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ABSTRACT  
A methodology is presented for writing modern SystemVerilog 

testbenches that can be used not only for software simulation, but 

especially for hardware-assisted acceleration. The methodology is 

founded on a transaction-based co-emulation approach and enables 

truly single source, fully IEEE 1800 SystemVerilog compliant, 

transaction-level testbenches that work for both simulation and 

acceleration. Substantial run-time improvements are possible in 

acceleration mode and without sacrificing simulator verification 

capabilities and integrations including SystemVerilog coverage-

driven, constrained-random and assertion-based techniques as well as 

prevalent verification methodologies like OVM or UVM. 

 

General Terms  
Verification, Performance.  

 

Keywords  
Acceleration, Emulation, Co-modeling, SystemVerilog, OVM/UVM.  

 

1. INTRODUCTION  
This paper describes a methodology for writing modern 

SystemVerilog testbenches that can be used not only for software 

simulation, but especially for hardware-assisted acceleration. 

Hardware-assisted speedup in testbench execution is compelling 

when one considers that ever growing verification complexity 

coupled with short time to market windows and scarce engineering 

resources make the need for fast simulation run times increasingly 

critical. For instance, think of viewing a full frame of graphics in a 

matter of minutes instead of a day of simulation. Simply put, faster 

testbenches enable longer and more test cases to be run in less time, 

allowing more requirements to be covered and more bugs uncovered. 

 

Hardware-assisted testbench acceleration can in principle be 

achieved with full emulation through a fully synthesizable testbench, 

or more conventionally with co-simulation where an RTL DUT is 

mapped onto an emulation platform that interacts with the simulated 

testbench on a workstation at a clock cycle basis. With today‟s 

advanced transaction-level testbenches, however, the pragmatic 

approach is to have certain testbench components – the lower pin-

level components like drivers, monitors etc. – synthesized into real 

hardware and running inside the emulator together with the DUT, 

while other non-synthesizable testbench components – the higher 

transaction-level components like generators, scoreboards, coverage 

collectors etc. – remain in software running inside the simulator. 

Communication between simulator and emulator is consequently 

transaction-based, not cycle-based, reducing communication 

overhead and increasing performance because data exchange is 

infrequent and information rich and high frequency pin activity is 

confined to run at full emulator clock rates.  

 

The methodology presented herein promotes this so-called co-

emulation (also known as co-modeling) approach and aims to 

maximize reuse between pure simulation-based verification and 

hardware-assisted acceleration. It enables truly single source, fully 

IEEE 1800 SystemVerilog compliant, transaction-level testbenches 

that work interchangeably for both simulation and acceleration. In 

acceleration mode it offers substantial run-time improvements while 

retaining all simulator verification capabilities and integrations. This 

includes in particular support for modern coverage-driven, 

constrained-random and assertion-based techniques in 

SystemVerilog as well as prevalent verification methodologies like 

OVM or UVM, and VMM. The subsequent sections lay out the 

details of and illustrate the proposed transaction-based acceleration 

methodology for SystemVerilog in terms of the testbench 

architecture and modeling rules and guidelines. 

 

2. TERMINOLOGY  
Co-emulation, or (transaction-level) co-modeling, is the process of 

modeling and simulating untimed behavioral models in conjunction 

with synthesizable hardware models running on an emulator, 

intercommunicating through transactions or function/task calls. The 

untimed transaction-based behavioral models are collectively 

referred to as the HVL side, while the cycle-accurate synthesizable 

hardware models constitute the HDL side. 

 

SCE-MI 2, or Standard Co-Emulation Modeling Interface 2, is a set 

of standard modeling interfaces defined within Accellera for multi-

channel communication between software models describing system 

behavior (i.e. the HVL side) and structural models describing the 

implementation of a hardware design (i.e. the HDL side). It is based 

on SystemVerilog-DPI as the foundation to realize communication 

between HDL code running in an emulator and C/C+/SystemC code 

running on a workstation. 

 

A transactor is a component responsible for converting untimed 

transactions into series of cycle-accurate clocked events to be applied 

to a given pin interface, and/or conversely, for converting cycle-

accurate pin activity observed into higher level transactions. In the 

specific context of hardware-assisted verification, a transactor is a 

SystemVerilog interface or module on the HDL side that has a 

signal-level interface with the DUT and a transaction-level interface 

with the HVL side. Transactors are sometimes also referred to as 

BFMs (Bus Functional Models) and the two terms are considered 

synonymous in this paper. 

 



TBXTM, or TestBench XpressTM, is the third generation hardware-

assisted acceleration solution from Mentor Graphics, enabling state-

of-the-art, comprehensive transaction-based co-emulation coupled to 

Mentor Graphics‟s Veloce emulation platform. It includes synthesis 

support of a rich extension of the RTL subset of SystemVerilog with 

behavioral clock generation and reset logic, initial and final blocks, 

implicit FSMs, SystemVerilog-DPI functions and tasks, 

synchronization events, waits, system tasks, and more, thereby 

offering maximum HDL modeling flexibility without performance 

penalties. 

 

3. REQUIREMENTS  
Several requirements are at play when devising a transaction-based 

acceleration methodology for SystemVerilog. Firstly, it must adhere 

to the principles of co-emulation which implies the need to partition 

a testbench into a synthesizable HDL side and a distinct HVL side 

handled by separate tools running on two different physical devices – 

emulator and workstation – and interacting at the transaction-level. 

