
Rajeev Ranjan, PhD Ross Weber Ziyad Hanna, PhD

 Chief Technology Officer Principal Engineer Vice President of Research & Chief Architect

Jasper Design Automation Inc.

rajeev,weberrm,ziyad.hanna@jasper-da.com

On Verification Coverage Metrics in Formal Verification and
Speeding Verification Closure with UCIS Coverage

Interoperability Standard

Abstract— This paper presents a comprehensive
approach to the classical notion of hardware design
verification coverage, augmenting the widespread
coverage analysis and metrics from simulation with
coverage obtained with formal analysis. In our work,
we address major coverage questions related to the
application of formal verification such as “is my formal
environment capable of sufficiently analyzing the
design?” “Are there parts of my design not being
checked by the property set?” “What parts of my
design have been verified/not verified as part of the
proof process?” The formal coverage results and
analysis can leverage the latest coverage
interoperability standard (UCIS) that allows for
interoperability of verification coverage data across
tools and methods from multiple vendors. Our
approach addresses the increasing verification
productivity challenge by delivering the requisite
coverage visibility and metrics from formal verification
while simultaneously accelerating the overall
verification coverage closure process.

Keywords— (Formal Verification, Formal Coverage,
Formal Specification Languages, Coverage
Interoperabilitty Standard)

I. INTRODUCTION
The role of formal verification technology in the

overall system-on-chip (SoC) design and verification
flow has been growing over the years [2]. The
application of this technology has spread, providing a
wide range of solutions to emerging problems in
design and verification, starting from architectural
modeling and verification, through RTL development
and block/system verification, all the way to post-
silicon debug. Today, diverse engineering groups,
such as architects, security engineers, RTL designers,
validation engineers, and silicon debug experts, use
verification solutions based on formal technologies
[10]. The higher quality of the verification results, as
well as the improved productivity that the formal
verification methods deliver, have made it a common
methodology to apply in all aspects of the design and
validation flows. Consequently, the wider adoption of
formal methods has led to a growing need for
coverage information similar to that traditionally

obtained from dynamic methods. This need is
motivated by two factors. The first factor is that of
achieving confidence about the effectiveness of the
verification tasks performed with formal technology.
The second is that of finding a way to combine
engineering efforts and results from both formal
verification and simulation to accelerate overall
verification closure.

In this paper, we introduce several notions of
coverage relevant to formal analysis that can help
fulfill both objectives. The paper is organized as
follows: Section II covers the necessary background
to set the context; Section III provides some
preliminary definitions and terminology on which our
work is based; Section IV gives the background on
coverage analysis in the context of formal
verification; Section V, Section VI, and Section VII
provide details on three different types of coverage
measurements in formal verification. In Section VIII
and Section IX, we touch upon the aspect of
leveraging coverage information from formal
verification and simulation to accelerate verification
closure. Finally, Section X provides experimental data
and a flow that illustrates our formal coverage
analysis method.

II. COVERAGE BACKGROUND
The process of any functional verification method

involves stimulating the design, propagating the
effects to an observable point, and checking the
response for the correct behavior. The completeness
of this process is dependent on the completeness with
which the design is stimulated (that is, all possible
behaviors have been exercised), the ability to ensure
that the effects (both good and bad) of exercising the
behaviors are propagated to an observable point, and
on the completeness of the checking mechanism (that
is, all relevant design behaviors have been checked
against the specification)[6].

Simulation-based verification is a sampling
process of all of the possible input sequences that
could be applied to the design. Various testbench-
based tools and methodologies are widely used today
to focus the validation of the design on a subset of

interesting scenarios of the design in order to limit the
validation process to a manageable size and effort.
Since simulation-based methods are not exhaustive,
coverage methods have become an essential means to
measure the completeness of the validation. Over the
years, validation engineers have invented various
coverage models and techniques to measure the
effectiveness of the testbench, including code
coverage, branch coverage, finite state machine
(FSM) coverage, functional coverage, and so forth.

In formal verification, the correctness of a design
is verified with respect to a desired behavior. The
verification is carried out by checking whether the
mathematical state of the design (typically a labeled
state-transition graph) satisfies the specification of
this behavior, which is expressed in terms of a
temporal logic formula (specified by a set of
properties) or a finite automaton.

Assuming that the implementation of the formal
technique(s) is accurate, the verification
completeness of a given design is then dependent on:

1. The completeness of the property set
(specification) against which the design is
formally verified,

2. The accuracy of the constraints (the set of
legal stimuli under which the design is
analyzed), and

3. Whether formal analysis was complete or
partial. A partial analysis means that the
computation was not able to complete due to
resource constraints, such as time or
memory.

