
1 

 

One Compile to Rule Them All: An Elegant Solution for 

OVM/UVM Testbench Topologies  

Galen Blake   Steve Chappell 
Altera Corporation Mentor Graphics 
Austin, TX  Fremont, CA 

 

ABSTRACT: 

As a design verification (DV) project is first started 

then steadily moves towards completion, the addition 

of verification features of increasing complexity in 

the testbench are a natural part of the development 

cycle.  As these new features are added, a variety of 

controls are usually added to the testbench to manage 

the operations of these new and existing features.  In 

many cases, this can lead to a chaotic set of text 

macro settings, compiler directives, configuration 

storage, parameters, plusargs, etc. to configure and 

control the topology and behavior of the testbench.  

Alternatively, multiple top-level testbench files 

(testbench netlists) or Perl script generated 

testbenches might be used to tame the complexity.  

Then for a final twist, modules and interfaces in the 

RTL context and class objects in the OVM/UVM 

context must all be configured to work together. 

During one of our projects, we had some well 

developed concepts in the testbench that required 

only one testbench netlist for simulation.  

Nevertheless at one point we still found ourselves on 

the path to chaos having no less than 7 different 

language constructs and mechanisms being used to 

program the configuration and topology of the DV 

testbench. 

At that point, we stopped and took the time to 

redesign our methodology for programming the 

configuration and topology.  We began by 

conducting some small experiments to test out a few 

ideas and concepts.   

One of the key requirements was that we wanted to 

have a single compile process.  Not only would this 

save time and disk space across multiple runs, this 

enabled us to point engineers writing software-based 

tests to a single nightly build directory with all the 

libraries they would need for any testbench/system 

configuration pre-compiled. This single-compile 

requirement essentially meant that `ifdefs were not an 

option.  Instead, we took advantage of the fact that 

our simulator supported design parameter re-

assignment, as well as library search path definition, 

at elaboration time.  This enabled the novel approach 

of using parameters to selectively instantiate code 

blocks via “generates” and pass configuration 

information to the testbench via non-parameterized 

virtual interfaces. 

After a successful proof of concept, this effort was 

scaled up and used to replace all of the existing 

constructs and mechanisms.  The result was an 

extremely elegant system that has many benefits: 

- Simplicity : It is very simple to use and is 

equally simple to implement and enhance. 

- Clarity : One set of controls manage and 

configure testbench components and 

topology across both the RTL and the 

OVM/UVM contexts. 

- Minimal footprint : Verification components 

and class objects that are not needed for a 

test in a given topology will not be included. 

- Flexibility : Topology decisions are deferred 

until run time and these choices make a 

large number of topologies available.  

- Efficiency : This is all achieved without 

using text macros, compiler directives or 

troublesome class parameters.  Furthermore, 

all of these capabilities are available with 

only one single compile operation. 

This paper will explore the pros & cons of this 

system, and some of its alternatives, via a 

walkthrough of the system implementation in a real 

OVM/UVM testbench environment.   



2 

 

module hdl_top_emac_tests(); 
wire tx,rx,…; 
emac_vip_if emac_vip_if0(.tx(tx),.rx(rx),…); 
`include “dut_inst.svh” 
endmodule 
 
module hdl_top_nic_tests(); 
reg tx = 0; wire rx; 
`include “dut_inst.svh” 
endmodule. 

1. Introduction 

 Modern System-On-Chip (SOC) designs 

have large numbers of peripherals and complex 

configurations available for end users to choose from.  

This maximizes the number of applications that a 

particular family or platform can service. SOC silicon 

vendors design in as many features as possible to 

maximize the total available market for the silicon 

thereby increasing the profitability of the design.  No 

single customer ever needs all of these available 

features within a single system.  Additionally, pin 

count limitations further limit the availability of the 

peripherals that can be accessed.   

Even though no individual end user can ever 

access all of these features, they all have to be 

verified before the chip goes out.  That means the 

testbench must be able to support each of the features 

and peripherals and confirm that any possible 

combination of features selected by the user will 

work together correctly.  With so many complex 

features and connectivity options, building a single 

testbench to support each of these combinations is 

challenging and many teams resort to building a few 

or even a few dozen testbench netlists to support 

these variations. 