The HDL side, then, must bear the limitations of modern day 

synthesis technology, and the communication with the HVL side 

must be fast and efficient so as to minimize impact on raw emulator 

performance.  

 

Today‟s transaction-based testbenches like OVM/UVM testbenches 

have a layered foundation that exhibits a separation between timed 

and untimed (or partially timed) aspects of the testbench. As 

illustrated in Figure 1, a transactor layer forms the bridge between 

the cycle-accurate signal level of abstraction near the DUT and the 

transaction level of abstraction in the rest of the testbench. A co-

emulation flow enforces this separation and requires that the 

transactor layer components are included on the HDL side to run 

alongside the DUT on the emulator. It further requires that the HDL 

and HVL sides are completely separated hierarchies with no cross 

module or signal references, and with the code on the HVL side 

strictly untimed. This means that the HVL side cannot include any 

explicit time advance statements like clock synchronizations, # 

delays and wait statements, which may occur only on the HDL side. 

Abstract event synchronizations and waits for abstract events are 

permitted on the untimed HVL side, and it is still time aware in the 

sense that the current time as communicated with every context 

switch from HDL to HVL side can be read. As a result of the HDL-

HVL partitioning, performance can be maximized because testbench 

and communication overhead is reduced and all intensive pin 

wiggling takes place in the grey area in Figure 1 targeted to run at 

emulation speeds. 

 

 
Figure 1. Transaction-based testbench 

 

Another important methodology requirement is that it yields „single-

source‟ testbenches for both simulation and acceleration. This means 

that the HVL-HDL partitioning must function the same in co-

emulation and in simulation alone, yet without the use of hooks like 

compile-time or run-time switches that would disable entire branches 

of code and pretty well implement two separate code bases. It also 

implies that the benefits of using SystemVerilog and verification 

methodologies like OVM or UVM for creating modular, reusable 

verification components and testbenches must be preserved along 

with associated simulator capabilities for analysis and debug. Key to 

achieving that proves to be the application of what is known in the 

object oriented world as a remote proxy design pattern. In this design 

pattern access to a remote object – e.g. a component on the HDL side 

– is controlled by a surrogate in the application domain – e.g. a 

component on the HVL side – through some indirect reference to 

uniquely access the remote object. Figure 2 illustrates this, where 

driver, responder and monitor components in blue act as proxies on 

the HVL side for the real transactors in yellow on the HDL side 

implementing synthesizable driver, responder and monitor BFMs, 

respectively. Communication between each transactor and its proxy 

occurs through a remote procedure invocation mechanism using 

BFM-like task and function calls, as detailed later. The mechanism is 

inspired by the known Accellera SCE-MI 2 function model and has 

the same kind of performance benefits as SCE-MI 2 [1]. This 

modeling practice in effect enables an acceleration methodology for 

SystemVerilog that is verification methodology neutral and thus 

applicable to OVM or UVM, and VMM.  

 

 
 

Figure 2. Transaction-based testbench with transactor proxies 

 

A prior attempt towards enabling a methodology for accelerating 

SystemVerilog and OVM testbenches was made by Saha et al. in [5], 

proposing a considerably different use model for HVL-HDL 

communication referred to as XTLM (eXtended TLM). XTLM 

comprises a library of „acceleration-friendly‟ TLM-based interface 

components in SystemVerilog, optionally derived from the TLM 

components in the OVM class library. It provides TLM fifos and 

channels, ports and exports that are enhanced for message passing 

across the HVL-HDL abstraction boundary using an intermediate C 

layer and SCE-MI 2 compliant SystemVerilog DPI-C. The rationale 

was that with the Accellera SCE-MI 2 standard already defining the 

communication semantics between HDL transactors and C models 

[1], XTLM implements an extra layer above the C layer to make the 

latter transparent to the user. Because of its usage of C as an 

intermediate language layer though, this approach naturally inherits 

the restrictions of that language.  

 

In comparison, where XTLM enables a set of fabricated HVL-HDL 

connections built from the XTLM library components with a fixed 

API, the transaction transport mechanism presented in this paper 

utilizes exclusively built-in SystemVerilog constructs for a flexible 

user-defined API that is simpler and more intuitive and therefore 

generally easier to learn. And with the intermediate C layer gone, it 



proposes just a small structural change at the boundary between DUT 

and testbench as part of the verification methodology used, where 

XTLM is structurally much more obtrusive. A detailed description of 

XTLM and usage examples can be found in [5]. 

 

4. THE METHODOLOGY  
For a typical SystemVerilog testbench a single top level module 

encapsulates all elements of the testbench. This includes all 

verification environment components, clock and reset generators, the 

RTL DUT, and any SystemVerilog interfaces used to bundle the 

external pins of the DUT for access by environment components. In 

the common case of class-based verification components, such as 

OVM components, the access to the pins to drive or sample values is 

through a virtual interface handle – a pointer to a concrete interface. 

Virtual interfaces are the established means to connect an OVM 

testbench or any dynamic, object-oriented SystemVerilog testbench 

to a statically elaborated HDL model. 

 

While this practice works fine for simulation it falls short for co-

emulation, demanding two separated hierarchies – one synthesizable 

– that transact together without direct cross signal accesses. A 

methodology that does meet the requirements for co-emulation can 

be defined in terms of three high level steps as follows: 

 

1. Employ two distinct HVL and HDL top level module 

hierarchies; 

2. Identify the timed testbench portions and model for 

synthesis under the HDL top level hierarchy; 

3. Implement a transaction-level interface between the  

HVL and HDL top level hierarchies. 

