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Abstract-The DFT (Design For Test) design is becoming more and more complex to satisfy test requirements for ultra-

large-scale SoC (System on Chip). From the perspective of test access method, nowadays IEEE 1149.1 protocol is usually 

adopted along with IEEE 1687 and 1500 protocols, which enables easy and modular integration of DFT IP (Intellectual 

Property) into SoC. However, this approach makes the DFT test access network complex and it needs a series of complex 

shift operations to access a TDR (Test Data Register). It will be beneficial if abstracting DFT TDR access in RAL (Regis-

ter Abstract Level), so that test writers can focus on test sequences and tests can easily migrate from block level to system 

level. This paper introduces a layered structure to model DFT TDRs and its access network, which is universal for differ-

ent projects. Also this paper introduces a new way to model ultra-long length registers in UVM that requires smaller 

memory space in simulation than the current UVM RAL solution. 

 

I.   INTRODUCTION 

To model DFT TDR in UVM, the first challenge is how to model ultra-long length TDRs. In particular, some 

DFT TDRs’ length, compared to the functional registers of a SoC, can be as long as thousands of bits. At some situ-

ations such as MBIST (Memory Built-In Self-Test) dumping or scan dumping, the TDRs’ length can be even longer. 

The UVM RAL mainly targets at functional registers and subjects to its limitation when modelling the ultra-long 

length DFT TDR. 

If we want to model DFT TDRs of a system using the current UVM RAL solution, we need to override the macro 

UVM_REG_DATA_WIDTH to the value identical to the length of the longest DFT TDR in the system. The width of 

the uvm_reg_data_t data type in UVM RAL is decided by the above-mentioned UVM_REG_DATA _WIDTH macro. 

The uvm_reg_data_t is constructed and used almost everywhere in the RAL-related components and objects. Fur-

thermore, when constructing a TDR, every field of that TDR is modelled as uvm_reg_field that also profligately uses 

the uvm_reg_data_t type to store the field value, although every field of the DFT TDR is not long. As we can see 

the waste of storage in simulation is obvious. 

This paper presents a new way to model ultra-long length DFT TDR using UVM, with a minor amount of work 

needed to override the methods of the base classes of UVM RAL. 

In a complex DFT test access network, different protocol TDRs are hierarchically located in a network that is 

connected via IEEE 1687. To access a TDR, one or more levels 1687 SIBs (Segment Insertion Bit) have to be 

opened, and the length of DR (Data Register) chain varies with SIB values, which results in the second challenge: 

how to get the necessary information to convert the abstracted generic TDR access operation into a series of IEEE 

1149.1 shift operations (herein after called JTAG operations) – and ideally this solution can be applied to different 

projects. Recently the author [1] introduced a novel method to model DFT TDR access network, where functional 

equivalent elements are created as the DUT (Design Under Test) and information required in converting an abstract-

ed TDR access to JTAG operations is encoded into the TDR’s address.  

The disadvantage of [1] is that, when a TDR is accessed, its controlling SIBs are opened, desired value is shifted 

to the TDR, and then the SIBs are closed to their default values for the convenience of the next TDR access. How-

ever, in real test scenarios, it turns out that TDRs controlled by identical SIBs are accessed probably in tandem, 

which means that we can save some unnecessary SIBs opening and closing JTAG operations, and thus some test 

time in ATE test. 

This paper tries to improve the efficiency of converting a generic TDR access operation to JTAG operations in-

troduced by [1], it saves shift cycles by means of monitoring the status of current network SIBs and analyzing the 

TDR to be accessed so as to open and close the SIBs smartly. 
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A. Structure of This Paper 

This paper introduces a layered structure to model DFT TDR. As shown in Figure 1, the DFT TDR layer is divid-

ed into two layers. In the Register Layer One, the generic DFT TDR access is converted into the generic 

dft_reg_transaction, and the dft_reg_monitor writes the observed dft_reg_transaction to the dft_reg_predictor.  In 

the Register Layer Two, the generic dft_reg_transaction is converted into a series of jtag_transactions, and the 

dft_tdr_network returns the dft_reg_transaction by observing jtag_transactions written by the jtag_monitor. In the 

Transaction Layer, the jtag_transactions are passed to the jtag_driver to toggle JTAG interface. 

