
One Compile to Rule them All:
An elegant solution for

OVM/UVM Testbench Topologies
by

Galen Blake
SMTS

and
Steve Chappell

Solutions Architect

Sponsored By:

2 of (total number of slides)

PLEASE NOTE:
• This is a ROUGH DRAFT.
• I will be providing daily updates refining and adding

content.
• This ROUGH DRAFT is provided to comply with the deadline

(24th in the email and 25th on the website).
• More work is planned to bring the contents and particularly

the diagrams up to a more substantial level.
• Having said all that, the basic outline and information has

been captured.

Sponsored By:

3 of (total number of slides)

SOC Testbench Topology
• SOC Designs present many Verification challenges.

– Many peripherals
– Many peripheral configurations
– Many peripheral connectivity options

• System Verilog and the OVM/UVM libraries offer some
clever solutions.
– Interfaces, modports, polymorphism etc.

• However it is not always easy to configure the topologies
needed especially across the HDL and HVL contexts.

Sponsored By:

4 of (total number of slides)

SOC Testbench Topology
• Solutions to topology and configuration are frequently

developed in an ad-hoc fashion as new test bench and DUT
features are needed.

• They are rarely implemented with a consistent approach.
• This leads to clumsy solutions become difficult to enhance

or maintain including:
– A new net-list for each configuration and option
– Pervasive reliance of the preprocessor (text macros)
– Extensive use of parameters
– Configuration Registers
– Hybrid solutions mixing all of the above.

Sponsored By:

5 of (total number of slides)

Testbench Topology Explosion
• Consider the following hypothetical SOC design

– A central multi-core CPU
– Ten to twenty peripherals available
– Each peripheral has multiple modes (ie ddr2 and ddr3)
– Each peripheral has multiple connectivity options.

• Given these characteristics the maximum theoretical
number of topologies could easily reach into the millions.

• Many of the possible topologies are not useful combinations
but even a small fraction of a million combinations is still a
really large number.

Sponsored By:

6 of (total number of slides)

A new net-list for Every
Topology?
• There would be way to many.
• They will be really hard to

maintain.
• For example one set of port

updates would need to be
replicated across each of these
net-lists leading to a lot of error
prone duplicated efforts.

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

Sponsored By:

7 of (total number of slides)

Connecting VIP’s to DUT Pins
• There may be many possibilities to route peripheral

interfaces through an SOC to different sets of pins.
• Therefore multiple paths of connectivity from the VIP to the

proper DUT pins must be supported.
• Solving this problem increases the size and complexity of

the testbench.

Sponsored By:

8 of (total number of slides)

Relying on the Preprocessor
• When used extensively, the number of text macros could

easily explode making them hard to enhance or maintain.
• When text macros are used across different design teams

or third party IP, name collisions occur frequently and can
be difficult to correct.

• When the preprocessor is used to define topology, it
becomes frozen at compile or analysis time.

• There is no flexibility to defer choices until elaboration time.
• There must be a compile or analysis and a temporary

database executed and created for each topology.

Sponsored By:

9 of (total number of slides)

Relying on parameters
• Parameters work well for configuring topology for HDL

(modules).
• However, parameters do not work as well for HVL

(parameterized classes).
• Since they work well on the HDL side and not as well on

the HVL side, how could they be used across both
contexts?

Sponsored By:

10 of (total number of slides)

Configuration Registers
• Provides for dynamic reconfiguration.
• Registers must be programmed and readable.
• This may require adding wiring to the net-list or API’s to the

registers.
• The bigger problem is that as new features are added that

impact testbench topology, new register bits must be
allocated and added and API access (from the HVL class
side) must also be enhanced.

Sponsored By:

11 of (total number of slides)

Hybrid Solutions
• In most real world cases, some combination of these

solutions are implemented.
• This may be due to legacy code, multiple IP providers or

teams or just different levels of experience on a design
team.

• Hybrid solutions are usually difficult to maintain and
enhance since there are so many different ways to do the
same types of things.

Sponsored By:

12 of (total number of slides)

Topology in HDL & HVL contexts.
• Any solution for dealing with the configuring the topology of

the testbench must consider both the HDL (module) and
HVL (class) contexts.
– If separate HDL net-lists are used, they must have

equivalent HVL objects.
– If separate text macros
– Parameters
– Configuration registers
– Hybrid solutions

Sponsored By:

13 of (total number of slides)

Requirements for an Elegant
Solution.
• One and only one HDL net-list and HVL object.
• Consistent and clean method to configure topology.
• Encapsulate the complexity of testbench connectivity

leaving simple connections for the net-list and object.
• A single access and control point to configure HDL and HVL.
• Only one compile or analysis is needed with all possible

models are compiled.
• Topology choices are deferred until elaboration time.
• HDL net-list options are synchronized with appropriate HVL

objects.

Sponsored By:

14 of (total number of slides)

One netlist it all that is needed.
• Creating a net-list for every

topology is clearly not a
pratical solution and is very
hard to maintain.

• Some keep the number of net-
lists to a minimum.

• But even having only two
would still invite difficulties
keeping them maintained.

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

module HDL_TOP
(clk,
reset,,

din,
dout,
mp,
add,
tdi,
tdo,

pbus,

Sponsored By:

15 of (total number of slides)

Topology Configuration.

• One set of topology parameters should be all that is
necessary.

• The preprocessor should not be used for topology:
• `define
• `ifdef
• `elsif
• `endif

Sponsored By:

16 of (total number of slides)

Encapsulate Complexity.

• Keep the top level net list very clean and simple.
• Define and maintain one set of simple connections for each

DUT port connection, VIP and other testbench components.
• Switching connections from VIPs to DUT pins or internal

nets may be complicated.
VIP

VIP

Mem

PIN
SWITCH DUT

• Consolidate and reuse
switching solutions.

