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Abstract— This paper presents a comprehensive 
approach to the classical notion of hardware design 
verification coverage, augmenting the widespread 
coverage analysis and metrics from simulation with 
coverage obtained with formal analysis. In our work, 
we address major coverage questions related to the 
application of formal verification such as “is my formal 
environment capable of sufficiently analyzing the 
design?” “Are there parts of my design not being 
checked by the property set?” “What parts of my 
design have been verified/not verified as part of the 
proof process?” The formal coverage results and 
analysis can leverage the latest coverage 
interoperability standard (UCIS) that allows for 
interoperability of verification coverage data across 
tools and methods from multiple vendors. Our 
approach addresses the increasing verification 
productivity challenge by delivering the requisite 
coverage visibility and metrics from formal verification 
while simultaneously accelerating the overall 
verification coverage closure process. 

Keywords— (Formal Verification, Formal Coverage, 
Formal Specification Languages, Coverage 
Interoperabilitty Standard) 

I.  INTRODUCTION 
The role of formal verification technology in the 

overall system-on-chip (SoC) design and verification 
flow has been growing over the years [2]. The 
application of this technology has spread, providing a 
wide range of solutions to emerging problems in 
design and verification, starting from architectural 
modeling and verification, through RTL development 
and block/system verification, all the way to post-
silicon debug. Today, diverse engineering groups, 
such as architects, security engineers, RTL designers, 
validation engineers, and silicon debug experts, use 
verification solutions based on formal technologies 
[10]. The higher quality of the verification results, as 
well as the improved productivity that the formal 
verification methods deliver, have made it a common 
methodology to apply in all aspects of the design and 
validation flows. Consequently, the wider adoption of 
formal methods has led to a growing need for 
coverage information similar to that traditionally 

obtained from dynamic methods. This need is 
motivated by two factors. The first factor is that of 
achieving confidence about the effectiveness of the 
verification tasks performed with formal technology. 
The second is that of finding a way to combine 
engineering efforts and results from both formal 
verification and simulation to accelerate overall 
verification closure. 

In this paper, we introduce several notions of 
coverage relevant to formal analysis that can help 
fulfill both objectives. The paper is organized as 
follows: Section II covers the necessary background 
to set the context; Section III provides some 
preliminary definitions and terminology on which our 
work is based; Section IV gives the background on 
coverage analysis in the context of formal 
verification; Section V, Section VI, and Section VII 
provide details on three different types of coverage 
measurements in formal verification. In Section VIII 
and Section IX, we touch upon the aspect of 
leveraging coverage information from formal 
verification and simulation to accelerate verification 
closure. Finally, Section X provides experimental data 
and a flow that illustrates our formal coverage 
analysis method. 

II. COVERAGE BACKGROUND 
The process of any functional verification method 

involves stimulating the design, propagating the 
effects to an observable point, and checking the 
response for the correct behavior. The completeness 
of this process is dependent on the completeness with 
which the design is stimulated (that is, all possible 
behaviors have been exercised), the ability to ensure 
that the effects (both good and bad) of exercising the 
behaviors are propagated to an observable point, and 
on the completeness of the checking mechanism (that 
is, all relevant design behaviors have been checked 
against the specification)[6].  

Simulation-based verification is a sampling 
process of all of the possible input sequences that 
could be applied to the design. Various testbench-
based tools and methodologies are widely used today 
to focus the validation of the design on a subset of 



interesting scenarios of the design in order to limit the 
validation process to a manageable size and effort. 
Since simulation-based methods are not exhaustive, 
coverage methods have become an essential means to 
measure the completeness of the validation. Over the 
years, validation engineers have invented various 
coverage models and techniques to measure the 
effectiveness of the testbench, including code 
coverage, branch coverage, finite state machine 
(FSM) coverage, functional coverage, and so forth.  

In formal verification, the correctness of a design 
is verified with respect to a desired behavior. The 
verification is carried out by checking whether the 
mathematical state of the design (typically a labeled 
state-transition graph) satisfies the specification of 
this behavior, which is expressed in terms of a 
temporal logic formula (specified by a set of 
properties) or a finite automaton. 
 

Assuming that the implementation of the formal 
technique(s) is accurate, the verification 
completeness of a given design is then dependent on: 
 

1. The completeness of the property set 
(specification) against which the design is 
formally verified, 

2. The accuracy of the constraints (the set of 
legal stimuli under which the design is 
analyzed), and 

3. Whether formal analysis was complete or 
partial. A partial analysis means that the 
computation was not able to complete due to 
resource constraints, such as time or 
memory. 

