IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Optimal Usage of the
Computer Farm
for Regression Testing

Daniel Hansson, Verifyter
Patrik Granath, Verifyter

AAAAAAAAAAAAA

2016

DESIGN AND VERIFICATION™

DVEEEE Background

4)
Why does the need for computer

. farm resources increase so fast?)

...and my jobs are still
gueued. Buy more!

We need some science!

3/2/2016

Daniel Hansson, Verifyter

NNNNNNNNNNNNNNNNNNNNNNN

Setup

Which regression
test setup Is the
most efficient?

At the end of the
presentation you
will know

3/2/2016

10
11

Launch 12 PM

A B C D
sanity sanity sanity
nightly
Report
Each 8h Each8h 1
sanity
sanity
sanity
nightly
nightly
nightly nightly

Daniel Hansson, Verifyter

ol
~NOURNWNROROOONOUDNWN

AM

IIIIIIIIIIIIIIIIIIIIIII

RYEE Defining Metrics (1/2)

Metric Definition

Cost Total CPU test time

Bug Identification Time from a bug is committed to the

Time revision control system until a failure
IS reported

Bug Fix Time Bug Identification Time + debug time
+ committing fix

Test Fail Ratio The number of failing tests / total

(Quality) number of tests run, for a given period

-
3/2/2016 Daniel Hansson, Verifyter 4

IIIIIIIIIIIIIIIIIIIIIII

DV Defining Metrics (2/2)
Launch of
Test Suite Test Fallure
Reported
Bug ! Fix
Committed Committed
l Tests l

ug ldentification Debug Time
Time (BIT)

<Bug Fix TimD

3/2/2016 Daniel Hansson, Verifyter 5

2016

DESIGN AND VERIFICATION™

DVEEN Quality

* Better Test Fail Ratio
(Quality) means -
Earlier Release T

« Shorter BIT and s

Test9

Shorter Bug FiX TiIme res1o
=> Earlier Release

* What is the optimal
setup?

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
Test 8
Test 9
Test 10

Test Fail Ratio = 2.08%
Bug Identification Time (BIT) = 6h

9AM

3PM

SPM

3AM 9AM

3PM

Bug Fix Time = 30h
Debug Time = 24h

9PM 3AM 9AM

3PM SPM 3AM

BIT

Debug

BIT

Debug

BIT

Debug

Test Fail Ratio = 0.83%
Bug Identification Time (BIT) = 6h

9AM

3PM

SPM

3AM 9AM

3PM

Bug Fix Time = 12h
Debug Time =6h

9PM 3AM 9AM

3PM SPM 3AM

BIT

Debug

BIT

Debug

BIT

Debug

e ——
3/2/2016 Daniel Hansson, Verifyter

2016

DESIGN AND VERIFICATION™

DYEEEY Coverage (1/2)

Functional Coverage (%) vs Test Suite Run Time (h)

100%

90% ////////////”’,,ff””"‘*—————_
o | / Doubling the cost (run time)

/ does not double the chance
| of finding a bug (coverage)

30%
20% - ////
0,

10% /
0%

2h 10h 20h

o

3/2/2016 Daniel Hansson, Verifyter

2016

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Coverage
10%
20%
30%
40%
50%
60%
/0%
80%
90%

3/2/2016

Coverage (2/2)

Short Test Suite (Sanity)

Run once every 4h

Max Wait 2h
Length 2h

Longer test suite means
longer bug identification time
at a higher cost, but only gives
some better coverage

Max Wait Length
14h 10h

Longer Test Suite (Nightly)
Run once per 24h

10h 20h

30h

Bug Identification Time
-

Daniel Hansson, Verifyter 8

2016

DESIGN AND VERIFICATION™

DYELLS Launch Frequency

#Sanity Runs (2h) / Day

16
— 14 Running twice
o Instead of once per
c d tters a lot!
= ay matters a lot!
c 10
= 8 For higher launch
I c . 0
5 ¢ frequencies it is a case
g of diminishing returns
T 4
=1
=

0

0 2 4 6 8 10 12 14

No of Test Suite Launches Per 24h

-
3/2/2016 Daniel Hansson, Verifyter 9

2016

DESIGN AND VERIFICATION™

DVEEIS Equations for 1 Test Suite
#Sanity Runs (2h) / Day

16 BIT =2 4 TsL
= 14 2+L
s Cost =L * TSL * CPUs
£
E 10 L Launches
5 8 TSL Test Suite Length
5 ¢ CPUs Average #CPU’s
S 4
2 2