In the Assertion Based Verification (ABV)
methodology — one of the most common
manifestations of formal method adoption —
designers and verification engineers systematically
add embedded assertions into their design, using some
type of specification language such as SVA or PSL.
When run in simulation flows, such assertions, when
triggered, indicate a failure in the design. When used
in formal methods, such assertions prove the
correctness of the design. ABV users usually ask the
questions, “have we put enough assertions in the
design?” and “do the assertions capture the entire
design intent?” Typically, these assertions are verified
in the presence of constraints that capture the
environment behavior. The soundness of these
constraints is always a concern and can be addressed
by measuring the stimuli coverage in the presence of
these constraints. Additionally, it is possible that some
of these assertions are not analyzed for the entire
reachable state space of the design due to some
resource constraint (such as compute memory and

time). In these cases, obtaining verification coverage
for the partial analysis is desired.

The most accurate coverage model is one that is
based on the reachable state space of the design. The
true indicator of verification progress would be based
on the ratio of state space visited compared to the set
of all possible states. Obviously, for coverage
analysis, the state space should be computed for
calculating the coverage percentage. However, it is
practically impossible to represent the state-space
graph of an entire industry design explicitly. In
addition, the absolute number of states would be
astronomically large and would not provide any
meaningful value towards measuring verification
progress.

For decades, a variety of different coverage
models have been used that achieve different degrees
of approximation of the true coverage. For example,
code coverage-based models such as branch coverage,
statement coverage, expression coverage, and so forth.
In addition, FSM states and transition-based coverage
models are widely used. For a complete treatment of a
variety of coverage models, refer to [9].

III. PRELIMINARIES
Consider RTL design D represented in a standard
hardware description language, such as
SystemVerilog or VHDL, and formal specification S
described by a set of SVA or PSL properties. For a
given RTL design D, a Coverage Model M is a finite
set of Coverage Items CI(D) ={C0, C1, …, Cn}, where
each cover item Ci represents an implicit or explicit
event in the design. An example of an implicit event
would be one corresponding to the triggering of a
line/branch/expression or a set of events that can be
enumerated based on some specification. An explicit
event would be something specified by a user. In
some cases, the collection of coverage items could
also be dependent on a property or a set of properties
under consideration.

Coverage Analysis computes whether a cover item
Ci is triggered during the simulation of RTL design D,
or was part of the reachable state space during the
formal analysis, and if so, we say that such Ci is
reachable. The coverage of design D for a given
Coverage Model M is computed by the percentage of
the reachable Ci in the Coverage Items CI. For
example, a chosen coverage model can consist of all
the branches in the source code of the design
(classically known as branch coverage); thus, the CI is
the set of all branches in D. Coverage analysis checks
whether every Ci, or source code branch in D, is
executed in simulation, or the corresponding state has
been analyzed in formal analysis. The coverage of D
according to M and CI is the percentage of reachable
branches in CI. Depending on the context, the set of
branches under consideration could be restricted to

those relevant only for the set of properties being
analyzed. That is, a cover item is considered relevant
for a property S if it falls in the cone of influence
(COI) of the property. The percentage coverage is
then appropriately computed by considering only the
restricted subset. A Coverage Model M can be
explicitly defined by the user. For example, each Ci of
CI could be a functional event of interest, for
example, “request ##3 grant” — a request
followed by a grant in three cycles. Typically, the set
of coverage points representing some functional
events is referred to as the functional coverage model.

All coverage analysis-related information — set of
coverage items, set of properties, and status of
coverage items with respect to each property — is
typically stored in a database, commonly referred to
as a coverage database. These databases are
proprietary to the verification technology vendors.
Recently, a standard, known as the Unified Coverage
Interoperability Standard, has emerged allowing all
proprietary databases to support a standard API to
perform read/write operations. The API standard is
meant to enable uniform access to coverage data from
heterogeneous sources, such as different technologies
and tools from different vendors.

IV. FORMAL COVERAGE
In the context of formal analysis, a number of

coverage measurement and analysis-related questions
are addressed below:

Stimuli Coverage: Given a formal environment that
captures, among other things, a set of constraints to
limit the set of legal stimuli applied to the design, can
we achieve some measurement of confidence
regarding the sufficiency of the input vectors
permissible by the constraints? In other words, can we
obtain some coverage measurement for protection
against the possibility of over-constraining the
design? Do the constraints limit the state space for a
set S of properties or checkers? This analysis can be
referred to as stimuli coverage. It should be noted here
that in simulation, this is the default interpretation of
the “coverage” term.

Property Completeness Coverage: In formal
verification, a set of assertions S is specified in some
formal language, such as SVA or PSL, to check
whether the design D adheres to the desired design
intent. Measuring the exhaustiveness of a
specification in formal verification ("do more
properties need to be written?") has a similar flavor to
measuring the exhaustiveness of the input sequences
in simulation-based verification ("do more input
sequences need to be created?"). We refer to the
coverage metric to approximate the completeness of a
property set as property completeness coverage. We
should note that this coverage metric is also relevant
in a simulation context; however, as previously noted,

the stimuli coverage remains the default and main
focus in the dynamic validation world.