Accordingly, this paper is divided into three sections. The first section is about how to model ultra-long length 

TDR in the Register Layer One, while the second section explains how to model DFT TDR access network in the 

Register Layer Two. The third part is results and discussion. 

In each of the first and second parts, a general overview will be provided firstly, and then the detailed implemen-

tation will be elaborated with reference to examples. 

 

II.   ULTRA-LONG LENGTH TDR MODELLING IN REGISTER LAYER ONE 

B. Idea Overview 

Regarding to UVM register modelling on ultra-long length TDRs, the author analyzed the methods being called 

during a register write and read process in UVM RAL, and found that the major limitations lies in the following two 

facts: 

1. The register access methods of the uvm_reg class uses uvm_reg_data_t as the routine argument or return type 

for generic register access operations such as uvm_reg::write() and uvm_reg::read(). 

2. Most methods in UVM RAL suppose that the dynamic array size of rw.value is one. 

 

 
 

Figure 1. DFT TDR modelling block diagram. 



To eliminate these limitations, the following steps can be taken: 

1. As shown in Figure 2, the dft_reg class is defined as the base class when construing DFT TDRs. A set of reg-

ister access methods with “dft” as prefix are added to replace the corresponding ones in uvm_reg class. This 

set of methods uses dft_reg_data_t, which is a queue of bit type, as routine argument and return type instead 

of uvm_reg_data_t. In this way, no matter how long the TDR length is, the queue size can dynamically fit to 

the TDR’s length.  

2. Modify the methods supposing the dynamic array size of rw.value to be one, so that they construct rw.value 

array according to the bit length of the data being processed, or they fetch the data in rw.value array by check-

ing its size first. 

Figure 3 illustrates how a generic DFT TDR write access is converted to a generic dft_reg_transaction in the view 

of routine arguments passing. 

1. The value to be written in a TDR is passed to the dft_reg::dft_write() by the value_q argument of 

dft_reg_data_t type, instead of by the uvm_reg::write() value argument of uvm_reg_data_t type.  

2. The dft_reg::dft_set() converts value_q data into several segments of uvm_reg_data_t type, which are filled to 

uvm_reg_field::set(). 

3. The dft_reg::do_write() creates a uvm_reg_item object to store the value_q data by re-constructing the dynam-

ic array (rw.value) with desired size.  

4. The dft_reg::do_write() passes the written data to dft_reg_map::do_write() by argument rw of uvm_reg_item 

type. 

5. The dft_reg_map::do_bus_write() converts the written data stored in the dynamic array to several 

uvm_reg_bus_op packages, which are passed to the dft_reg_adapter.  

By using the MSB (Most Significant Bit) of the address (encoded in Figure 4) as a flag bit that indicates the 

last package of the written data, the dft_reg_adapter::reg2bus() knows the time when all the written data are 

collected and to return the complete dft_reg_transaction that the dft_reg_map::do_bus_write() is going to 

send to the dft_reg_sequencer. 

6. The dft_reg_predict::write() calls dft_reg_adapter::bus2reg() for several times until the MSB of the 

uvm_reg_bus_op.addr is set by the dft_reg_adapter::bus2reg()  to indicate that the last package data has been 

converted.  

7. The dft_reg_predict::write() creates a uvm_reg_item object and stores the data member of uvm_reg_bus_op 

structure to rw.value that is passed to dft_reg::do_predict(). 

8. The dft_reg::do_predict() concatenates all the data in rw.value to dft_reg_data_t type, disassembles it into 

several uvm_reg_data_t type according to the TDR’s field width, and then passes them to 

uvm_reg_field::do_predict(). 

 
 

Figure 2. Class extension diagram. 



 
 

Figure 3. Routine argument passing process of write operation. 

 

C. dft_reg Class Implementation 

As shown in Figure 2, the methods with “dft_” prefix are newly added (shown in green) for DFT TDR access. To 

implement these newly added methods, we can copy the corresponding ones in the uvm_reg class and modify the 

input argument (or return type) to dft_reg_data_t instead of uvm_reg_data_t. Then the data type conversion is added 

when it is needed. Because the  uvm_reg::do_predict() supposes the rw.value array size to be one, we need to use 

dft_reg::do_predict() to override it. 