0

0 2 4 6 8 10 12 14

No of Test Suite Launches Per 24h

3/2/2016 Daniel Hansson, Verifyter 10

2016

DESIGN AND VERIFICATION™

DvVCEN Conclusions for 1 test suite

#Sanity Runs (2h) / Day #Nightly Runs (10h) / Week

16 100
=14 =
PP g 80
e Good cost-benefit ratio = 70 Good cost-benefit ratio
5 10 AT TS 5§ 60 -—=<
= \ = <
5 8 / \ | 50 7 S
s 6 J] £ a0 I \
Z \ g \ !
T 1 N 7/ g 3 N /
=@ @ 10

0 0

0 2 4 6 8 10 12 14 0 2 a4 6 8 10 12 14
No of Test Suite Launches Per 24h No of Test Suite Launches Per Week

* The BIT looks similar for different cases
* The reason: the BIT depends mainly on #launches

* Conclusion: 2-5 launches/cycle has a good cost-
benefit ratio

-
3/2/2016 Daniel Hansson, Verifyter 11

2016 T) 8 AM

DESIGN AND VERIFICATION™ - 9
Q¥CEANDEXHIBITION 2 TeSt Su IteS 10 Sanlty
11 1
12 PM
* Assumption: Functional coverage of ;
sanity is a sub-set of the nightly coverage 3
4
5
coveragesanity 6
Acoveragesanity = 7
coveragenigntly o sanity
9 2
10
Acoveragenignty = 1 —Acoveragesanity 11
0 AM |nightly
1
2
BIT ot = (Acoveragesanity * BITsanity) + 2
(Acoveragenightly * Bl Tnightly) g
7

.
3/2/2016 Daniel Hansson, Verifyter 12

2016

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

* There are 3 test suite sequences

* Probability for a bug to be
committed during a test sequence

* BIT for each test sequence

2 Test Suites

— sanity => sanity
— sanity => nightly
— nightly => sanity

Max Commit To Launch (CTL)

Max CTL

cycle

+ TSL

Run Is
sanity
1
sanity | | sanity
1 2
1
2 max CTLsmS]
3
4
5
6
? L
8 sanity | {nightly
9 max CTLsmN | 2
10
11 i F
0 AM nightly| | sanity |
1 1
2
3 max CTLNmS
4 .
5
6
7

I]
3/2/2016

Daniel Hansson, Verifyter

13

Next
DESIGN ANDVEF%?QJ.QNW Run Is
CONFERENCE AND EXHIBITION 2 TeS t u I t eS Sar:]" Ity
Average BIT for Probability for a bug 1 sa?'ty Sag'ty
each of the 3 to appear In this part 45 ppm
sequences of the cycle 1
| | 2 max CTLsmS]
BITsanir.y = l l
Max CTL,,, Max CTLg, s *(Lgonicy—Lnianay
(2 e + TSLsanity) * (: zyde =) +
Max CTLg Max CTL * L .
toN TSL) ES StoN nightlyy o e e
(m 2 + mghﬂy) (m cycle)+ sanity | inightly
ax CTL,,, ax CTLy..s*Lyionay
(2 : + TSLsanir.y) * (Cyclz =) + max CTLStON 7 2
_ cycle | ey L ey
BITni_ghtly - Z*nghﬂy + TSLnightly nightly sanity
: 1
2
3 max CTL
COSttotal = Lsanity * TSLsanity * CPUSsanity + 4 oS -
Lnightly * TSLnightly * CPUSnightly g
7

3/2/2016

Daniel Hansson, Verifyter

14

2016 i
ecoorate OPLIM al |
Scheduling

* The optimal launch schedule is t
achieved when all max BlT's are ., c1i... |
equal TfrEESanit_-.f_ max BlTstos

* This keeps the max BIT's too a min

TfregTrans
' L Max B|TNm5

1

Optimal free time between two sanity runs
max CTLsion i |
Tf reeSanity — TireeTrans
TfreeTot + (Ltot - LsanToSan) * (TSLnightly_ TSLsanity) L v _
L
. . fot . | max BlThtos
Optimal free time between one sanity run and
one nightly run max CTLutos
TfreeTrans
_ Tereerot — Lsantosan * (T'SLnigntty— TSLsanity)
Ltot