 

In the Assertion Based Verification (ABV) 
methodology — one of the most common 
manifestations of formal method adoption — 
designers and verification engineers systematically 
add embedded assertions into their design, using some 
type of specification language such as SVA or PSL. 
When run in simulation flows, such assertions, when 
triggered, indicate a failure in the design. When used 
in formal methods, such assertions prove the 
correctness of the design. ABV users usually ask the 
questions, “have we put enough assertions in the 
design?” and “do the assertions capture the entire 
design intent?” Typically, these assertions are verified 
in the presence of constraints that capture the 
environment behavior. The soundness of these 
constraints is always a concern and can be addressed 
by measuring the stimuli coverage in the presence of 
these constraints. Additionally, it is possible that some 
of these assertions are not analyzed for the entire 
reachable state space of the design due to some 
resource constraint (such as compute memory and 

time). In these cases, obtaining verification coverage 
for the partial analysis is desired. 

The most accurate coverage model is one that is 
based on the reachable state space of the design. The 
true indicator of verification progress would be based 
on the ratio of state space visited compared to the set 
of all possible states. Obviously, for coverage 
analysis, the state space should be computed for 
calculating the coverage percentage. However, it is 
practically impossible to represent the state-space 
graph of an entire industry design explicitly. In 
addition, the absolute number of states would be 
astronomically large and would not provide any 
meaningful value towards measuring verification 
progress.  

For decades, a variety of different coverage 
models have been used that achieve different degrees 
of approximation of the true coverage. For example, 
code coverage-based models such as branch coverage, 
statement coverage, expression coverage, and so forth. 
In addition, FSM states and transition-based coverage 
models are widely used. For a complete treatment of a 
variety of coverage models, refer to [9].  

III. PRELIMINARIES  
Consider RTL design D represented in a standard 
hardware description language, such as 
SystemVerilog or VHDL, and formal specification S 
described by a set of SVA or PSL properties. For a 
given RTL design D, a Coverage Model M is a finite 
set of Coverage Items CI(D) ={C0, C1, …, Cn}, where 
each cover item Ci represents an implicit or explicit 
event in the design. An example of an implicit event 
would be one corresponding to the triggering of a 
line/branch/expression or a set of events that can be 
enumerated based on some specification. An explicit 
event would be something specified by a user. In 
some cases, the collection of coverage items could 
also be dependent on a property or a set of properties 
under consideration.  

Coverage Analysis computes whether a cover item 
Ci is triggered during the simulation of RTL design D, 
or was part of the reachable state space during the 
formal analysis, and if so, we say that such Ci is 
reachable. The coverage of design D for a given 
Coverage Model M is computed by the percentage of 
the reachable Ci in the Coverage Items CI. For 
example, a chosen coverage model can consist of all 
the branches in the source code of the design 
(classically known as branch coverage); thus, the CI is 
the set of all branches in D. Coverage analysis checks 
whether every Ci, or source code branch in D, is 
executed in simulation, or the corresponding state has 
been analyzed in formal analysis. The coverage of D 
according to M and CI is the percentage of reachable 
branches in CI. Depending on the context, the set of 
branches under consideration could be restricted to 



those relevant only for the set of properties being 
analyzed. That is, a cover item is considered relevant 
for a property S if it falls in the cone of influence 
(COI) of the property. The percentage coverage is 
then appropriately computed by considering only the 
restricted subset. A Coverage Model M can be 
explicitly defined by the user. For example, each Ci of 
CI could be a functional event of interest, for 
example, “request ##3 grant” — a request 
followed by a grant in three cycles. Typically, the set 
of coverage points representing some functional 
events is referred to as the functional coverage model.  

All coverage analysis-related information — set of 
coverage items, set of properties, and status of 
coverage items with respect to each property — is 
typically stored in a database, commonly referred to 
as a coverage database. These databases are 
proprietary to the verification technology vendors. 
Recently, a standard, known as the Unified Coverage 
Interoperability Standard, has emerged allowing all 
proprietary databases to support a standard API to 
perform read/write operations. The API standard is 
meant to enable uniform access to coverage data from 
heterogeneous sources, such as different technologies 
and tools from different vendors.  

IV. FORMAL COVERAGE 
In the context of formal analysis, a number of 

coverage measurement and analysis-related questions 
are addressed below: 

Stimuli Coverage: Given a formal environment that 
captures, among other things, a set of constraints to 
limit the set of legal stimuli applied to the design, can 
we achieve some measurement of confidence 
regarding the sufficiency of the input vectors 
permissible by the constraints? In other words, can we 
obtain some coverage measurement for protection 
against the possibility of over-constraining the 
design? Do the constraints limit the state space for a 
set S of properties or checkers? This analysis can be 
referred to as stimuli coverage. It should be noted here 
that in simulation, this is the default interpretation of 
the “coverage” term.  