D. dft_reg_block Class Implementation 

The dft_reg_block class is extended from the uvm_reg_block shown in Figure 2. In Figure 2, the green methods 

are newly added, and the yellow methods need to be overridden. Because many methods use local variables in 

uvm_reg_block class which cannot be seen by extended classes, we copy all codes in uvm_reg_block to dft_reg 

_block class and do the following changes: 

1. Remove the fatal error check that uvm_reg_block::max_size should not be larger than 

UVM_REG_DATA_WIDTH in lock_model() function. This check is invalid for DFT TDR, because DFT TDR 

is configured through serial JTAG bus. 

2. Enhance Xinit_address_mapsX() function to support dft_reg_map type. 

3. Add create_dft_map() function to return dft_reg_map type register map. 

E. dft_reg_map Class Implementation 

The dft_reg_map class is extended from the uvm_reg_map shown in Figure 2. Similar to the uvm_reg_block, 

many methods of the uvm_reg_map use local variables, so we copy all codes in uvm_reg_map to dft_reg_map class 

and do the following changes: 

1. Modify the do_bus_write() method to convert each element in rw.value to data member of uvm_reg_bus_op 

structure and set the MSB of the last addr member of uvm_reg_bus_op structure  to one so as to indicate that 

all the written data have been transferred as shown in black arrow in Figure 5. Then 

dft_reg_adpater::reg2bus() returns a complete generic dft_reg_transaction to do_bus_write(). 

2. Modify get_physical_adresses() to only returning signal address no matter how long the TDR width is. 

3. Modify top_map to dft_reg_map type instead of uvm_reg_map type in Xinit_address_mapX(), m_set_reg 

_offset() and m_set_mem_offset(). 

4. Modify add_parent_map() to supporting dft_reg_map type. 

5. Modify local variable m_parent  to dft_reg_block type, and modify configure() function accordingly. 

 

F. dft_reg_predictor Class Implementation 

The dft_reg_predictor class is extended from uvm_reg_predictor. Add dft_map variable of dft_reg_map type and 

modify write() task to let it call dft_reg_adpater::bus2reg() several times until it see the MSB of the addr member of 

uvm_reg_bus_op structure is set, which indicates that the observed dft_reg_transaction has been converted to sever-

al uvm_reg _bus_op packages, as show in red arrow in Figure 5. Then the write() task create a uvm_reg_item object 

to store the returned packages and pass the object to dft_reg::do_predictor(). 

 



III.   DFT TEST ACCESS NETWORK MODELLING 

G. Idea Overview 

Figure 6 is an example for DFT test access network. In Figure 7, a SIB  is modelled as sib_node, and a D flip-flop 

is modelled as reg_node. The out_update () method models the active clock edge that triggers the shift register bit 

during shift operation, while the value_update () method models the active clock edge that triggers the update regis-

ter bit during the update operation. By using the sib_node and reg_node we can constructs the elements of the test 

access network. The possible paths from TDI (Test Data Input) to TDO (Test Data Output) can be described by Sys-

tem Verilog conditional statements. As such, a functional equivalent dft_tdr_network is obtained. 

H. dft_reg_transaction and jtag_transaction definition 

Figure 8 shows the properties of the dft_reg_transaction and the jtag_transaction class.  
In the dft_reg_transaction, the read_not_write indicates whether the transaction is a read or a write operation. 

The addr is the TDR’s encoded address, as shown in Figure 4. 

The wr_data_q stores the data to be written. 

The rd_data_q stores data returning by the dft_reg_monitor. 

The reg_length indicates the TDR’s length. 

The extension is used to send side information to the dft_reg_adapter. 

In the jtag_transaction, the o_ir stores the TDR’s OPCODE (OPeration CODE) and o_ir_length is its size. The 

o_dr stores the data being written to the TDR and the o_dr_length is its size. 