The following sections first explore 

traditional approaches that have been used in Verilog 

and in SystemVerilog testbenches.  The final section 

then shows how the shortcomings of these 

approaches can be overcome by combining some of 

them with some newer features and concepts. This 

ultimate solution provides a simple and elegant way 

to manage and maintain the topology needed to meet 

the challenges required for complex SOC 

verification. 

2. Approaches To Consider 

a. The “Many Netlists” Approach 

One approach to addressing these challenges 

is to construct different top-level modules (either 

with the same name or different names) in different 

files that instantiate the DUT and verification 

components in different ways in order to handle each 

of the variations encountered.  These verification 

netlists may be re-useable for many tests but the 

number of netlists may still grow to several dozens. 

Building many testbench netlists leads down 

a messy path that will be very difficult to maintain 

when global updates are needed across each of these 

netlists.  This solution also requires users that are 

developing new tests or adding functionality to 

constantly ask themselves the questions: “Can I reuse 

one of these existing netlists or do I need to author 

yet another new one?”  “If it needs to be a new one, 

which one would be the best one to clone?”  “What 

do I do if I need some features from one existing 

netlist and some features from a second netlist but 

then discover that they require mutually exclusive 

resources for methodologies?”  In such cases, users 

might find themselves either rewriting already 

existing capabilities several times to avoid conflicting 

concepts, or looking at text macros to try to minimize 

the copy/paste activity.  This leads us to the next 

approach. 

b. The Text Macro Approach 

Text macros are the most commonly used 

approach by users for sizing vector signals and 

configuring testbench topology.  Text macros are 

substitutions processed based on preprocessor 

commands (`ifdef, `define, et al).  They can be used 

to choose values (e.g. sizing vectors) or for 

including/excluding certain blocks of code.  These 

substitutions are done by the compilation tools before 

the code is passed on to the compile/analyze process.  

Thus, any change to these macros requires the files 

that use them (and the files that depend on those files, 

and so on) to be recompiled.   



3 

 

module hdl_top (); 
`ifdef USE_EMAC0 
  wire tx,rx,…; 
  emac_vip_if emac_vip_if0(.tx(tx),.rx(rx),…); 
`else 
  reg tx = 0; 
  wire rx; 
`endif 
  dut dut(….); 
endmodule 
 
class my_env extends uvm_env; 
  function void build_phase( uvm_phase phase);  
`ifdef USE_EMAC0 
       emac0_agent = new(…); // or create from factory    
`endif 
  …. 

module hdl_top (); 
  parameter USE_EMAC0 = 1;  
if (USE_EMAC0 == 1) begin  
  wire tx,rx,…; 
  emac_vip_if  emac_vip_if0(.tx(tx),.rx(rx),…); 
end else begin 
  reg tx = 0;  
  wire rx; 
end 
  dut dut(….); 
endmodule 
 
class my_env #(int USE_EMAC0=1) extends uvm_env; 
  `uvm_component_param_utils(my_env); 
  function void build_phase( uvm_phase phase);  
    if (USE_EMAC0) 
       emac0_agent = new(…); // or create from factory    
  …. 
 

For small models and block-level 

testbenches (that will never be re-used at the system-

level), this may be a reasonable approach.  However, 

as the testbench grows in size and complexity the 

widespread use of text macros and the potential 

hazards of name collisions or other conflicting 

settings start to grow. Eventually a lot of time gets 

wasted hunting down these types of issues.  For 

example, someone might decide to use the text macro 

`MEM_WIDTH or `INCLUDE_MONITOR in a 

model where it is defined in the top of the file where 

that model is defined. Then someone else decides to 

use the same text macros in another model where 

they are set to different values and come from an 

include file or the compiler commandline.  Suddenly 

the order in which these files are compiled becomes 

very important and the possibility of getting the 

wrong value into the wrong model is very real. 