Property Completeness Coverage: In formal 
verification, a set of assertions S is specified in some 
formal language, such as SVA or PSL, to check 
whether the design D adheres to the desired design 
intent. Measuring the exhaustiveness of a 
specification in formal verification ("do more 
properties need to be written?") has a similar flavor to 
measuring the exhaustiveness of the input sequences 
in simulation-based verification ("do more input 
sequences need to be created?"). We refer to the 
coverage metric to approximate the completeness of a 
property set as property completeness coverage. We 
should note that this coverage metric is also relevant 
in a simulation context; however, as previously noted, 

the stimuli coverage remains the default and main 
focus in the dynamic validation world. 

Proof Coverage: Unlike simulation methods, which 
sensitize the design with input stimulus on an iterative 
basis, formal methods traverse the state space for the 
design. By default, the formal tool attempts to traverse 
the entire reachable state space of a design. For the 
cases where the entire state space is traversed, we 
would like to obtain the corresponding verification 
coverage. We refer to this type of coverage metric as 
full-proof coverage. However, depending upon the 
complexity of the design, the property under 
consideration, and the resulting mathematically 
complex nature of the underlying analysis, it is 
possible that the computation may hit resource limits, 
such as available time and memory. We refer to the 
coverage metric used to determine the verification 
coverage for this bounded proof analysis as bounded 
proof coverage.  

Selection of Coverage Model: As stated earlier, the 
most accurate coverage model is one that is based on 
the reachable state space of the design, that is, CI, the 
set of reachable states of design D. Each reachable 
state from the reset state(s) is a cover item Ci. 
Obviously, for coverage analysis, the state space 
should be computed in order to calculate the coverage 
percentage. However, this coverage model is not 
practical from either computation or representation 
perspectives.  

It is interesting to note that, for various coverage 
measurements in the formal analysis world, we can 
borrow on the well-established notions of coverage 
metrics adopted in the simulation world. While our 
coverage approach is independent of the chosen 
coverage model, for illustration purposes, we have 
chosen to use a specific flavor of code coverage as our 
coverage model. In particular, for our work, we create 
CI from RTL statements as well as branching 
conditions. The number of cover items in these two 
coverage models varies linearly with the size of the 
RTL source code. This is intuitive enough for the 
users, and practically manageable for the sizes of RTL 
designs where formal verification is applied.  

V. STIMULI COVERAGE  
Unlike simulation, where the design is sensitized 

by the explicit application of input vectors as 
generated by the testbench, in formal verification, the 
mathematical model of the design and the 
specification is analyzed for all possible combinations 
of input sequences. In this scenario, the stimuli 
coverage for the design is 100 percent because all 
possible sequences have been applied to the design. 
However, in practice, a formal environment deploys 
constraints that are used to eliminate the illegal input 
sequences and limit the analysis of the design to valid 
ones. These constraints are typically declarative 



properties specified in SVA or PSL. The constraints 
are specified with the intention of preventing false 
failures, that is, an assertion fails in the design for an 
illegal input sequence. The presence of constraints in 
the formal environment necessitates computation of 
stimuli coverage in formal analysis. This is even more 
important to prevent “over-constraining.” This is a 
situation where constraints collectively eliminate legal 
input sequences and prevent the verification from 
visiting legitimate reachable states where the design 
might fail the specification. In other words, over-
constraining could lead to a false sense of confidence. 
Stimuli coverage metrics provide a way to establish 
some confidence about the correctness of the 
constraints in the formal environment.  

In our proposal, stimuli coverage computation 
works in a very similar manner to that in a simulation 
flow. The method is independent of the coverage 
model chosen. As mentioned earlier, for the purposes 
of measuring coverage, we can borrow the widely 
adopted metrics in the simulation world, such as 
branch coverage, statement coverage, expression 
coverage, FSM coverage, toggle coverage, and so 
forth. 

Assume that CI represents the set of coverage 
items for a given coverage model. For every cover 
item Ci in CI we perform a reachability analysis. 
Based on the results of the reachability analysis, the 
coverage items can be divided into three subsets: 
CI_R(E, D) = {Ci | Ci in CI where Ci is reachable or 
covered in design D under environment E}. The 
subset CI_R represents all the events that can be 
reached by a finite path from reset state(s). We denote 
the subset CI_U(E, D) = {Ci | Ci in CI, where Ci is 
unreachable or uncovered in D under environment E}. 
Depending upon the chosen coverage model, the 
subset CI_U(E, D)  could represent the fragment of 
RTL code which cannot be exercised. This could be 
an artifact of (a) design error that causes the non-
exercisability, or (b) some configuration parameters 
that disable some pieces of code (intentional 
disabling), or (c) the interactions of constraints 
preventing the design from entering a state where the 
code fragments could be exercised. Specifically, 
stimuli coverage can help detect “dead-code” 
situations in the design. The third set is CI_B(E, D) = 
{Ci | Ci in CI where Ci is unresolved or got to a 
bounded search in design D and environment E}. The 
sets CI_R(E, D), CI_U(E, D), and CI_B(E, D) depend 
on the complexity of the design, constraints, 
computational performance of the formal engines, as 
well as on resources applied for the computation, such 
as time and memory. 