Proof Coverage: Unlike simulation methods, which
sensitize the design with input stimulus on an iterative
basis, formal methods traverse the state space for the
design. By default, the formal tool attempts to traverse
the entire reachable state space of a design. For the
cases where the entire state space is traversed, we
would like to obtain the corresponding verification
coverage. We refer to this type of coverage metric as
full-proof coverage. However, depending upon the
complexity of the design, the property under
consideration, and the resulting mathematically
complex nature of the underlying analysis, it is
possible that the computation may hit resource limits,
such as available time and memory. We refer to the
coverage metric used to determine the verification
coverage for this bounded proof analysis as bounded
proof coverage.

Selection of Coverage Model: As stated earlier, the
most accurate coverage model is one that is based on
the reachable state space of the design, that is, CI, the
set of reachable states of design D. Each reachable
state from the reset state(s) is a cover item Ci.
Obviously, for coverage analysis, the state space
should be computed in order to calculate the coverage
percentage. However, this coverage model is not
practical from either computation or representation
perspectives.

It is interesting to note that, for various coverage
measurements in the formal analysis world, we can
borrow on the well-established notions of coverage
metrics adopted in the simulation world. While our
coverage approach is independent of the chosen
coverage model, for illustration purposes, we have
chosen to use a specific flavor of code coverage as our
coverage model. In particular, for our work, we create
CI from RTL statements as well as branching
conditions. The number of cover items in these two
coverage models varies linearly with the size of the
RTL source code. This is intuitive enough for the
users, and practically manageable for the sizes of RTL
designs where formal verification is applied.

V. STIMULI COVERAGE
Unlike simulation, where the design is sensitized

by the explicit application of input vectors as
generated by the testbench, in formal verification, the
mathematical model of the design and the
specification is analyzed for all possible combinations
of input sequences. In this scenario, the stimuli
coverage for the design is 100 percent because all
possible sequences have been applied to the design.
However, in practice, a formal environment deploys
constraints that are used to eliminate the illegal input
sequences and limit the analysis of the design to valid
ones. These constraints are typically declarative

properties specified in SVA or PSL. The constraints
are specified with the intention of preventing false
failures, that is, an assertion fails in the design for an
illegal input sequence. The presence of constraints in
the formal environment necessitates computation of
stimuli coverage in formal analysis. This is even more
important to prevent “over-constraining.” This is a
situation where constraints collectively eliminate legal
input sequences and prevent the verification from
visiting legitimate reachable states where the design
might fail the specification. In other words, over-
constraining could lead to a false sense of confidence.
Stimuli coverage metrics provide a way to establish
some confidence about the correctness of the
constraints in the formal environment.

In our proposal, stimuli coverage computation
works in a very similar manner to that in a simulation
flow. The method is independent of the coverage
model chosen. As mentioned earlier, for the purposes
of measuring coverage, we can borrow the widely
adopted metrics in the simulation world, such as
branch coverage, statement coverage, expression
coverage, FSM coverage, toggle coverage, and so
forth.

Assume that CI represents the set of coverage
items for a given coverage model. For every cover
item Ci in CI we perform a reachability analysis.
Based on the results of the reachability analysis, the
coverage items can be divided into three subsets:
CI_R(E, D) = {Ci | Ci in CI where Ci is reachable or
covered in design D under environment E}. The
subset CI_R represents all the events that can be
reached by a finite path from reset state(s). We denote
the subset CI_U(E, D) = {Ci | Ci in CI, where Ci is
unreachable or uncovered in D under environment E}.
Depending upon the chosen coverage model, the
subset CI_U(E, D) could represent the fragment of
RTL code which cannot be exercised. This could be
an artifact of (a) design error that causes the non-
exercisability, or (b) some configuration parameters
that disable some pieces of code (intentional
disabling), or (c) the interactions of constraints
preventing the design from entering a state where the
code fragments could be exercised. Specifically,
stimuli coverage can help detect “dead-code”
situations in the design. The third set is CI_B(E, D) =
{Ci | Ci in CI where Ci is unresolved or got to a
bounded search in design D and environment E}. The
sets CI_R(E, D), CI_U(E, D), and CI_B(E, D) depend
on the complexity of the design, constraints,
computational performance of the formal engines, as
well as on resources applied for the computation, such
as time and memory.

Applying the environmental constraints E for
stimuli coverage can be done adaptively. Initially, we
can choose E to be empty, that is, no constraints are
applied to the design. Thus, the set CI_U(E,D) reflects

the dead code in all possible environments of D. Users
can define the environment incrementally by defining
the clock, reset, and then the behavioral constraints,
which yields a sequence of CI_Ui(Ei,D) sets, where
CI_Ui(Ej,D) is included in CI_Ui(Ek,D) for Ej that is
more restrictive than Ek. The computation complexity
of these subsets increases for more restrictive
environments. Users can obtain incremental reports
for each CI_Ui(Ei,D) to understand the impact of the
Ei on D. This process provides a comprehensive
understanding of the impact of adding new constraints
to the design in the form of differences observed in
stimuli coverage.