 

The next sections describe each of these steps in detail. 

 

4.1 Two Distinct Top Level Module Hierarchies 
As the conventional single top testbench architecture is not suited for 

co-emulation, the first step is to rearrange and create dual HVL and 

HDL top level module hierarchies. This is conceptually quite simple, 

as shown in Figure 3. The HDL side must be synthesizable and  

 

 
 

Figure 3. Separated HVL and HDL top level module hierarchies 

should contain essentially all clock synchronous code, namely the 

RTL DUT, clock and reset generators, and the BFM code for driving 

and sampling DUT interface signals. The HVL side should contain 

all other (untimed) testbench code including the various transaction-

level testbench generation and analysis components and proxies for 

the HDL transactors. 

 

This modeling paradigm is facilitated by virtue of advancements 

made in synthesis technology across multiple tools. For example, 

Mentor Graphics‟ Veloce TBXTM provides technology that can 

synthesize not only SystemVerilog RTL but also implicit FSMs, 

initial and final blocks, named events and wait statements, import 

and export DPI-C functions and tasks, system tasks, memory arrays, 

behavioral clock and reset specification along with variable clock 

delays, assertions, and more. All supported constructs can be mapped 

on a hardware accelerator, and all models synthesized with Veloce 

TBXTM run at full emulator clock rate for high performance. 

Moreover, they can be simulated natively on any IEEE 1800 

SystemVerilog compliant simulator. This synthesis advancement was 

a precursor to the SCE-MI 2 standard developed within Accellera to 

enable effective development of „emulation-friendly‟ transactors [1]. 

 

Sample A.1 of the Appendix illustrates the rearrangement of a 

conventional single top hierarchy (module top in Sample A.1.a) into 

a dual HDL-HVL top hierarchy (modules hdl_top and hvl_top in 

Sample A.1.b) for co-emulation. This code example and subsequent 

code examples are based on a SystemVerilog testbench for a floating 

point unit (FPU) design adopted from the OVM cookbook [2]. As 

one can see, the FPU design and pin interface have moved to the 

HDL top level module (i.e. lines 10-17 and 12-19 in SampleA.1.a. 

and A.1.b), together with the clock generator (i.e. lines 26-33 and 21-

25 in Sample A.1.a. and A.1.b). The clock generator has changed 

slightly with the use of a specific initial block in place of the non-

synthesizable fork-join block.  

 
 

A common package has also been introduced for convenient sharing 

of test parameters between the separate HDL and HVL top level 

hierarchies (i.e. lines 3-5 and 1-5, 10, 32 in Sample A.1.a. and 

A.1.b). The remainder of the single top hierarchy has been preserved 

under the HVL top level module including a virtual pin interface 

connection, now by hierarchical cross reference hdl_top.fpu_if 

into the HDL top level module (i.e. line 40 in Sample A.1.b). 

Certainly, neither a pin-level HVL-HDL interface nor an HVL-HDL 

cross module reference is permitted in the dual top co-emulation 

architecture, but this will be remedied in the next step where each 

transactor layer component is split into a synthesizable BFM on the 

HDL side and a corresponding untimed testbench component on the 

HVL side using a purely transaction-based communication 

mechanism. 

 

It is worth pointing out that next to hardware-assisted acceleration 

there are other good reasons to adopt a dual top testbench 

architecture. For instance, it can facilitate the use of multi-processor 

platforms for simulation, the use of compile and run-time 

optimization techniques, or the application of good software 

engineering practices for the creation of highly portable, 

configurable VIP as discussed in [3]. 

 

4.2 Timed Testbench Modeled Under HDL Top  

Forming the abstraction bridge between the timed signal level and 

untimed transaction level of abstraction, transactor layer testbench 

components like drivers, monitors or responders convert „what is 

being transferred‟ into „how it must be transferred‟, or vice versa, in 

accordance with a given interface protocol. The timed portion of 



such a component is reminiscent of a conventional BFM, a collection 

of threads and associated tasks and functions for the (sole) purpose 

of translating to and from timed pin-level activity on the DUT. In 

SystemVerilog object-oriented testbenches this is commonly 

modeled inside classes, e.g. classes derived from the ovm_driver 

or ovm_monitor base classes in OVM. The DUT pins are bundled 

inside SystemVerilog interfaces and accessed directly from within 

these classes using the virtual interface construct. Virtual interfaces 

thus act as the link between the dynamic object-oriented testbench 

and the static SystemVerilog module hierarchy. 

 

With regard to co-emulation, BFMs are naturally timed and must be 

part of the HDL top level module hierarchy, while dynamic class 

objects are generally not synthesizable and must be part of the HVL 

hierarchy. In addition, a transactor layer component usually has some 

high level code next to its BFM portion that is not synthesizable 

either, for example a transaction-level interface to upstream 

components in the testbench layer. All BFMs must therefore be 

„surgically‟ extracted and modeled instead as synthesizable 

SystemVerilog HDL modules or interfaces. 

 

Using this principle it is possible without much difficulty to write 

powerful state machines to implement synthesizable BFMs. 