Applying the environmental constraints E for 
stimuli coverage can be done adaptively. Initially, we 
can choose E to be empty, that is, no constraints are 
applied to the design. Thus, the set CI_U(E,D) reflects 

the dead code in all possible environments of D. Users 
can define the environment incrementally by defining 
the clock, reset, and then the behavioral constraints, 
which yields a sequence of CI_Ui(Ei,D) sets, where 
CI_Ui(Ej,D) is included in CI_Ui(Ek,D) for Ej that is 
more restrictive than Ek. The computation complexity 
of these subsets increases for more restrictive 
environments. Users can obtain incremental reports 
for each CI_Ui(Ei,D) to understand the impact of the 
Ei on D. This process provides a comprehensive 
understanding of the impact of adding new constraints 
to the design in the form of differences observed in 
stimuli coverage. 

VI. PROPERTY COMPLETENESS COVERAGE 
Research in the area of property completeness 

coverage for formal verification has been focused 
solely on state-based coverage. This state-based 
coverage metric is based on mutations — small errors 
or mutants injected into the design — applied to the 
FSM. Essentially, a state "s" in the FSM is covered by 
the specification if modifying the value of a variable 
in the state renders the specification untrue. In [11], 
Chockler et al. adapted the work done on coverage in 
simulation-based verification to the formal-
verification world in order to obtain new coverage 
metrics. For a number of metrics used in simulation-
based verification, the authors presented a 
corresponding metric that is suitable for formal 
verification, and described an algorithmic way to 
check it. Examples given in the paper are code 
coverage, circuit coverage, FSM coverage, and 
mutation coverage. In fact, they claim that almost 
every heuristic regarding stimuli coverage in the 
simulation world has a corresponding metric to 
determine the response-checking coverage in the 
formal world. In [12] Koen provides a way of 
approximating an answer to the question, “Have we 
specified enough properties?” Given the interface of a 
design under verification, plus a property list, the 
technique identifies cases where some outputs of the 
design are not constrained at all by the properties. In 
practice, under some scenarios (the design states) the 
outputs are allowed to be under-constrained. The 
technique allows for easy specification of such “don’t 
care” exceptions. Due to the computational 
complexity and inherent impracticality in the usage 
model, neither of the two methods [11, 12] have found 
acceptance in hardware design verification flows. 

One straightforward way to measure the property 
completeness would be to identify the subset of 
design logic that is structurally in the fan-in of the 
collection of properties. This can be achieved by 
doing structural traversal of the netlist representing 
the design and the properties. The parts of logic that 
are not in the recursive fan-in of any of the properties 
represent an obvious hole in specification. In other 
words, more properties need to be written to check 



these parts of the logic. It should be noted that this 
method of property completeness coverage 
measurement can identify most obvious property 
coverage holes. To compute this structural coverage 
of a given set of assertions S = {P0, P1, …, Pn} for a 
design D and environment E, we consider the 
coverage for each property Pi and aggregate the 
coverage results to form the coverage of S. We denote 
COI(P,E,D) to be the set of cover items Ci in CI(E,D) 
that intersect with the COI of property P in design D 
under the environment E. In short notation, we use 
COI(P) when D and E are known in the context. 
Clearly COI(P) is a subset of CI. The union of the 
subsets COI(Pi) is denoted by COI(S), the coverage 
item set for the specification S.  

Of late, design mutation-based coverage 
measurement has been gaining ground in the area of 
verification coverage [14]. For a simulation 
infrastructure, a fault model for the design is applied, 
and the completeness of the stimulus set and the set of 
response-checking mechanisms is measured, based on 
the ability of the verification framework to catch 
errors resulting from those faults. Similar concepts 
can be adopted to obtain information about property 
set completeness in formal verification. First of all, a 
fault model can be identified, which in turn creates a 
fault set consisting of all the faults in the design fitting 
that model. For example, the fault model could be 
disconnecting a driver from a flop, thus making the 
flop a free net. The fault set would then consist of 
design mutations, whereby in each mutation exactly 
one flop has been disconnected. The property 
completeness metric can be obtained by checking how 
many of these faults in this fault set are detected, as 
indicated by the failure of one or more properties. The 
faults that are not detected, that is, none of the 
properties in the environment fail, indicate a hole in 
the property set. In other words, a user needs to write 
some additional properties that are sensitive to these 
faults that represent coverage holes. 