VI. PROPERTY COMPLETENESS COVERAGE
Research in the area of property completeness

coverage for formal verification has been focused
solely on state-based coverage. This state-based
coverage metric is based on mutations — small errors
or mutants injected into the design — applied to the
FSM. Essentially, a state "s" in the FSM is covered by
the specification if modifying the value of a variable
in the state renders the specification untrue. In [11],
Chockler et al. adapted the work done on coverage in
simulation-based verification to the formal-
verification world in order to obtain new coverage
metrics. For a number of metrics used in simulation-
based verification, the authors presented a
corresponding metric that is suitable for formal
verification, and described an algorithmic way to
check it. Examples given in the paper are code
coverage, circuit coverage, FSM coverage, and
mutation coverage. In fact, they claim that almost
every heuristic regarding stimuli coverage in the
simulation world has a corresponding metric to
determine the response-checking coverage in the
formal world. In [12] Koen provides a way of
approximating an answer to the question, “Have we
specified enough properties?” Given the interface of a
design under verification, plus a property list, the
technique identifies cases where some outputs of the
design are not constrained at all by the properties. In
practice, under some scenarios (the design states) the
outputs are allowed to be under-constrained. The
technique allows for easy specification of such “don’t
care” exceptions. Due to the computational
complexity and inherent impracticality in the usage
model, neither of the two methods [11, 12] have found
acceptance in hardware design verification flows.

One straightforward way to measure the property
completeness would be to identify the subset of
design logic that is structurally in the fan-in of the
collection of properties. This can be achieved by
doing structural traversal of the netlist representing
the design and the properties. The parts of logic that
are not in the recursive fan-in of any of the properties
represent an obvious hole in specification. In other
words, more properties need to be written to check

these parts of the logic. It should be noted that this
method of property completeness coverage
measurement can identify most obvious property
coverage holes. To compute this structural coverage
of a given set of assertions S = {P0, P1, …, Pn} for a
design D and environment E, we consider the
coverage for each property Pi and aggregate the
coverage results to form the coverage of S. We denote
COI(P,E,D) to be the set of cover items Ci in CI(E,D)
that intersect with the COI of property P in design D
under the environment E. In short notation, we use
COI(P) when D and E are known in the context.
Clearly COI(P) is a subset of CI. The union of the
subsets COI(Pi) is denoted by COI(S), the coverage
item set for the specification S.

Of late, design mutation-based coverage
measurement has been gaining ground in the area of
verification coverage [14]. For a simulation
infrastructure, a fault model for the design is applied,
and the completeness of the stimulus set and the set of
response-checking mechanisms is measured, based on
the ability of the verification framework to catch
errors resulting from those faults. Similar concepts
can be adopted to obtain information about property
set completeness in formal verification. First of all, a
fault model can be identified, which in turn creates a
fault set consisting of all the faults in the design fitting
that model. For example, the fault model could be
disconnecting a driver from a flop, thus making the
flop a free net. The fault set would then consist of
design mutations, whereby in each mutation exactly
one flop has been disconnected. The property
completeness metric can be obtained by checking how
many of these faults in this fault set are detected, as
indicated by the failure of one or more properties. The
faults that are not detected, that is, none of the
properties in the environment fail, indicate a hole in
the property set. In other words, a user needs to write
some additional properties that are sensitive to these
faults that represent coverage holes.

VII. PROOF COVERAGE
In this section, we discuss the measurement of the

amount of verification performed as a result of either
the full proof or the bounded proof for a set of
properties. As mentioned in Section IV, these two
possibilities may happen depending on the
design/property complexity as well as the resources
such as compute time and memory applied in the
computation.

Full-Proof Coverage: To measure the verification
coverage for the properties that are fully proven, we
introduce a notion of Proof Core of a property. The
proof core of a property P is the subset of the logic
contained in the COI of the property, and this subset is
capable of establishing the correctness of the property.
In other words, parts of the design D that are outside
the proof core do not impact the correctness of the

property P. Computing the proof core is done inside
SAT-based, model-checking algorithms using
unsatisfiable core generation techniques [13]. We
denote PC(Pj) is a set of Ci in CI(E,D) that intersects
with the proof core of Pj. PC(Pj) is included in
COI(Pj). The set PC(S) is the union of all PC(Pj).
Similar to sets described in the stimuli coverage
section, we define the subsets PC_U, PC_R, and
PC_B for unreachable, reachable, and bounded cover
items to form the coverage set PC(S). It should be
noted that the proof core coverage for the properties
that are fully proven takes into account the effect of
both the constraints in the environment and the set of
properties under consideration. Since it takes into
account only those cover items that are found to be
essential for ensuring the correctness of the property,
this coverage metric is the strongest of all coverage
metrics used in simulation and formal verification.
The drawback of this metric is that it requires that the
property is fully proven, which may not be the case
for a complex design and property. Secondly, in some
cases, even if the property is fully proven, it may be
quite expensive to compute the corresponding
unsatisfiable core.