Furthermore, when modeling these BFMs as SystemVerilog 

interfaces it is possible to continue to utilize virtual interfaces to bind 

the dynamic HVL and static HDL sides. The key difference with 

conventional SystemVerilog object-oriented testbenches is that the 

BFMs have moved from the HVL to the HDL side and the HVL-

HDL connection must now be a transaction-level link between 

testbench objects and BFM interfaces. That is, testbench objects may 

no longer access signals in an interface directly, but only indirectly 

by calling (transaction-level) functions and tasks declared inside a 

BFM interface. This yields the testbench architecture already 

discussed briefly in Section 2 and depicted in Figure 2. It works 

natively in simulation and it has been demonstrated to work also in 

co-emulation (i.e. with Mentor Graphics‟ Veloce TBXTM acceleration 

solution). The next section details the concrete mechanism for HVL-

HDL communication using remote function/task calls. 

 

4.3 Transaction-Level HVL–HDL Interface 

With the timed and untimed portions of a testbench fully partitioned, 

what remains is establishing a transaction-based communication 

mechanism for co-emulation. As suggested above, the use of virtual 

interface handles on the HVL side bound to concrete interface 

instances on the HDL side enables a flexible transaction transport 

mode for HVL-HDL communication provided thus that BFMs are 

implemented as SystemVerilog interfaces in the HDL hierarchy, not 

as modules. The flexibility stems from the fact that user-defined 

tasks and functions in these interfaces form the API. 

 

Following the remote proxy design pattern discussed earlier, 

components on the HVL side acting as proxies to BFM interfaces 

can call relevant tasks and functions declared inside the BFMs via 

virtual interface handles to drive and sample DUT signals, initiate 

BFM threads, configure BFM parameters or retrieve BFM status. By 

retaining specifically the original transactor layer components like 

driver and monitor classes as the BFM proxies (see Figure 2) – 

minus the extracted BFMs themselves – impact on the original 

SystemVerilog object-oriented testbench is minimized. The proxies 

form a thin layer in place of the original transactor layer, which 

allows all other testbench layer components to remain intact. This 

offers maximum leverage of existing verification capabilities and 

methodologies. 

 

The remote task/function call mechanism is based for the most part 

on the known Accellera SCE-MI 2 function model, and so it has the 

same kind of performance benefits as SCE-MI 2. In the traditional 

SCE-MI 2 function-based model it is the SystemVerilog DPI 

interface that is the natural boundary for partitioning workstation and 

emulator models [1], whereas the proposed methodology here uses 

the class object to interface instance boundary as the natural 

boundary for the same partitioning. Extensions specifically designed 

for SystemVerilog testbench modeling are added, most notably task 

calls in the workstation to emulator direction in which use of time-

consuming/multi-cycle processing elements is allowed. This is 

essential to be able to model BFMs on the HDL side that are callable 

from the HVL side.  

 

The HVL-HDL co-modeling interface mechanism is depicted in 

Figure 4. A proxy class bus_driver has a virtual interface handle 

m_bfm to a corresponding BFM model bus_driver_bfm 

implemented as a synthesizable interface. Time-consuming tasks and 

non-blocking functions in the interface can be called by the driver 

proxy via the virtual interface to execute bus cycles, set parameters 

or get status information. Notice the „bfm‟ suffix in the BFM 

interface name, which is recommended as a naming convention. Also 

notice the use of the bus pin interface confined to the BFM by 

inclusion through its port list. 

 

 
 

Figure 4. BFM interface with HVL proxy class 

 

4.3.1 Transaction Object Conversion  
Classes and other dynamic or unpacked data types in SystemVerilog 

are generally not synthesizable and can therefore not be used as BFM 

function/task arguments. For SystemVerilog object-oriented 

testbenches that extensively use class-based transactions (e.g. those 

derived from the ovm_transaction base class in OVM) it means 

that these transactions cannot simply be passed as is between the 

BFM interfaces and their proxies. However, since BFM functions 

and tasks are user-defined, it may be pertinent to pass transaction 

class members as individual packed arguments, just as shown in the 

code example of Figure 4 for the address and data attributes of bus 

transactions. Or one may choose to utilize special conversion 

routines to convert explicitly between class-based transactions and 

suitable packed type representations that are synthesizable such as a 

bit vector or packed struct. When utilized, it is recommended to 

standardize on from_class(...) and to_class(...) methods 

defined in an external converter class for each transaction type that 

must cross the HVL-HDL boundary. A concrete example is given in 

Sample A.2 of the Appendix for FPU request transactions. 

 
 

Sample A.3 of the Appendix provides an example transformation of 

a purely class-based FPU monitor from the OVM cookbook example 



kit [2] into a functionally equivalent BFM/proxy pair suited for both 

simulation and co-emulation. The FPU monitor proxy reimplements 

tasks monitor_request() and monitor_response() (i.e. 

lines 21-30 and 32-46 in Sample A.3.b) to call corresponding tasks in 

the BFM (i.e. lines 58-68 and 70-73 in Sample A.3.b) to perform the 

pin-level sampling of FPU request and response transactions and 

output these to the BFM proxy. External converter classes with 

from_class(...) and to_class(...) methods are used to 

convert between FPU transaction objects and convenient 

synthesizable packed struct representations of these transactions (i.e. 

lines 27 and 39 in Sample A.3.b), as shown in Sample A.2 for FPU 

requests. 