-
3/2/2016 Daniel Hansson, Verifyter 15

.....2%¢ Optimal

DV TTFEJTFEHS
CONFERENCE AND EXHIBITION n i L I BITNmS
Scheduling (2/12) ™
* |f the nightly test suite length is bl
equal or larger than max max CTLews
BITg,,s then nightly will never Theesanty| MaX BlTstos
first find a bug in the sanity
coverage tranche
* In this case it can be o
scheduled independently of the M ©Ttseny L.
sanity runs R
| max BlTnios
max CTLluios

-
3/2/2016 Daniel Hansson, Verifyter 16

IIIIIIIIIIIIIIIIIIIIIII

DVC:ON Interleaving

* |Interleaving test suites
reduces the overall BIT

* This is because the nightly
runs will be better spread
out (lower BIT ;)

* BlT ity IS NOt order dependent if

It Is optimally scheduled

* With 3 test suites, run the shortest
at least every second run

3/2/2016 Daniel Hansson, Verifyter

17

2016

DESIGN AND VERIFICATION™

RY=E 1 Nightly Run, X Sanity Runs

25

= Coverage

2 20 Nightly

= 2 Nightly Runs (16h)

C o T NS -~ - --s------- e 1 00 %

é 90%

= 10

= 80%

T ¢ 70%

D 60%
0

0 1 2 3 4 5 6 7
No of Sanity Runs per 24h

* 1 Nightly and 2-4 Sanity: good cost-benefit ratio
* Better than running 2 Nightly runs

-
3/2/2016 Daniel Hansson, Verifyter 18

2016

DESIGN AND VERIFICATION

DVCON 3 Test Suites

Optimal Launch Frequencies (in red) Per Week for 3 Test Suites

70 S=1 N=1W=1 W o
. orst choices
Cheapest"”ﬂﬂv ‘##ffxff’fff:?
S=1 N=1W=2
60 . S=1 N=1 W=3
° @
[] e
50 . . s S=58 N=1W-=1
= S _ - (bad)
Q .--I..-' ® . . ® @
-g ... =:..=.....-......l..I-.llll..Illll..:.l.
= 40 ...l o TS e% o o ¢ :..
8 ‘.:;:lil- -lo;:l. ll‘ :l. ..'l o @
¢ s tt s et
O ®855ss : o
% 30 ame Patern as | ;i now- f“"""lh"‘!"'ul
2 .
s |for 2 Test Suites (bad) sies
w0 S=13 N=6 W=1
a 50 Running 75% of the time
S=9 W=7 W=2
Sanity Nightly Weekend Shortest Bug Identification Time
10 (S) (N) (W) Running 100% of the time
Test Suite Length (h) 2 10 40
Functional Coverage (%) 40 60 70
0
0 20 40 60 80 100 120 140 160

Cost (h)

3/2/2016 Daniel Hansson, Verifyter 19

oo 2016 To find your optimal
DVZ2D Summary SEHU[E e feed 1o s
the equations

* Detect Bugs Fast, Fix Bugs Fast => Earlier release
* Launch Frequencies with good cost-benefit ratios:
— 1 Test Suite: Run the test suite 2-5x per cycle

— Multiple Test Suites: Run the largest test suite once and
the smaller test suites 2-4x for each larger run

* Optimal Scheduling:

— All max BIT’s should be equal for lowest coverage tranche

— If a test suite is longer than the max BIT of a shorter test suite
then you can schedule the test suites independently

— Interleave test suites

— With 3 test suites, run the shortest at least every second run

- ___
3/2/2016

Daniel Hansson, Verifyter 20

2016

DESIGN AND VERIFICATION™

DV

Optimal
T Setup

Which regression
test setup Is the
most efficient?

Answer: A

3/2/2016

8 AM
9
10
11

Launch 12 PM

A B C D
sanity sanity sanity
nightly
Report
Each 8h Each8h 1
sanity
sanity
sanity
nightly
nightly
nightly nightly

Daniel Hansson, Verifyter

AM

ol
~NOURNWNROROOONOUDNWN