VII. PROOF COVERAGE  
In this section, we discuss the measurement of the 

amount of verification performed as a result of either 
the full proof or the bounded proof for a set of 
properties. As mentioned in Section IV, these two 
possibilities may happen depending on the 
design/property complexity as well as the resources 
such as compute time and memory applied in the 
computation. 

Full-Proof Coverage: To measure the verification 
coverage for the properties that are fully proven, we 
introduce a notion of Proof Core of a property. The 
proof core of a property P is the subset of the logic 
contained in the COI of the property, and this subset is 
capable of establishing the correctness of the property. 
In other words, parts of the design D that are outside 
the proof core do not impact the correctness of the 

property P. Computing the proof core is done inside 
SAT-based, model-checking algorithms using 
unsatisfiable core generation techniques [13]. We 
denote PC(Pj) is a set of Ci in CI(E,D) that intersects 
with the proof core of Pj. PC(Pj) is included in 
COI(Pj). The set PC(S) is the union of all PC(Pj). 
Similar to sets described in the stimuli coverage 
section, we define the subsets PC_U, PC_R, and 
PC_B for unreachable, reachable, and bounded cover 
items to form the coverage set PC(S). It should be 
noted that the proof core coverage for the properties 
that are fully proven takes into account the effect of 
both the constraints in the environment and the set of 
properties under consideration. Since it takes into 
account only those cover items that are found to be 
essential for ensuring the correctness of the property, 
this coverage metric is the strongest of all coverage 
metrics used in simulation and formal verification. 
The drawback of this metric is that it requires that the 
property is fully proven, which may not be the case 
for a complex design and property. Secondly, in some 
cases, even if the property is fully proven, it may be 
quite expensive to compute the corresponding 
unsatisfiable core. 

Bounded-Proof Coverage: Due to the mathematically 
complex nature of formal analysis, it is possible that 
the computation may hit resource limits, such as time 
and available memory. Often, an incomplete formal 
analysis is measured in terms of the number of cycles, 
with reference to some specific clock, of analysis the 
design has gone through. For example, "k" cycles of 
formal analysis establishes that the design has been 
analyzed for all input sequences of length "k". This 
statement is true for most common types of formal 
analysis which traverse the state space of the design in 
a breadth-first manner. 
 

In another scenario, the formal analysis can be 
performed under some restricted set of inputs, for 
example, a subset of inputs could be tied to a constant. 
This typically happens when a design's validity 
against the specification has been formally analyzed 
for a particular mode setting. Another scenario of 
partial formal analysis is when an arbitrary starting 
state is used. This precludes the guarantee that the 
property has been analyzed for all states that the 
design could attain.  

The most accurate way to measure the stimuli 
coverage for partial formal analysis would be to 
determine the fraction of all possible reachable state 
space that has been covered. However, establishing 
this measure is not practical since determining the 
exact reachable state space itself is a hard problem.  

Similar to the property completeness analysis, we 
use the COI(S) to represent all the cover items in the 
COI of the specification S. The subsets COI_R, 
COI_U, and COI_B for the reachable, unreachable, 



and bounded cover items in COI(S), are computed 
separately using formal analysis. Observing the 
content of such subsets and the depth of the cover 
items greatly help to understand the value of the 
bounded proof. For example, the number of Ci in 
COI_R(P) within the given property bound can be an 
indicator of the verification coverage for that property. 
For example, if P is part of S with bounded proof 
value k, and there are n cover items in COI_R(P) that 
are reachable in bound < k, we can use “n” to be the 
relative indicator of the verification coverage for 
property P. We can aggregate the verification 
coverage from all the properties with a bounded proof 
result by taking the union of these sets.  

For bounded proofs, it is interesting to know 
whether the given bounded proof k for a property P in 
specification S, design D, and environment E is 
sufficient. In other words, does the property P 
exercise all the interesting cover items in COI(P)? We 
use the subsets COI_R, COI_U, and COI_B to 
analyze this. Clearly, if k is higher than all the bounds 
of the cover items in COI_R and COI_B, then the 
bound k gives very good verification confidence since 
all the design events manifested by the cover item set 
are reached within this bound. Note that like any other 
coverage measurement, reaching 100 percent 
coverage for a given coverage model is only as good 
as the quality of the model chosen. On the other hand, 
if k is much smaller than the bounds in COI_R, it 
implies that the property analysis has been shallow, 
and therefore, the formal analysis needs to work 
harder on the property P to achieve a deeper bound. 
The COI_U can be used as helper properties for 
proving P to reduce the state space of P by eliminating 
the unreachable cover items from the search.  