 
 

For the example given it is assumed that the BFM interface is 

instantiated somewhere under the HDL top level hierarchy and that 

its corresponding proxy object on the HVL side has a virtual 

interface reference to the BFM. The actual binding of the virtual 

interface to the hierarchical HDL path of the BFM is not shown for 

brevity. Any such binding mechanism can be made to work also in 

the context of co-emulation. For OVM testbenches a recommended 

method described in [3] utilizes a general purpose OVM container 

class for wrapping any SystemVerilog type so that it can be used 

with the OVM configuration mechanism. It works just fine for 

binding BFM / proxy pairs. 

 

4.3.2 HDL-to-HVL Back-pointers  
For modeling flexibility and completeness a transaction-level HVL-

HDL co-modeling interface can be defined in both directions. 

Similar to an HVL proxy class calling tasks and functions declared in 

an HDL interface, as discussed thus far, one can define how an HDL 

interface can call functions1 declared in an HVL class. This would 

enable transaction-based HVL-HDL communication initiated from 

the HDL side. Specifically, a BFM interface may call relevant class 

member functions of its proxy object on the HVL side for instance to 

provide sampled transactions for analysis or indicate other status 

information. Figure 5 illustrates this. As shown, the handle of a BFM 

interface to the BFM proxy can be assigned simply inside the proxy 

itself via its virtual interface handle to the BFM. Access to any data 

members in the BFM proxy would not be permitted, just as cross 

signal references into the BFM are not allowed. Due to language 

restrictions on matching types, the proxy class definition together  

 

 
 

Figure 5. Driver BFM interface with HVL proxy 

 

                                                 
1 Since clocks are running exclusively on the HDL side, only 

functions – not tasks – should be called from HDL to HVL side. 

Strictly speaking only time-consuming tasks are problematic, but it is 

recommended to avoid tasks altogether. 

with any types it depends on must be imported inside the BFM 

interface via one or more packages. 

 

The use of such object handles in BFM interfaces back to their proxy 

classes, or „back-pointers‟, is not firmly required for modeling 

reactive HVL-HDL communication. Yet this is particularly useful 

for components like monitors. A typical monitor continuously listens 

to an interface to extract transactions and pass them out to other 

testbench components for analysis, just like the FPU monitor in 

Sample A.3 of the Appendix. It initiates communication of observed 

transactions to „subscribers‟ like scoreboards, coverage collectors or 

interrupt monitors. It is in effect more natural to have a monitor BFM 

„push‟ instead of the BFM proxy „pull‟ these transactions out. More 

importantly, doing so presents opportunities for significant 

performance optimization. Observed transactions are commonly 

distributed for analysis using void functions (e.g. the TLM 

write(...) function in OVM – i.e. line 46 in Sample A.3.a). Such 

one-way non-blocking calls can be dispatched and executed 

concurrently without even stopping the emulator clocks. 

 
 

Sample A.4 of the Appendix provides a second take on remodeling 

the OVM-based FPU monitor for co-emulation. The monitor BFM 

now calls a void function write of its proxy via a back-pointer to 

push sampled FPU request-response pairs out to the HVL side (i.e. 

lines 62 and 22-26 in Sample A.4.b). The reader is invited to inspect 

the example in more detail with respect to the one in Sample A.3. 

 

5. ADDITIONAL CONSIDERATIONS  

Prying apart transactor layer components into synthesizable BFMs 

on the HDL side and untimed transaction-level proxy objects on the 

HVL side, as described in the previous section, has the consequence 

that the BFMs must be elaborated statically before run-time. At first 

sight some of the capabilities of a truly dynamic testbench may seem 

lost. Recall though that it is only the timed interface protocol that is 

to be implemented on the HDL side. Since the DUT interface and 

protocol are largely static there is no real loss of functionality. The 

idea is to retain the bits and pieces that must be dynamic inside the 

BFM proxy under the HVL top level module hierarchy. It should be 

apparent that a BFM interface is then in principle controllable 

completely through its dynamic proxy, via remote function or task 

calls. For instance, in terms of OVM it means that while BFMs 

cannot be created using the OVM factory or configured using the 

OVM configuration mechanism, the BFM proxies can be controlled 

in this way and hence indirectly the static BFMs themselves. 

 

Thanks to the application of the remote proxy design pattern, 

prevalent testbench topology practices can also be facilitated without 

much alteration. Figure 6 depicts the normal view of an OVM agent 

for simulation and the adapted view for co-emulation. From the 

perspective of the OVM testbench on the HVL side there is no 

difference. Certainly, a matching topology of BFM interfaces under 

the HDL top can be configured only statically at elaboration-time, 

but as suggested by the code example in Figure 7 it is rather 

straightforward to employ SystemVerilog conditional or loop 

generate constructs on the HDL side in combination with a shared 

package of static test parameters imported and used by both HDL 

and HVL sides. The topology of a typical testbench is after all static 

in nature since it is expected to be fully elaborated before any 

testbench component starts running (e.g. the „end-of-elaboration‟ 

phase in OVM executes before the „run‟ phase). In case a truly 

dynamic alternative is desired it is possible to elaborate a fixed 

number of BFMs on the HDL side of which only a subset become 

active as maintained by the type and number of dynamically created 

BFM proxy objects. 



 
 

Figure 6. Simulation and co-emulation view of an OVM agent 

 

Another methodology consideration is that current synthesis 

technology does not readily handle SystemVerilog coverage groups. 