Bounded-Proof Coverage: Due to the mathematically
complex nature of formal analysis, it is possible that
the computation may hit resource limits, such as time
and available memory. Often, an incomplete formal
analysis is measured in terms of the number of cycles,
with reference to some specific clock, of analysis the
design has gone through. For example, "k" cycles of
formal analysis establishes that the design has been
analyzed for all input sequences of length "k". This
statement is true for most common types of formal
analysis which traverse the state space of the design in
a breadth-first manner.

In another scenario, the formal analysis can be
performed under some restricted set of inputs, for
example, a subset of inputs could be tied to a constant.
This typically happens when a design's validity
against the specification has been formally analyzed
for a particular mode setting. Another scenario of
partial formal analysis is when an arbitrary starting
state is used. This precludes the guarantee that the
property has been analyzed for all states that the
design could attain.

The most accurate way to measure the stimuli
coverage for partial formal analysis would be to
determine the fraction of all possible reachable state
space that has been covered. However, establishing
this measure is not practical since determining the
exact reachable state space itself is a hard problem.

Similar to the property completeness analysis, we
use the COI(S) to represent all the cover items in the
COI of the specification S. The subsets COI_R,
COI_U, and COI_B for the reachable, unreachable,

and bounded cover items in COI(S), are computed
separately using formal analysis. Observing the
content of such subsets and the depth of the cover
items greatly help to understand the value of the
bounded proof. For example, the number of Ci in
COI_R(P) within the given property bound can be an
indicator of the verification coverage for that property.
For example, if P is part of S with bounded proof
value k, and there are n cover items in COI_R(P) that
are reachable in bound < k, we can use “n” to be the
relative indicator of the verification coverage for
property P. We can aggregate the verification
coverage from all the properties with a bounded proof
result by taking the union of these sets.

For bounded proofs, it is interesting to know
whether the given bounded proof k for a property P in
specification S, design D, and environment E is
sufficient. In other words, does the property P
exercise all the interesting cover items in COI(P)? We
use the subsets COI_R, COI_U, and COI_B to
analyze this. Clearly, if k is higher than all the bounds
of the cover items in COI_R and COI_B, then the
bound k gives very good verification confidence since
all the design events manifested by the cover item set
are reached within this bound. Note that like any other
coverage measurement, reaching 100 percent
coverage for a given coverage model is only as good
as the quality of the model chosen. On the other hand,
if k is much smaller than the bounds in COI_R, it
implies that the property analysis has been shallow,
and therefore, the formal analysis needs to work
harder on the property P to achieve a deeper bound.
The COI_U can be used as helper properties for
proving P to reduce the state space of P by eliminating
the unreachable cover items from the search.

A sample bounded proof coverage result for an
assertion is illustrated below:

a) 137: Assertion proof bound (# of cycles for
which the assertion has been proven correct)

b) 1200: # of cover items in the COI

c) 865: # of cover items in b that are reached
within the 137 clock cycles (the proof
bound)

d) 230: # of cover items in b that are reached
beyond the 137 clock cycles

e) 191: Maximum depth of the cover items
reached in d

f) 55: Number of cover items in b that are
proven to be unreachable

g) 50: Number of cover items in b whose results
are not determined

h) 76%: Bounded proof verification coverage:
865 (# of cover items analyzed in the proof

boundary) divided by 1200-55 (effective # of
cover items)

To measure the collective bounded proof coverage
for a group of assertions, one can take the intersection
across all the assertions of cover items that are in
bucket c to calculate the overall number for the
numerator for the coverage computation. In the same
way, the union of the cover items in f across all the
assertions should be subtracted from the overall
number of cover items to obtain the denominator.

VIII. LEVERAGING COVERAGE INFORMATION FROM
SIMULATION AND FORMAL VERIFICATION

Since the specific tasks performed with formal
verification technology complement the rest of the
verification work performed with traditional
simulation methods, a question that is often asked is
"How does one combine the results from formal
verification with those obtained from simulation?"
The intent behind this question is to eliminate any
duplicate verification effort between these
methodologies and improve overall verification
productivity. This can be analyzed in a top-down
view as well as a bottom-up view.

