 is highlighted).   

If you look in the table in Fig 13 you will see that all 
optimal combinations of launch frequencies follows this 
familiar pattern. There is a lot to gain to pick a combinations of 
launch frequencies with a bug identification time lower than 
roughly 40 hours as it is very cheap to achieve major 
improvements in the bug identification time for the lower cost 
options. In this region the number of nightly runs is 1.5 – 6 
times higher than the number of weekend runs and the number 
of sanity runs is 1.3 – 3.7 times higher than the number of 
nightly runs. 

Note that both Fig 13 and Fig 14 only allow up to 168 
hours of run as this is the number of hours per week and no 
overlap is allowed between the regression test suites. Having 
test suites of different sizes running at the same time is less 
optimal than making sure they do not overlap in time. If two 
test suites do not overlap in time then the larger test suite will 
cover the same area as the shorter test suite (and more), which 
for those bugs that are revealed by this overlapping coverage 
would be like running the smaller test suite one extra time. If 
overlap is allowed this benefit is lost.  

Another comment is that in this example we assume that all 
test suites are using the same number of CPU’s in parallel. The 
only difference are the lengths of the test suites. This is not a 
limit of the equations presented earlier, it is just an assumption 
in this example. 

What data point should we select in Fig 14? Any choice on 
the red line is an optimal choice which is th-+ 

e best choice for a given cost. How many test hours (cost) 
are you willing to spend? The answer to that is probably 
somewhere between running 50% of the time (84h) because 
you get so much value for money up to roughly that time and 
less than 100% of the time. Even if you want to run 100% of 
the time it may not be possible because of the load on the 
computer farm. There is always some amount of queueing 
during peak hours. In this example let’s say we want to run 
some kind of test suite 75% of the time, in which case the 
optimal choice is S=13 N=6 W=1.  

Using this example we get a feeling for how to pick an 
optimal combination of launch frequencies. However to get the 
exact optimal setup for a specific case you need to feed in the 
data into the model. 

D. Test Fail Ratio vs Bug Fix Time 

The faster bugs are fixed the better for the quality. The Test 

Fail Ratio (i.e. the quality over time) is directly proportional to 

the Bug Fix Time (see Fig 15).  

 

 
 
Figure 15 The Test Fail Ratio (i.e. the quality over time) is 

directly proportional to the Bug Fix Time. In this example the 

Bug Identification Time is the same in both scenarios but the 

debug time is 4x shorter in the lower scenario, which leads to a 

2.5x shorter Bug Fix Time, which in turn leads to a 2.5x lower 

Test Fail Ratio. 

 



 

      This The Bug Fix Time can be shortened by shortening 

either the Bug Identification Time or the Debug Time. Figure 

15 shows an example of how by only shortening the Debug 

Time this greatly affects the Test Fail Ratio.  
This is important as the Test Fail Ratio affects the length of 

the project. The fewer issues there are the faster the project can 
advance as there are less hurdles to overcome. Ultimately the 
goal is to release the product when the Test Fail Ratio is at a 
minimum, preferably at 0. The whole reason that regression 
testing is being performed is to keep the Test Fail Ratio low, 
i.e. to quickly detected and fix issues, in order for a project to 
release as early as possible. 

     This paper has shown that the way to do this is to 
optimize the Bug Identification Time vs the Cost and by 
reducing the Debug Time. 
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