When text macros like 

`INCLUDE_MONITOR are used, they are usually 

defining the presence or absence of important 

testbench resources.  If it is used in multiple models, 

then users must accept an all or nothing selection, 

live with redefinition (usually a compiler warning or 

error), or expand the number of text macros to make 

sure each of them have unique names.  When 

multiple developers are actively working on a project 

it is easy and common to encounter conflicts.  Then 

also consider that there may be thousands of files 

involved from many individuals and multiple 

development teams making the probability of 

conflicting text macros even higher. 

Beyond the name collision/confusion 

dangers and maintenance, however, one huge 

disadvantage of the use of macros is the need to re-

compile your design & testbench when macro 

definitions change.  This means we need to limit our 

use of macros to things that are constant across all 

tests for this project (e.g. the width of the data bus on 

the APB port of the USB IP, which translates to a 

number of physical wires in the design).  Otherwise 

we cannot have a single compilation that supports all 

of our configurations and topologies. 

 

c. The Parameter Approach. 

Similar to text macros, parameters are often 

used to size vector signals and to a lesser extent to 

configure the testbench topology.  Unlike text macros 

though, parameters do not need to be resolved until 

elaboration time.  Also, unlike text macros, 

parameters have a more narrow, well-defined scope.  

That is, they are better encapsulated and do not have 

the same compile-order/name-collision pitfalls that 

text macros do.   

For these reasons, parameters are popular 

and work well in HDL models (e.g. modules).  

However, when you move to the testbench side, 

having parameters in your classes (or even in the 



4 

 

interface config_regs (); 
  reg [`MAX_CFGS-1:0] tb_cfg; 
  initial begin 
     tb_cfg  = `DEFAULT_TB_CFG; 
      if ( $value$plusargs("USE_EMAC0=%d", use_e0 ) )  

    tb_cfg[`USE_EMAC0]   = use_e0; 
  end 
endinterface 

SystemVerilog interfaces which will need virtual 

interface handles in the testbench), usually creates 

real headaches. The problem is that each unique 

combination of parameter values creates a new 

specialization of the “thing” you are parameterizing.  

And these specializations are not type-compatible 

with each other.  Class object references and virtual 

interfaces are just handles with specific types that 

must be declared and exactly match the “thing” you 

are assigning them to.  Modules don’t have this 

problem because there is no such thing as a handle to 

a module; modules are static & are referred to by a 

hierarchical name only.   

In OVM/UVM specifically, adding 

parameters to your classes also means you are 

restricted to the type-based factory and cannot use the 

string-based factory.  There are some approaches that 

attempt to get around this problem [1][2], but in 

general it is just more desirable to keep the number of 

parameters in classes and interfaces to an absolute 

bare minimum. 

d. The Plusarg Approach 

Another approach is to try to bring in the 

configuration information via plusargs.  This is used 

in OVM/UVM testbenches to select the test that will 

be run (+UVM_TEST=sanity_test), so a temptation 

of testbench architects might be to start down the 

path of bringing in all of the necessary configuration 

information as plusargs on the simulator 

commandline.  This approach requires a register or 

set of registers to be defined at some location in the 

testbench.  It is possible to access these registers from 

both HDL (modules and interfaces) and HVL 

(classes) contexts.  Some reasonable default values 

for the registers are chosen, and then overridden in an 

initial block if the corresponding plusarg is assigned. 

The main issue here is that while this 

approach works for the dynamic testbench, this 

information comes too late to affect the static 

topology.  Interfaces, modules, bus sizes, etc all need 

to be locked down at elaboration time.  So now we 

end up duplicating a significant amount of 

configuration information across plusargs and 

whatever the HDL uses (pick from the approaches 

above).  This leads to the potential for mismatch 

errors between the HDL & HVL contexts that are 

difficult to debug and results in much head slapping. 

 

3. The HDL/HVL Coordination Challenge 

Before getting into some of these details, it 

is important to consider that one of the challenges 

and requirements for an elegant solution is to 

coordinate the topology of modules and interfaces in 

the HDL context to associated classes or agents in the 

HVL context.   