In the top-down view, simulation and formal
verification can be leveraged in a systematic way as
dictated by a verification plan. Effective verification
planning adds predictability to the verification flow by
specifying exactly what needs to be tested. Planning
also provides the necessary structure to identify key
areas where complementary verification technologies
can be applied effectively. By ensuring that the
verification tasks are tied to the specification and
assigning an appropriate verification method
(simulation or formal analysis) to each task, one can
significantly reduce, if not eliminate, any redundant
verification effort.

In the bottom-up view, formal analysis and
simulation methods can cooperate in multiple ways to
help improve overall coverage.

The first flow would be to facilitate engineering
productivity in dealing with unreachable coverage
targets. Traditionally, design and validation engineers
spend significant time addressing coverage holes. The
validation engineers tweak the testbench in an attempt
to steer the simulation towards the necessary coverage
targets. The design engineers either provide necessary
hints for that steering effort or waive the coverage
hole as harmless, in other words, the coverage hole is
an artifact of the design functionality. Formal
technology can greatly facilitate this manual effort. In
particular, formal analysis can establish that a subset
of coverage holes is caused by unreachable coverage
targets — the targets that are not reachable for any
legal input sequence. This eliminates unnecessary
simulation effort targeting those areas. In addition,

formal analysis can create specific scenarios
automatically, which will fulfill specific coverage
targets when simulated.

A second flow where formal analysis can reduce
the simulation effort is where a design block is fully
verified formally for a specific mode, perhaps the
most complex one. The simulation effort can then be
targeted to provide coverage in untested modes.

A third flow would be to leverage the coverage
information for the fully and partially proven
properties, as described in Section VII. The coverage
information from formal analysis can be stored in a
database that can be merged with the coverage
information from simulation methods. In this use
model, the information about the design sensitization
from simulation and formal analysis is combined to
achieve higher overall coverage. However, some
technical caveats must be mentioned here for this
particular flow. As described in the introduction, the
verification coverage measurement is dependent on
the infrastructural components of the verification
environment. Typically simulation environments
deploy bus functional model (BFM) based transactors
for stimuli generation. This is in sharp contrast to the
declarative assumptions used in formal analysis to
limit the scope of legal stimuli applied to the DUT.
On the response checking side, while the mechanism
between simulation and formal verification may
overlap — assertions being used in both formal and
simulation — in practice, the checkers used in
simulation are not directly usable in formal analysis.
This may be due to either the non-synthesizability of
the checkers or to the fact that the checkers are tied to
the transactors. The bottom line is that because of
these infrastructural differences, the context of the
coverage measurement is different between formal
verification and simulation. This should be kept in
mind when combining the coverage numbers to get
overall verification confidence.

IX. ACCELERATNG COVERAGE CLOSURE WITH
UCIS API

In June 2012, Accellera’s Unified Coverage
Interoperability Standard (UCIS) sub-committee
published the first draft of the coverage API standard.
The standard API enables the interoperability of
coverage information from heterogeneous sources.
There are some limitations to the current standard
specifically in the area of standardization around the
definition of various coverage metrics that makes the
uniform interpretation of all coverage data a bit
difficult [8]. Assuming that the coverage metric is
well-defined, a formal tool can query a coverage
database supporting UCIS API that is populated by
data from a simulation tool. The ability to read/write
information into a coverage database has enabled the
use models discussed in the previous section. More
specifically, a formal tool can automatically identify

the coverage items that are not hit in simulation, and
after performing appropriate analysis, automatically
update the database with information about
unreachable coverage items. In addition, the coverage
information for the fully proven properties as well as
that for the bounded proofs can be populated in the
same database that is used for simulation. Appropriate
coverage merger techniques can be used to combine
the metrics information from the two sources to
increase the overall coverage and accelerate the
coverage closure process. A conceptual representation
of this flow is shown in the figure below.

X. CASE STUDY
We have applied the concepts addressed in this

paper on a number of industrial designs from different
industry segments. For these cases, a mixture of
statement and branch coverage models was used. We
provide the design statistics for five designs below in
Table 1. We also provide a qualitative analysis of a
coverage flow on design 5, including (a) property
completeness coverage, (b) stimuli coverage, and (c)
bounded proof coverage and debugging.

TABLE I. DESIGN STATISTICS

Design Flops Latches Gates Nets Cover
Items

1 5247 631 387409 797567 58606

2 3988 3671 156925 339872 24192

3 1084 222 113554 199478 20765

4 7732 0 341205 772132 62117

5 19892 0 414379 392794 38633

Design 5 is a cache-coherent interconnect, which
is common to many SoC designs. For the rest of this

DUT

Testbench

Simulator

JasperGold

UCIS

section, we have chosen this design (D) for analysis
purposes. The coverage model (M) chosen for this
design is statement coverage and defines the coverage
items (CI) for further analysis. In addition to the
design and coverage items, the formal verification
environment also contains 362 assertions, which
define the property set (S), and 506 assumptions,
which contribute to defining the environment sets (E).