Coverage groups are well suited for implementing transaction-level 

coverage concerned with the higher level functional requirements of 

a design. This stands in contrast to assertion coverage which lends 

itself for measuring the occurrence of lower level physical events 

involving the sampling of DUT signals and state variables, 

potentially over multiple consecutive clock cycles [4]. Assertion 

coverage fits naturally for BFMs and is in fact supported for 

synthesis by Veloce TBXTM. Moreover, while surely coverage groups 

could be of use in BFMs as well, key to handling any genuine 

transaction-level coverage requirement for a BFM interfaceis once 

again the BFM‟s HVL proxy object, which may have coverage 

groups itself and forward transactions to other transaction-level 

coverage analysis components (e.g. see Sample A.4.b). 

 

 
 

Figure 7. Topology configuration 

 

6. EMPIRICAL RESULTS 
Table 1 lists empirical results of applying the proposed transaction-

based SystemVerilog testbench acceleration methodology. For 

several different designs the run-times for executing a test with pure 

simulation and with co-emulation are compared. The co-emulation 

engine used is Mentor Graphic‟s Veloce TBXTM. The results clearly 

indicate that co-emulation can be much faster than simulation alone.  

Table 1. Empirical results 

Design Simulation 

Time 

Veloce 

TBXTM 

Speed-up 

Factor 

Face Recognition 

Engine (1 MG) 
½ hr. 6.58 secs. 128x 

Wireless MM Sub-

system (1 MG) 
53 hrs. 658 secs. 288x 

Menory  

Controller (1.1 MG) 
5 hrs. 308 secs. 60x 

Mobile Display 

Processor (1.2 MG) 
5 hrs. 46 secs. 399x 

Network  

Switch (34 MG) 
16½ hrs. 240 secs. 245x 

Graphics Sub-

system (8 MG) 
86½ hrs. 635 secs. 491x 

 

Therefore, if simulation leaves you with insufficient throughput to 

meet your verification requirements, rather than taking calculated 

risks and limit the length of your simulation runs, you could greatly 

improve verification throughput with realistic tests using co-

emulation. 

 

7. SUMMARY AND CONCLUSIONS  
A methodology was described for writing SystemVerilog and OVM 

or UVM testbenches that can be used not only for software 

simulation, but especially for hardware-assisted acceleration. For 

modern transaction-level testbenches, the pragmatic approach to 

hardware-assisted speedup in testbench execution is to have certain 

testbench components – the lower pin-level components like drivers, 

monitors etc. – synthesized into real hardware and running inside the 

emulator together with the DUT, while other non-synthesizable 

testbench components – the higher transaction-level components like 

generators, scoreboards, coverage collectors etc. – remain in 

software running inside the simulator. Communication between 

simulator and emulator is then transaction-based, not cycle-based, 

reducing communication overhead and increasing performance 

because hardware-software data exchange is infrequent and 

information rich, and high frequency pin activity is confined to run in 

hardware at full emulator clock rates. 

 

This so-called co-emulation or co-modeling approach is at the core 

of the methodology presented, which further maximizes reuse 

between pure simulation-based verification and hardware-assisted 

acceleration through the application of an object-oriented remote 

proxy design pattern. As a result, truly „single source‟ and fully IEEE 

1800 SystemVerilog compliant transaction-level testbenches can be 

created to work interchangeably for both simulation and acceleration. 

In acceleration mode substantial run-time improvements are made 

possible and without sacrificing simulator verification capabilities 

and integrations such as modern coverage-driven, constrained-

random and assertion-based techniques and tools. Additionally, the 

acceleration methodology is independent of the SystemVerilog 

verification methodology used and applicable to all prevalent 

methodologies today including OVM or UVM, and VMM. 

 

In technical summary, the proposed simulation and acceleration 

methodology stipulates that a testbench be partitioned into two 

completely separated hierarchies, a synthesizable HDL side and a 

strictly untimed HVL side. Cross module and signal references are 

not permitted between the two sides. Instead, only transaction-level 

data exchange is performed via „remote procedure invocation‟ in 



SystemVerilog, and with Accellera SCE-MI 2 inspired performance 

benefits. Specifically, each DUT interface protocol – or BFM – on 

the HDL side is modeled as a synthesizable SystemVerilog interface 

with designated tasks and functions that can be called from the HVL 

side through a virtual interface by a dynamic class object that acts as 

HVL proxy for the BFM. Transaction objects may thereby need to be 

converted into synthesizable arguments. Conversely, the BFM 

interface may also have an object handle back to its proxy to call 

functions defined in the proxy. Reactive transaction-based 

communication is thus supported across the HVL-HDL boundary in 

both directions with either the HVL proxy or the BFM as call 

initiator. Each pair of BFM and proxy is to be viewed essentially as a 

joint pair representing a single transactor. 
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Appendix – Code Samples 
 

Sample A.1. From conventional single top to dual top hierarchy for co-emulation 

 (a) Single top hierarchy (b) Dual top hierarchy 

 
 

1 module top; 

2  

3   parameter int HALF_PERIOD = 12; 

4   parameter int DATA_SIZE = 8; 

5   parameter int ADDR_SIZE = 10; 

6  

7   env #(DATA_SIZE, ADDR_SIZE) e; 

8   fpu_vif fpu_vif_obj; 

9  

10   bit clk; 

11   fpu_pin_if #(32) fpu_if (clk); 