A sample bounded proof coverage result for an 
assertion is illustrated below: 

a) 137: Assertion proof bound (# of cycles for 
which the assertion has been proven correct) 

b) 1200: # of cover items in the COI 

c) 865: # of cover items in b that are reached 
within the 137 clock cycles (the proof 
bound) 

d) 230: # of cover items in b that are reached 
beyond the 137 clock cycles 

e) 191: Maximum depth of the cover items 
reached in d 

f) 55: Number of cover items in b that are 
proven to be unreachable 

g) 50: Number of cover items in b whose results 
are not determined 

h) 76%: Bounded proof verification coverage: 
865 (# of cover items analyzed in the proof 

boundary) divided by 1200-55 (effective # of 
cover items) 

To measure the collective bounded proof coverage 
for a group of assertions, one can take the intersection 
across all the assertions of cover items that are in 
bucket c to calculate the overall number for the 
numerator for the coverage computation. In the same 
way, the union of the cover items in f across all the 
assertions should be subtracted from the overall 
number of cover items to obtain the denominator. 

VIII. LEVERAGING COVERAGE INFORMATION FROM 
SIMULATION AND FORMAL VERIFICATION  

Since the specific tasks performed with formal 
verification technology complement the rest of the 
verification work performed with traditional 
simulation methods, a question that is often asked is 
"How does one combine the results from formal 
verification with those obtained from simulation?" 
The intent behind this question is to eliminate any 
duplicate verification effort between these 
methodologies and improve overall verification 
productivity.  This can be analyzed in a top-down 
view as well as a bottom-up view. 

In the top-down view, simulation and formal 
verification can be leveraged in a systematic way as 
dictated by a verification plan.  Effective verification 
planning adds predictability to the verification flow by 
specifying exactly what needs to be tested. Planning 
also provides the necessary structure to identify key 
areas where complementary verification technologies 
can be applied effectively. By ensuring that the 
verification tasks are tied to the specification and 
assigning an appropriate verification method 
(simulation or formal analysis) to each task, one can 
significantly reduce, if not eliminate, any redundant 
verification effort. 

In the bottom-up view, formal analysis and 
simulation methods can cooperate in multiple ways to 
help improve overall coverage.  

The first flow would be to facilitate engineering 
productivity in dealing with unreachable coverage 
targets. Traditionally, design and validation engineers 
spend significant time addressing coverage holes. The 
validation engineers tweak the testbench in an attempt 
to steer the simulation towards the necessary coverage 
targets. The design engineers either provide necessary 
hints for that steering effort or waive the coverage 
hole as harmless, in other words, the coverage hole is 
an artifact of the design functionality. Formal 
technology can greatly facilitate this manual effort. In 
particular, formal analysis can establish that a subset 
of coverage holes is caused by unreachable coverage 
targets — the targets that are not reachable for any 
legal input sequence. This eliminates unnecessary 
simulation effort targeting those areas. In addition, 



formal analysis can create specific scenarios 
automatically, which will fulfill specific coverage 
targets when simulated.  

A second flow where formal analysis can reduce 
the simulation effort is where a design block is fully 
verified formally for a specific mode, perhaps the 
most complex one. The simulation effort can then be 
targeted to provide coverage in untested modes. 

A third flow would be to leverage the coverage 
information for the fully and partially proven 
properties, as described in Section VII. The coverage 
information from formal analysis can be stored in a 
database that can be merged with the coverage 
information from simulation methods. In this use 
model, the information about the design sensitization 
from simulation and formal analysis is combined to 
achieve higher overall coverage. However, some 
technical caveats must be mentioned here for this 
particular flow. As described in the introduction, the 
verification coverage measurement is dependent on 
the infrastructural components of the verification 
environment. Typically simulation environments 
deploy bus functional model (BFM) based transactors 
for stimuli generation. This is in sharp contrast to the 
declarative assumptions used in formal analysis to 
limit the scope of legal stimuli applied to the DUT. 
On the response checking side, while the mechanism 
between simulation and formal verification may 
overlap — assertions being used in both formal and 
simulation — in practice, the checkers used in 
simulation are not directly usable in formal analysis. 
This may be due to either the non-synthesizability of 
the checkers or to the fact that the checkers are tied to 
the transactors. The bottom line is that because of 
these infrastructural differences, the context of the 
coverage measurement is different between formal 
verification and simulation. This should be kept in 
mind when combining the coverage numbers to get 
overall verification confidence. 