As described earlier, analyzing the COIs of a set
of properties, COI(S), can be an indicator of property
completeness coverage. More specifically, cover
items not found in COI(S) or in only a small number
of COI(P) can be an indicator of holes in the property
set. For design 5, as shown in Figure 1, of the 38,633
cover items, 4,655 were outside the COI of any of the
properties in S.

Figure 1 Out of COI Report

Further analysis also revealed that nearly 10,000

cover items were in the COI of five or fewer
properties. Almost all of these cover items involved
the flow of data passing through the interconnect.
Clearly, the control functionality of this design is
covered much better by the property set than the data
functionality.

Both the out of COI(S) and low COI(P) count
metrics represent holes or potential holes in the
property set for design 5. The typical reaction to these
holes is to write more properties — relevant for logic
— or pass the verification burden on to simulation or
other higher levels of verification where other
properties may have the cover items in their COI.

To summarize, the property completeness metrics
identified areas of the design which were either not
being verified or not being well verified by the
property set. This information is useful in guiding
engineers to the areas of the design which need more
properties written or verification focus in other
verification environments.

Next, to ensure the validity of the formal
verification environment constraining this design,
stimuli coverage analysis was performed. Recall that
to obtain information about the impact of constraints
on the stimuli coverage, a baseline environment and
reachability of cover items in that baseline
environment need first to be established. For this
design, the baseline environment consisted of a clock
definition, a reset definition, constraints to tie off scan
functionality, and constraints to tie off other unused

ports. The reachability results, CI_R, CI_U, CI_B, for
the baseline environment, E0, are shown below in
Table II. Note that in the baseline environment
(without any explicit constraints), there were 1374
unreachable cover items.

TABLE II. E0 BASELINE REACHABILITY

Design Total Cover
Items

Reachable
Cover
Items

Unreachable
Cover Items

Undetermined
Cover Items

5 38633 36726 1374 533

In the target environment with a full constraint set,
where the formal verification of the assertion set was
performed, there were 506 assumptions that provide
many additional constraints on the environment. The
reachability results for this environment, E1, are
shown below in Table III.

TABLE III. E1 TARGET REACHABILITY

Design Total Cover
Items

Reachable
Cover
Items

Unreachable
Cover Items

Undetermined
Cover Items

5 38633 34804 1802 2027

The data shows that 428 more cover items became
unreachable due to the additional constraints in E1 vs.
E0. Also, 1,494 more cover items became
undetermined. For the unreachable items, further
merging of the data was done to show that there are
actually only 77 more unique cover items. Figure 2
shows the relevant portion of the report.

Figure 2 Unreachability Difference Reports

	

Upon analyzing the 77 additional unreachable
cover items, most of them were determined to be due
to the known artifact of one or more constraints.
However, a few of the unreachable cover items could
not easily be explained and further analysis was
needed. To debug a cover item that is unreachable, a
good approach is to find a minimal subset of
assumptions that can cause the unreachability. A
manual process of determining this minimal set would
be tedious. (You would need to iterate over subsets of
506 assumptions.) Instead, the formal verification tool
was able to determine automatically the three specific
assumptions that caused the unreachability of a
particular cover item. After reviewing the
assumptions, a subtle over-constraint was detected,

which essentially disallowed two parts of a transaction
to enter the design in different orders, that is, the parts
were forced to always enter the design in the same
order. In other words, any assertion verified within
this formal environment would not have been tested
for the disallowed scenario above.

In summary, the stimuli coverage analysis
effectively tracked the impact of constraints on the
formal verification environment for design 5. It
highlighted the design parts both purposely and
mistakenly not being stimulated. This analysis was
able to identify a corner-case constraint problem that
would have otherwise gone undetected

The final area of analysis is of the bounded proof
coverage data on design 5. This analysis is focused on
the assertions for only one of the design’s interfaces.
The interface had 43 undetermined assertions. Figure
3 below is the Bounded Proof Coverage report for the
targeted interface.

Figure 3 Bounded Proof Coverage Report

	

In this report, the column “Total in COI” shows
the COI(P) for each property on the interface. The
column “Unconf Covers” indicates the number of Ci
in COI(P) that are reachable only beyond the bound of
the property. These cover items are considered
unconfirmed, implying that the assertion has not been
analyzed in the context of the events represented by
these cover items. The unconfirmed cover items are
potential holes in the verification bound of the
property. The column “Undet. Covers” indicates the
number of Ci in COI(P) that are undetermined,
meaning they have not been shown to be reachable or
unreachable. Again, the undetermined cover items
could represent holes in the verification bound of the
property.

Some additional pieces of interesting information
can be gleaned from the report. It appears that many
of the properties have similar COIs. For example, all
but one property has about 24,000 cover items in its
COI. The outlier property has about 34,000 cover
items in its COI. Recall from the property
completeness analysis that there were nearly 10,000
cover items in the data paths that were in the COI of
fewer than five assertions. This property is one of that
small number of data path properties.