12  

13   fpu fpu_dut(fpu_if.clk,  

14               fpu_if.opa,  

15               ...,  

16               fpu_if.snan 

17              ); 

18  

19   initial begin 

20     e = new("env"); 

21  

22     fpu_vif_obj = new(fpu_if); 

23     set_config_object( 

24       "*", "fpu_vif", fpu_vif_obj, 0); 

25  

26     // start the clock running 

27     clk = 0; 

28     fork 

29       forever begin 

30         #HALF_PERIOD; 

31         clk = !clk; 

32       end 

33     join_none 

34  

35     run_test(); 

36   end 

37  

38 endmodule 

 

 

1 package test_params_pkg; 

2   parameter int HALF_PERIOD = 12; 

3   parameter int DATA_SIZE = 8; 

4   parameter int ADDR_SIZE = 10; 

5 endpackage 

6  

7  

8 module hdl_top; 

9  

10   import test_params_pkg::*; 

11  

12   bit clk; 

13   fpu_pin_if #(32) fpu_if (clk); 

14  

15   fpu fpu_dut(fpu_if.clk,  

16               fpu_if.opa,  

17               ...,  

18               fpu_if.snan 

19              ); 

20  

21   // tbx clkgen 

22   initial begin // Clock generator 

23     clk = 0; 

24     forever #(HALF_PERIOD) clk = ~clk; 

25   end 

26  

27 endmodule 

28  

29  

30 module hvl_top; 

31  

32   import test_params_pkg::*; 

33  

34   env #(DATA_SIZE, ADDR_SIZE) e; 

35   fpu_vif fpu_vif_obj; 

36  

37   initial begin 

38     e = new("env"); 

39  

40     fpu_vif_obj = new(hdl_top.fpu_if); 

41     set_config_object( 

42       "*", "fpu_vif", fpu_vif_obj, 0); 

43  

44     run_test(); 

45   end 

46  

47 endmodule 

 

  



Sample A.2. Converting transaction objects for co-emulation 

 

1 class fpu_request extends ovm_transaction; 

2  

3   shortreal a; 

4   shortreal b; 

5   rand op_t op; 

6   rand round_t round; 

7  

8   ... 

9  

10 endclass 

11  

12  

13 package fpu_trans_util_pkg; 

14   typedef struct packed { 

15     bit [31:0] a; 

16     bit [31:0] b; 

17     op_t op; 

18     round_t round; 

19   } fpu_request_s; 

20  

21   typedef bit [$bits(fpu_request_s)-1:0] 

22     fpu_request_vector_t; 

23  

24   ... 

25  

26 endpackage 

27  

 

 

28 class fpu_request_converter; 

29  

30   function void to_class( 

31       output fpu_request req, 

32       input fpu_request_vector_t v); 

33     fpu_request_s s = v; 

34     req = new(); 

35     req.a = $bitstoshortreal(s.a) 

36     req.b = $bitstoshortreal(s.b); 

37     req.op = s.op; 

38     req.round = s.round; 

39   endfunction 

40  

41   function void from_class( 

42       input fpu_request req,  

43       output fpu_request_vector_t v); 

44     fpu_request_s s; 

45     s.a = $shortrealtobits(req.a); 

46     s.b = $shortrealtobits(req.b); 

47     s.op = req.op; 

48     s.round = req.round; 

49     v = s; 

50   endfunction 

51  

52 endclass 

 

 



Sample A.3. Transforming an FPU monitor for co-emulation 

 (a) Original monitor (b) XRTL monitor BFM with proxy 

 
 

1 class fpu_monitor extends ovm_component; 

2  

3   ovm_analysis_port #(fpu_pair) pair_ap; 

4  

5   // VIF handle to pin interface 

6   local virtual fpu_pin_if #(32) m_fpu_pins; 

7  

8   ... 

9  

10   function void connect(); 

11     ... // Retrieve m_fpu_pins vif handle 

12   endfunction 

13  

14   task run(); 

15     fork 

16       monitor_request(); 

17       monitor_response(); 

18     join 

19   endtask 

20  

21   task monitor_request(); 

22     forever begin 

23       fpu_request req = new(); 

24  

25       do 

26         @(posedge m_fpu_pins.clk); 

27       while (m_fpu_pins.start != 1); 

28  

29       req.a = $bitstoshortreal(m_fpu_pins.op_a); 

30       req.b = $bitstoshortreal(m_fpu_pins.op_b); 

31       req.op = op_t′(m_fpu_pins.fpu_op); 

32       req.round = round_t′(m_fpu_pins.rmode); 

33  

34       $cast(m_req_in_process, req.clone()); 

35     end 

36   endtask: monitor_request 

37  

38   task monitor_response(); 

39     forever begin 

40       fpu_response rsp = new(); 

41       fpu_pair pair; 

42  

43       ... // Timed code to sample response 

44  

45       pair = new(m_req_in_process, rsp); 

46       pair_ap.write(pair); 

47     end 

48   endtask: monitor_response 

49  

50 endclass 

 

 

1 class fpu_monitor extends ovm_component; 

2  

3   ovm_analysis_port #(fpu_pair) pair_ap; 

4  

5   // VIF handle to XRTL BFM 

6   local virtual fpu_monitor_bfm m_bfm; 

7  

8   ... 