The tdo_dr_queue, tdo_ir_queue, tdi_dr_queue, and tdi_ir_queue store the data during shifting IR (Instruction 

Register) or shifting DR (Data Register) state monitored by the jtag_monitor. 

 

 

 
 

Figure 4. TDR address encoding. 

 

 

 
Figure 5. Data conversion process example. 

 



 
 

Figure 6. DFT test access network. 

 

 

 
 

Figure 7. DFT test access network elements modelling. 



 

 
 

Figure8. dft_reg_transaction and jtag_transaction properties. 

 

The chk_ir_tdo and chk_dr_tdo are flags to inform the jtag_driver whether to check TDO cycle-by-cycle during 

shifting IR or shifting DR state. The exp_tdo_dr_queue is the golden data expecting the DUT TDO output during 

shifting DR state. 

The exp_tdo_dr_mask_queue indicates which bit in exp_tdo_dr_queue needs not to be checked. 

The exp_tdo_ir_queue is the golden data expecting the DUT TDO output during shifting IR state. 

I. DFT TDR Encode 

A DFT TDR’s address is encoded in Figure 4. It composes of three segments, the first segment is the reserved 

flag bit for the dft_reg_map and the  dft_reg_predictor that communicate with the dft_reg_adapter as mentioned in 

ultra-long length TDR modelling section.  The second segment is the TDR’s OPCODE, and the third segment is the 

TDR’s location information in the test access network. In Figure 6, WDR1’s OPCODE is 8’hFE and is controlled by 

LEVEL0_SIB1, so its address is encoded as 13’h0FE2.  Similarly, the WDR2’s OPCODE is 8’h36 and is controlled 

by LEVEL0_SIB0 and LEVEL1_SIB0, so its address is encoded as 13’h0365. For IEEE1149.1 type TDR, we can 

simply fill the third segment to zero. 

J. dft_reg_tx_to_jtag_tx_sequence Implementation 

The dft_reg_tx_to_jtag_tx_sequence is a virtual sequence, which gets the dft_reg_transaction from the dft_reg 

_sequencer, converts it into the jtag_transactions and sends them to the jtag_sequencer. The dft_reg_tx_to_jtag_tx 

_sequence decodes dft_reg_transaction.addr to get the TDR’s location information in the network. Figure 9 shows 

how a generic dft_reg_transaction is converted to a series of jtag_transactions. Because the dft_reg_transaction 

.addr[3:0] is 4’b0101, the TDR being access is controlled by LEVEL0_SIB0 and LEVEL1_SIB0, before shifting the 

OPCODE and written data, the LEVEL0_SIB0 and LEVEL1_SIB0 should be set first. 

 

 
 

Figure 9. The conversion from the dft_reg_transaction to jtag_transactions 



 

K. dft_reg_network Implementation 

For the test access network in Figure 6, its elements can be modelled as shown in Figure 10. The IEEE 1500 client 

in the test access network can be divided into two types, the first is controlled by level 0 SIBs and the second is con-

trolled by level 1 SIBs. Because we suppose only access one WDR in a IEEE 1500 client each time, it is unneces-

sary to model every IEEE 1500 client and all the WDRs in it. It only need to model the SEL_WIR, the WIR and a 

WDR of each type of IEEE 1500 client. The WDR’s length is dynamic, which can be calculated by the 

jtag_transaction.o_dr _length and the current SIBs’ value in the dft_tdr_network. 

By a series of conditional judgments based on the possible paths between TDI and TDO in the test access network 

and the jtag_transactions observed by the jtag_monitor, the dft_tdr_network can return a generic dft_reg 

_transaction to the dft_reg_monitor, who passes it to the dft_reg_predictor.  

In Figure 9, the step 1 to step 3 are used to open SIBs. If we want to access another WDR in the same IEEE1500 

client, with the current solution, the five steps in Figure 9 are repeated. In fact the first three steps can skip if we do 

not close them in the step 5. As mentioned above, the WDRs controlled by identical SIBs are accessed in tandem 

with a high possibility. If the dft_reg_tx_to_jtag_tx_sequence knew each SIB’s status in the network, then it could 

open and close SIBs smartly according to the current WDR being accessed, so as to save unnecessary SIB opening 

steps. In this way we can save the test time in ATE test. 