IX. ACCELERATNG COVERAGE CLOSURE WITH 
UCIS API 

In June 2012, Accellera’s Unified Coverage 
Interoperability Standard (UCIS) sub-committee 
published the first draft of the coverage API standard. 
The standard API enables the interoperability of 
coverage information from heterogeneous sources. 
There are some limitations to the current standard 
specifically in the area of standardization around the 
definition of various coverage metrics that makes the 
uniform interpretation of all coverage data a bit 
difficult [8]. Assuming that the coverage metric is 
well-defined, a formal tool can query a coverage 
database supporting UCIS API that is populated by 
data from a simulation tool. The ability to read/write 
information into a coverage database has enabled the 
use models discussed in the previous section. More 
specifically, a formal tool can automatically identify 

the coverage items that are not hit in simulation, and 
after performing appropriate analysis, automatically 
update the database with information about 
unreachable coverage items. In addition, the coverage 
information for the fully proven properties as well as 
that for the bounded proofs can be populated in the 
same database that is used for simulation. Appropriate 
coverage merger techniques can be used to combine 
the metrics information from the two sources to 
increase the overall coverage and accelerate the 
coverage closure process. A conceptual representation 
of this flow is shown in the figure below. 

 

 

X. CASE STUDY 
We have applied the concepts addressed in this 

paper on a number of industrial designs from different 
industry segments. For these cases, a mixture of 
statement and branch coverage models was used. We 
provide the design statistics for five designs below in 
Table 1. We also provide a qualitative analysis of a 
coverage flow on design 5, including (a) property 
completeness coverage, (b) stimuli coverage, and (c) 
bounded proof coverage and debugging. 

TABLE I.  DESIGN STATISTICS 

Design Flops Latches Gates Nets Cover 
Items 

1 5247 631 387409 797567 58606 

2 3988 3671 156925 339872 24192 

3 1084 222 113554 199478 20765 

4 7732 0 341205 772132 62117 

5 19892 0 414379 392794 38633 

 

Design 5 is a cache-coherent interconnect, which 
is common to many SoC designs. For the rest of this 
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section, we have chosen this design (D) for analysis 
purposes. The coverage model (M) chosen for this 
design is statement coverage and defines the coverage 
items (CI) for further analysis. In addition to the 
design and coverage items, the formal verification 
environment also contains 362 assertions, which 
define the property set (S), and 506 assumptions, 
which contribute to defining the environment sets (E). 

As described earlier, analyzing the COIs of a set 
of properties, COI(S), can be an indicator of property 
completeness coverage. More specifically, cover 
items not found in COI(S) or in only a small number 
of COI(P) can be an indicator of holes in the property 
set. For design 5, as shown in Figure 1, of the 38,633 
cover items, 4,655 were outside the COI of any of the 
properties in S. 

Figure 1 Out of COI Report 

 
Further analysis also revealed that nearly 10,000 

cover items were in the COI of five or fewer 
properties. Almost all of these cover items involved 
the flow of data passing through the interconnect. 
Clearly, the control functionality of this design is 
covered much better by the property set than the data 
functionality. 

Both the out of COI(S) and low COI(P) count 
metrics represent holes or potential holes in the 
property set for design 5. The typical reaction to these 
holes is to write more properties — relevant for logic 
— or pass the verification burden on to simulation or 
other higher levels of verification where other 
properties may have the cover items in their COI. 

To summarize, the property completeness metrics 
identified areas of the design which were either not 
being verified or not being well verified by the 
property set.  This information is useful in guiding 
engineers to the areas of the design which need more 
properties written or verification focus in other 
verification environments. 

Next, to ensure the validity of the formal 
verification environment constraining this design, 
stimuli coverage analysis was performed. Recall that 
to obtain information about the impact of constraints 
on the stimuli coverage, a baseline environment and 
reachability of cover items in that baseline 
environment need first to be established. For this 
design, the baseline environment consisted of a clock 
definition, a reset definition, constraints to tie off scan 
functionality, and constraints to tie off other unused 

ports. The reachability results, CI_R, CI_U, CI_B, for 
the baseline environment, E0, are shown below in 
Table II. Note that in the baseline environment 
(without any explicit constraints), there were 1374 
unreachable cover items. 

TABLE II.  E0 BASELINE REACHABILITY 

Design Total Cover 
Items 

Reachable 
Cover 
Items 

Unreachable 
Cover Items 

Undetermined 
Cover Items 

5 38633 36726 1374 533 

 

In the target environment with a full constraint set, 
where the formal verification of the assertion set was 
performed, there were 506 assumptions that provide 
many additional constraints on the environment. The 
reachability results for this environment, E1, are 
shown below in Table III. 

TABLE III.  E1 TARGET REACHABILITY 

Design Total Cover 
Items 

Reachable 
Cover 
Items 

Unreachable 
Cover Items 

Undetermined 
Cover Items 

5 38633 34804 1802 2027 

 

The data shows that 428 more cover items became 
unreachable due to the additional constraints in E1 vs. 
E0. Also, 1,494 more cover items became 
undetermined. For the unreachable items, further 
merging of the data was done to show that there are 
actually only 77 more unique cover items. Figure 2 
shows the relevant portion of the report. 