9  

10   function void connect(); 

11     ... // Retrieve m_bfm vif handle 

12   endfunction 

13  

14   task run(); 

15     fork 

16       monitor_request(); 

17       monitor_response(); 

18     join 

19   endtask 

20  

21   task monitor_request(); 

22     forever begin 

23       fpu_request req; 

24       fpu_request_s req_s; 

25  

26       m_bfm.monitor_request(req_s); 

27       req_converter.to_class(req, req_s); 

28       $cast(m_req_in_process, req.clone()); 

29     end 

30   endtask: monitor_request 

31  

32   task monitor_response(); 

33     forever begin 

34       fpu_response rsp; 

35       fpu_response_s rsp_s; 

36       fpu_pair pair; 

37  

38       m_bfm.monitor_response(rsp_s); 

39       rsp_converter.to_class(rsp, rsp_s); 

40       ... 

41       pair = new(m_req_in_process, rsp); 

42       pair_ap.write(pair); 

43     end 

44   endtask: monitor_response 

45  

46 endclass 

47  

48  

49 interface fpu_monitor_bfm(fpu_pin_if fpu_pins); 

50 // pragma attribute fpu_monitor_bfm  

            partition_interface_xif 

51  

52   ... 

53  

54   wire clk = fpu_pins.clk; 

55  

56   task monitor_request(output  

57       fpu_request_s req); // pragma tbx xtf 

58     @(posedge clk); 

59     while (fpu_pins.start != 1) 

60       @(posedge clk); 

61     req.a = fpu_pins.op_a; 

62     req.b = fpu_pins.op_b; 

63     req.op = op_t′(fpu_pins.fpu_op); 

64     req.round = round_t′(fpu_pins.rmode); 

65   endtask 

66  

67   task monitor_response(output  

68     fpu_response_s rsp); // pragma tbx xtf 

69     ... // Timed code to sample response 

70   endtask 

71  

72 endinterface 

 

  



Sample A.4. Transforming an FPU monitor for co-emulation (take 2) 

 (a) Original monitor (b) XRTL monitor BFM with proxy 

 
 

1 class fpu_monitor extends ovm_component; 

2  

3   ovm_analysis_port #(fpu_pair) pair_ap; 

4  

5   // VIF handle to pin interface 

6   local virtual fpu_pin_if #(32) m_fpu_pins; 

7  

8   ... 

9  

10   function void build(); 

11     ... // Retrieve m_fpu_pins vif handle 

12   endfunction 

13  

14   task run(); 

15     @(posedge m_fpu_pins.clk); 

16     fork 

17       monitor_request(); 

18       monitor_response(); 

19     join 

20   endtask 

21  

22   task monitor_request(); 

23     forever begin 

24       fpu_request req = new(); 

25  

26       do 

27         @(posedge m_fpu_pins.clk); 

28       while (m_fpu_pins.start != 1); 

29  

30       req.a = $bitstoshortreal(m_fpu_pins.op_a); 

31       req.b = $bitstoshortreal(m_fpu_pins.op_b); 

32       req.op = op_t′(m_fpu_pins.fpu_op); 

33       req.round = round_t′(m_fpu_pins.rmode); 

34  

35       $cast(m_req_in_process, req.clone()); 

36     end 

37   endtask: monitor_request 

38  

39   task monitor_response(); 

40     forever begin 

41       fpu_response rsp = new(); 

42       fpu_pair pair; 

43  

44       ... // Timed code to sample response 

45  

46       pair = new(m_req_in_process, rsp); 

47       pair_ap.write(pair); 

48     end 

49   endtask: monitor_response 

50  

51 endclass 

 

 

1 class fpu_monitor extends ovm_component; 

2  

3    ovm_analysis_port #(fpu_pair) pair_ap; 

4  

5   // VIF handle to XRTL BFM 

6   local virtual fpu_monitor_bfm m_bfm; 

7  

8   ... 

9  

10   function void connect(); 

11 ..  // Retrieve m_bfm vif handle 

12     m_bfm.proxy = this; 

13   endfunction 

14  

15   task run(); 

16     fork 

17       m_bfm.request_daemon(); 

18       m_bfm.response_daemon(); 

19     join 

20   endtask 

21  

22   function void write(fpu_pair_s pair_s); 

23     fpu_pair pair = new(); 

24     pair_converter.to_class(pair, pair_s); 

25     pair_ap.write(pair); 

26   endfunction 

27  

28 endclass 

29  

30  

31 interface fpu_monitor_bfm(fpu_pin_if fpu_pins); 

32   // pragma attribute fpu_monitor_bfm  

              partition_interface_xif 

33  

34   ... 

35  

36   import fpu_tlm_pkg::fpu_monitor; 

37   fpu_monitor proxy; 

38   // pragma tbx oneway proxy.write 

39  

40   fpu_request_s req_in_process; 

41  

42   task request_daemon(); // pragma tbx xtf 

43     ... // Sample requests (req_in_process); 

44   endtask 

45  

46   task response_daemon(); // pragma tbx xtf 

47     fpu_pair_s pair; 

48  

49     @(posedge clk); 

50  

51     forever begin 

52       @(posedge clk); 

53       while (fpu_pins.ready != 1) 

54         @(posedge clk); 

55  

56       ... 

57  

58       pair.req = req_in_process; 

59       pair.rsp.result = fpu_pins.outp; 

60  

61       ... 

62  

63       proxy.write(pair); 

64     end 

65   endtask 

66  

67 endinterface 

 

 