Maintaining multiple netlists grows even 

more impractical when they must be paired with 

multiple OVM or UVM environments.  So this is 

clearly not a desirable solution.  Moreover, this 

requires users to compile and store compiled 

databases for each variation making it more difficult 

to manage the workflows and increases storage and 

complexity.  It is strongly desirable to have a single 

compiled database that is created once and then 

reused with different elaboration options for each of 

the needed topologies. 

Using text macros is not a very elegant 

solution since the addition of the OVM or UVM to 

the HDL context just creates more places to set them 

or read them incorrectly and increase conflicts. 

Considering that the text macros used across many 

files are hard to manage, using them between the 

HVL and HDL only adds to the problem.  And of 

course it violates one of our key goals of not having 

to recompile for every new topology/configuration. 

The disadvantages of parameters in the 

OVM/UVM side may at first seem to rule out the 

possibility of using parameters.  However, the 

problem of duplicated config settings experienced 



5 

 

module hdl_top (); 

  parameter USE_L3_ACP_AXI_VIP                 = 0; 

… 

generate if (USE_L3_ACP_AXI_VIP) begin : i_acp_axi_vip  

axi_monitor_vip #( .ADDR_WIDTH (`ACP_ADDR_WIDTH),  

            .RDATA_WIDTH            (`ACP_RDATA_WIDTH), …     

            .AXI_ID                 ( "acp_axi_monitor" ) 

           )  acp_axi_monitor (.mif(acp_axi_vip_mst)); 

    end 

  endgenerate 

… 

endmodule 
 

interface config_tb_if(); 
    bit use_l3_acp_axi_vip; 
… 
endinterface 
 
module hdl_top (); 

  parameter USE_L3_ACP_AXI_VIP                 = 0; 

… 

  config_tb_if cfg_tb(); 

  assign cfg_tb.use_l3_acp_axi_vip             =  

USE_L3_ACP_AXI_VIP; 

  initial uvm_config_db #( virtual config_tb_if )::set( …); 

… 

endmodule 
 

with the plusarg approach led to the question of 

whether the parameter information could be passed to 

the HVL side as something other than a parameter.   

 

4. Our Approach 

a. Parameter-controlled “generates” 

First consider the HDL context alone.  

Within HDL models, parameters are widely used in 

both DUT models as well as testbench models for 

vector sizing.  When the ‘generate’ statement was 

added to Verilog, the parameter became even more 

useful since it can be used in a manner exactly like 

the `ifdef text macro.  So within the HDL context, a 

rich set of parameters such as USE_EMAC0 for 

example can be used along with a generate statement 

(explicit or implicit) to define the required topology.  

Within the body of the generate statement a user may 

instantiate modules or interfaces, make wired 

connections, or assign tie-off or initial values to wires 

and variables.  In this case, the parameter, or some 

parameter expression, can be used to give the user the 

ability to dial in exactly the topology they need in the 

HDL.  The HDL side follows the same template as 

the sample code example above under the “Parameter 

Approach”.   You may also note that there are some 

`defined macros for bus widths – again these are used 

for readability (and project-to-project reuse), but their 

values are constant for all tests/configurations of this 

project.  Also, there are some VIP interfaces where 

parameterization could not be avoided, but again 

these are defining bus widths that are constant.  

 

b. Avoiding parameterized classes 

Next consider the HVL context.  In many 

cases for testbench components like interfaces, there 

are corresponding agents that exist in the HVL 

context.  As we saw, the existence or configuration of 

these interfaces is controlled by parameters, so 

ideally it would be very useful to leverage these 

already existing parameters from the HDL. But we 

already know we don’t want parameters in our 

classes if we can avoid them.    

Since we need parameters in the exact 

location where we do not want them, we needed to 

find another way to leverage the valuable topology 

information they contained.  We created a special 

configuration interface, a “parameter transport 

interface”, which itself is not parameterized. In this 

parameter transport interface, we matched up a scalar 

signal for each of the binary USE_* parameters.  

Some additional non-binary parameters (e.g. data, 

address) were mapped to vector signals.  The signals 

in these interfaces are assigned to the parameters and 

then carry their values across from the HDL to the 

HVL context.  This works because our testbench is 

dynamic and created at runtime.  Thus, it doesn’t 

need the information in these parameters at 

elaboration time, like the static HDL components do. 