To realize this, a dft_ntwk_info is defined. Figure 11 shows the properties of the dft_ntwk_info class. 

A uvm_blocking_put_port is added in the dft_reg_monitor and a uvm_blocking_put_imp port is added in the 

dft_reg_sequencer shown in Figure 1. The dft_ntwk_info is passed from the dft_reg_monitor to the dft_reg 

_sequencer whenever the dft_tdr_network update SIBs. The dft_reg_tx_to_jtag_tx_sequence get current SIB’s status 

from dft_ntwk_info, so that it can open or close SIBs as needed. 

Suppose that we want to access the WDR2 in Figure 6 continuously for five times, it will take 840 shift cycles if 

using the method introduced by [1]. Now by adding a pair of uvm_blocking_put port and uvm_blocking_put_imp 

port to transfer the SIBs’ status, it only takes 632 shift cycles. Roughly 25% test time is saved. 

 

IV.   RESULTS AND DISCUSSION 

This paper introduces a layered structure to model DFT TDR in UVM. The Register Layer One and the Transac-

tion Layer can be generally used in different projects. For Register Layer Two, in contrast, the dft_reg_network 

component and dft_reg_tx_to_jtag _tx_sequence are project-specific, and users need to model them according to 

their project’s test access network architecture. 

At this stage, the dft_reg_network and dft_reg_tx_to_jtag_tx_sequence are based on the assumption that only one 

WDR is accessed each time. However, in the next step of work, it is possible to further improve DFT WDR config-

ure efficiency by enhancing the test access network modelling so as to support broadcast mode, which means the 

WDRs in different IEEE1500 clients that have the same OPCODE can be accessed simultaneously. 

Table I shows five simulation results using VCS. 

The simulation scenario is as follows: 

A TDR is defined to have X fields and each field is one bit. Instance 200 such TDRs and write these 200 TDRs in 

sequence. 

 

 
 

Figure 10. DFT access network elements mapping to defined classes. 
 



 
 

Figure 11. dft_ntwk_info properties. 
 

 

TABLE I 

MEMORY USAGE OF WRITING 200 ULTRA-LONG LENGTH TDRS 

 512 1024 2048 4096 

Memory Saving Solution 2074.7 MB 2344.8 MB 2981.2 MB 4327.2 MB 

Current UVM RAL Solution 2349.5 MB 2759.5 MB 4212.6 MB 9263.6 MB 

Memory Saving 11.7% 15.0% 29.2% 53.3% 

 

The row “Memory Saving Solution” shows the memory usage in simulation when using the method introduced by 

this paper, while the row “current UVM RAL solution” shows the results when using the current UVM RAL solu-

tion. The percentage of memory saved is calculated. We found that 11.7% to 53.5% memory is saved when the 

TDR’s length ranges from 512 to 4096 bits. 

Table II shows five simulation results using VCS. 

The simulation scenario is as follows: 

A TDR is defined to have X fields and each field is one bit. Instance 400 such TDRs and write these 400 TDRs in 

sequence. 

The row “Memory Saving Solution” shows the memory usage in simulation when using the method introduced by 

this paper, while the row “current UVM RAL solution” shows the results when using the current UVM RAL solu-

tion. The percentage of memory saved is calculated. We found that 6.8% to 60.0% memory is saved when the 

TDR’s length ranges from 512 to 4096 bits. 

The results of Table I and Table II shows: 

1. The memory usage of current UVM RAL solution expands significantly when the TDR’s length larger than 

2048 bits. 

2. The benefit of memory saving becomes increasingly obvious when the TDR’s length gets longer and the TDR 

numbers to be accessed increases. 
TABLE II 

MEMORY USAGE OF WRITING 400 ULTRA-LONG LENGTH TDRS 

 512 1024 2048 4096 

Memory Saving Solution 2335 MB 2960.3 MB 4066.6 MB 6421.2 MB 

Current UVM RAL Solution 2504.2 MB 3542.1 MB 6451.5 MB 16064 MB 

Memory Saving 6.8% 16.4% 37.0% 60.0% 
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