• Avoid implementing
different sprawling
solutions which leads to
creeping complexity and is
difficult to maintain.

Sponsored By:

17 of (total number of slides)

Control HDL and HVL topology.

• Parameters work well in HDL but not as well in HVL.
• Parameters used with generate is very effective in HDL.
• A generate statement could connect one of two UVM

driver/monitor choices in the topology.
• But how would a corresponding agent and sequencer get

selected in the HVL object hierarchy?
• How could this be done without requiring parameters in the

class which is problematic?
• The answer is to pass HDL topology parameters to HVL by

assigning them to signals in an interface.
• Access them from a virtual interface in the HVL object.

Sponsored By:

18 of (total number of slides)

Only One Compile is needed.

• The flexibility of the generate statement is highly leveraged.
• It allows all possible models to be compiled at compile or

analysis time.
• The decision as to which model to use for a particular test

is deferred until elaboration time.
• This prevents recompiling for every possible topology

saving many wasted hours for a regression run.
• The parameters that define which of the generate

statements to follow can be passed from parameter settings
from files or even on the simulator command line.

Sponsored By:

19 of (total number of slides)

Topology Defined at Elaboration.

• The choices of which testbench VIPs or models will be used
are determined by the topology parameters.

• These parameters can be set from default values or passed
on the simulator command line that performs elaboration.

• Deferring topology choices until elaboration time gives
maximum flexibility.

Sponsored By:

20 of (total number of slides)

Common Control for HDL & HVL

• The parameters that control the generate choices are also
assigned to signals in an interface and accessed through a
virtual interface in the HVL objects.

• The values detected in the virtual interface in the HVL
object are used to instantiate the correct agents in the HVL
object matching up with the corresponding drivers or
monitors chosen in the HDL generate statements.

Sponsored By:

21 of (total number of slides)

More Advantages

• Suppose a large SOC has a total of 72 useful topologies.
• Traditional approaches using multiple net-lists or text

macros would require 72 compile operations.
• If each operation took 10 minutes that would require 720

minutes or 12 hours of CPU time for a full regression run
just to prepare to run simulation.

• If each compiled DB required 7Giga-bytes of storage then it
would take 500 Giga-Bytes of storage just to prepare for
simulation.

• In contrast, if all 72 topologies were controlled with the
elegant solution there would only be one compile taking 10
minutes and 1 7 Giga-byte of storage.

Sponsored By:

22 of (total number of slides)

Faster Compile time; Smaller

Sponsored By:

23 of (total number of slides)

HDL Example
FROM THE HDL CONTEXT:

. . .
parameter USE_L3_ACP_AXI_VIP = 0;

. . .
// This interface is used to store and distribute parameter settings
// for which TB components and parameters to use.
config_tb_if cfg_tb();
assign cfg_tb.use_l3_acp_axi_vip = USE_L3_ACP_AXI_VIP;

. . .
//// AXI Tranactor (replaces peripheral connections for testing).
generate if (USE_L3_ACP_AXI_VIP) begin : inst_acp_axi_vip_mst
axi_monitor_module #(.ADDR_WIDTH (`ACP_ADDR_WIDTH),

.RDATA_WIDTH (`ACP_RDATA_WIDTH),

.WDATA_WIDTH (`ACP_WDATA_WIDTH),

.ID_WIDTH (`ACP_ID_WIDTH),

.LEN_WIDTH (4),

.AXI_ID ("acp_axi_monitor")
) acp_axi_monitor (.mif(acp_axi_vip_mst));

end
endgenerate

Sponsored By:

24 of (total number of slides)

HVL Example
FROM THE HVL CONTEXT:

. . .
virtual config_tb_if cfg_tb;

. . .
if (cfg_tb.use_l3_acp_axi_vip) begin
ovm_report_info("build: ", "ACP_AXI_VIP agent will be enabled ...");
l3_acp_axi_a = axi_agent #(ACP_axi_p)::type_id::create("l3_acp_axi_a",

this);
l3_acp_axi_a.set_config_id("master_acp", axi_pkg::MASTER_MONITOR);
l3_acp_axi_a.register_agent(TBMB_PERIF_ACP_ID);

end
. . .

Sponsored By:

25 of (total number of slides)

Conclusion

• Sprawling complexity and inconsistent hybrid solutions for
defining the testbench topology create serious maintenance
issues making it difficult to develop or enhance tests for
complex SOC designs.

• Consolidating topology definition of both HDL net-lists and
HVL object hierarchies to a single point source simplifies
maintenance while preserving significant flexibility with a
very large variety of topologies available.

• Encapsulating complex connectivity choices within a
specialized switching model provides the necessary
connectivity options while keeping the top level HDL net-list
simple to define and maintain.

	One Compile to Rule them All:�An elegant solution for �OVM/UVM Testbench Topologies
	PLEASE NOTE:
	SOC Testbench Topology
	SOC Testbench Topology
	Testbench Topology Explosion
	A new net-list for Every Topology?
	Connecting VIP’s to DUT Pins
	Relying on the Preprocessor
	Relying on parameters
	Configuration Registers
	Hybrid Solutions
	Topology in HDL & HVL contexts.
	Requirements for an Elegant Solution.
	One netlist it all that is needed.
	Topology Configuration.
	Encapsulate Complexity.
	Control HDL and HVL topology.
	Only One Compile is needed.
	Topology Defined at Elaboration.
	Common Control for HDL & HVL
	More Advantages
	Faster Compile time; Smaller
	HDL Example
	HVL Example
	Conclusion