Now in the HVL or class context, we 

instantiate a virtual interface for the configuration 

interface in the HDL and then we can test the values 

of any needed parameter without using a 



6 

 

 
class my_env extends uvm_env; 
  `uvm_component_utils(my_env); 
virtual config_tb_if cfg_tb; 
   
function void build_phase( uvm_phase phase);  
  cfg_tb = uvm_config_db #( virtual config_tb_if )::get(.. ); 
  if ( cfg_tb.use_l3_acp_axi_vip) begin 
      l3_acp_axi_a = axi_agent  
         #(ACP_axi_p)::type_id::create("l3_acp_axi_a", this); 
    end 
. . . 
 

parameterized class.  So taking the example above, if 

we need to conditionally construct and configure an 

agent for the EMAC0 interface in the HDL we can 

examine the associated interface signal that carries 

the exact value from the parameter in the HDL 

context and know if we should or should not be 

constructing and configuring the agent. 

The uniqueness of these parameters tends to 

avoid naming conflicts.  And since they are all 

defined in the same scope, it is fairly obvious to the 

compiler and developers if conflicts occur. 

 

5. Additional Considerations 

a. Different Versions of the Same 

Module 

The essential ideas described thus far work very well 

for a lot of decisions in the testbench and the top 

level DUT instantiating scope – do I want a VIP 

instantiated here, or just tie off the signals?  What are 

the initial pin/register values? 

But what about my desire to use this same test 

environment for a subsystem or even a block level 

test?  Or what if I just want a different version of one 

or more of the modules in my DUT – like swapping 

out the real processor RTL for an ISS-based model?  

The parameter-conditional generate approach 

described above could work. But that would mean 1) 

giving all definitions of a given module a unique 

name, and 2) duplicating a lot of module instantiation 

code inside the if-else generate blocks.   

So for this problem, we did choose to compile the 

different definitions of the modules into separate 

libraries and then select them via command-line-

specified library path search order at elaboration 

time.   This worked for some of these limited choice 

cases, but it did require some discipline to keep the 

number of work libraries to a minimum. 

 We also considered using Verilog “config” 

constructs, but didn’t like dealing with the extra top 

level that this created.  We probably could have done 

something as well with `uselib directives, but 1) 

`uselib is not part of the SystemVerilog standard, and 

2) controlling the definition selection from a few 

characters on the commandline (-L libname …) via 

our scripts was far easier to manage than adding 

anything to the SystemVerilog code. 

 

b. Simulator Requirements 

While on the topic of commandline options, the 

parameter-conditional generate approach (aka the 

elegant solution), has significantly more benefit when 

your simulator supports parameter value overriding at 

elaboration time.  If your parameter values are locked 

down at compile time, then you will end up needing 

to do a recompile of at least some subset of your top 

level module(s) with almost every run.  If you can 

defer specifying the parameter values to a 

commandline option at elaboration/optimization time 

(e.g. “mysim –GUSE_FOO=1 –GUSE_BAR=0 …”), 

then you can make your topology decisions as 

granular as you please and still have a single compile 

process.   

 

6. Conclusion 

Using the techniques described above provided a 

very effective solution to maximizing the re-use of 

our test environment across a multitude of DUT 

configurations and verification targets. The ability to 

have a single compile phase whose output can be re-

used by multiple simultaneous, and wildly different, 

simulation runs has significant advantages.  Saving 

time on recompiles, saving disk space, ease of use, 



7 

 

and consistency of results across disjoint teams all 

made for a smoother running and efficient project.  

We were also able to achieve these advantages 

without sacrificing performance because the 

simulator was able to optimize away any code inside 

parameter-disabled generate blocks before run time.  

Our one compile really did rule them all. 

 

REFERENCES 

[1] David Rich, Adam Erickson. “Using 

Parameterized Classes and Factories: The Yin and 

Yang of Object-Oriented Verification”. Proceedings 

of DVCon 2009. 

[2] Brian Ramirez, Michael Horn. “Parameters and 

OVM — Can’t They Just Get Along?”. Proceedings 

of DVCon 2011. 