The data also reveal that attempting to increase
each assertion bound to 14 or higher seems like a
good target. The assertions with a bound of eight have
nearly 600 unconfirmed cover items, whereas we see
a rapid decrease in the number of unconfirmed targets
(down to single digits) for the assertion at a bound of
14.

A user could react to the holes in the bounded
proof coverage data in many ways:

a) Run the formal engines longer on the target
assertions to increase the proof bounds.

b) Run the formal engines longer on the target
cover items to move them from
undetermined to covered.

c) Create appropriate abstractions for the design
elements to decrease the sequential depth of
the design. This will enable the cover items
to be reachable at smaller depths.

d) Create a new environment with targeted
over-constraints to help increase the target
assertion bounds. This is akin to obtaining
higher coverage for a restricted mode of
operation for the design.

e) Pass the verification burden of the
unconfirmed and undetermined cover items
on to simulation.

On design 5 we have seen that when enhanced
with bounded proof coverage data, there is much more
meaning to the assertion bounds. The coverage data
identifies the obvious holes in the proof bounds and
reveals bound targets to help determine how to best
plug those holes.

It should be noted that the coverage data presented
in this case study is often much easier to generate,
understand, and traverse when using a GUI dedicated
to extracting and displaying the data compared to the
textual reports shown in various figures so far. Instead
of trying to use GUI snapshots throughout the case
study, a single screenshot is displayed here at the end
in Figure 4. Convenient access to report widgets,
source code highlighting of reported cover items,
hierarchical summaries of the reported data, prev/next
buttons to traverse through reported items, and so
forth, are all very important for efficient processing
and understanding of the data.

While some additional implementations in this
area are underway, the quantitative coverage results
across designs from multiple industry segments and
the result navigation and debugging process using the
GUI have generated significant amount of interest in
the end-user community.

Figure 4 Coverage GUI

	

REFERENCES
[1] Jasper Design Automation. Coverage: Achieving Coverage Closure with

Jasper Formal. http://www.jasper-da.com/coverage_closure_seminar.
[2] John Goodenough. Jasper Formal Verification at ARM. DVCON 2011.

http://www10.edacafe.com/video/ARM-Jasper-Formal-Verification-
ARM-brJohn-Goodenough/34449/media.html.

[3] Yatin Hoskote, Timothy Kam, Pei-Hsin Ho, and Xudong Zhao. 1999.
Coverage estimation for symbolic model checking. In Proceedings of the
36th annual ACM/IEEE Design Automation Conference (DAC '99),
Mary Jane Irwin (Ed.). ACM, New York, NY, USA, 300-305.

[4] C.-N. Liu and J.-Y. Jou. Efficient coverage analysis metric for HDL
design valida- tion. In Proceedings of IEEE International Conference on
Computers and Digital Techniques, pages 1–6, January 2001.

[5] Hana Chockler Orna Kupferman Moshe Y. Vardi Coverage Metrics for
Temporal Logic Model Checking. 528-542 2001 conf/tacas/2001
TACAS.

[6] Rajeev Ranjan, Jay Littlefield, Brian Bailey. Understanding coverage
with multiple verification methods http://jasper-
da.com/sites/default/files/pdfs/Understanding_coverage_multiple_verific
ation_methods_Nov2007.pdf

[7] Rajeev Ranjan, Brian Bailey. Combining Metrics from Simulation and
Formal. http://www.soccentral.com/results.asp?entryID=26340

[8] Richard Ho, Ambar Sarkar, Mike Burns, Rajeev Ranjan. Coverage
Interoperability and Unification: What can be expected from the
Accellera Unified Coverage Interoperability Standard? Electronic
Design, September 2010.

[9] Andrew Piziali. Functional Verification Coverage Measurement and
Analysis. Springer Publishing.

[10] Rajeev Ranjan. We need a simpler and faster approach to formal
verification. http://www.eetimes.com/discussion/other/4391414/We-
need-a-simpler-and-faster-approach-to-formal-verification

[11] H. Chockler, O. Kupferman, and M. Y. Vardi. Coverage metrics for
formal verification. Correct Hardware Design and Verification Methods
(CHARME), pages 111-125, 2003.

[12] Classen, Koen, A Coverage Analysis for Safety Property Lists,
Workshop on Designing Correct Circuits (DCC), March 2006,
http://citeseer.ist.psu.edu/587670.html,
http://www.cs.chalmers.se/~koen/pubs/dcc06-coverage.pdf

[13] Nachum Dershowitz Ziyad Hanna Alexander Nadel, A Scalable
Algorithm for Minimal Unsatisfiable Core Extraction. 36-41 2006 SAT
Conference

[14] Certitude tool from SpringSoft. EDA company.
http://www.springsoft.com/products/functional-qualification/certitude