Figure 2 Unreachability Difference Reports 

	
  

Upon analyzing the 77 additional unreachable 
cover items, most of them were determined to be due 
to the known artifact of one or more constraints. 
However, a few of the unreachable cover items could 
not easily be explained and further analysis was 
needed. To debug a cover item that is unreachable, a 
good approach is to find a minimal subset of 
assumptions that can cause the unreachability. A 
manual process of determining this minimal set would 
be tedious. (You would need to iterate over subsets of 
506 assumptions.) Instead, the formal verification tool 
was able to determine automatically the three specific 
assumptions that caused the unreachability of a 
particular cover item. After reviewing the 
assumptions, a subtle over-constraint was detected, 



which essentially disallowed two parts of a transaction 
to enter the design in different orders, that is, the parts 
were forced to always enter the design in the same 
order. In other words, any assertion verified within 
this formal environment would not have been tested 
for the disallowed scenario above. 

In summary, the stimuli coverage analysis 
effectively tracked the impact of constraints on the 
formal verification environment for design 5.  It 
highlighted the design parts both purposely and 
mistakenly not being stimulated.  This analysis was 
able to identify a corner-case constraint problem that 
would have otherwise gone undetected 

The final area of analysis is of the bounded proof 
coverage data on design 5. This analysis is focused on 
the assertions for only one of the design’s interfaces. 
The interface had 43 undetermined assertions. Figure 
3 below is the Bounded Proof Coverage report for the 
targeted interface. 

Figure 3 Bounded Proof Coverage Report

	
  

In this report, the column “Total in COI” shows 
the COI(P) for each property on the interface. The 
column “Unconf Covers” indicates the number of Ci 
in COI(P) that are reachable only beyond the bound of 
the property. These cover items are considered 
unconfirmed, implying that the assertion has not been 
analyzed in the context of the events represented by 
these cover items. The unconfirmed cover items are 
potential holes in the verification bound of the 
property. The column “Undet. Covers” indicates the 
number of Ci in COI(P) that are undetermined, 
meaning they have not been shown to be reachable or 
unreachable. Again, the undetermined cover items 
could represent holes in the verification bound of the 
property. 

Some additional pieces of interesting information 
can be gleaned from the report. It appears that many 
of the properties have similar COIs. For example, all 
but one property has about 24,000 cover items in its 
COI. The outlier property has about 34,000 cover 
items in its COI. Recall from the property 
completeness analysis that there were nearly 10,000 
cover items in the data paths that were in the COI of 
fewer than five assertions. This property is one of that 
small number of data path properties. 

The data also reveal that attempting to increase 
each assertion bound to 14 or higher seems like a 
good target. The assertions with a bound of eight have 
nearly 600 unconfirmed cover items, whereas we see 
a rapid decrease in the number of unconfirmed targets 
(down to single digits) for the assertion at a bound of 
14. 

A user could react to the holes in the bounded 
proof coverage data in many ways:  

a) Run the formal engines longer on the target 
assertions to increase the proof bounds. 

b) Run the formal engines longer on the target 
cover items to move them from 
undetermined to covered. 

c) Create appropriate abstractions for the design 
elements to decrease the sequential depth of 
the design. This will enable the cover items 
to be reachable at smaller depths. 

d) Create a new environment with targeted 
over-constraints to help increase the target 
assertion bounds. This is akin to obtaining 
higher coverage for a restricted mode of 
operation for the design. 

e) Pass the verification burden of the 
unconfirmed and undetermined cover items 
on to simulation. 

On design 5 we have seen that when enhanced 
with bounded proof coverage data, there is much more 
meaning to the assertion bounds. The coverage data 
identifies the obvious holes in the proof bounds and 
reveals bound targets to help determine how to best 
plug those holes. 

It should be noted that the coverage data presented 
in this case study is often much easier to generate, 
understand, and traverse when using a GUI dedicated 
to extracting and displaying the data compared to the 
textual reports shown in various figures so far. Instead 
of trying to use GUI snapshots throughout the case 
study, a single screenshot is displayed here at the end 
in Figure 4. Convenient access to report widgets, 
source code highlighting of reported cover items, 
hierarchical summaries of the reported data, prev/next 
buttons to traverse through reported items, and so 
forth, are all very important for efficient processing 
and understanding of the data.  

While some additional implementations in this 
area are underway, the quantitative coverage results 
across designs from multiple industry segments and 
the result navigation and debugging process using the 
GUI have generated significant amount of interest in 
the end-user community. 

 

 



 

Figure 4 Coverage GUI 
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