
Off To The Races With Your
Accelerated SystemVerilog Testbench

(A Methodology for Hardware-Assisted Acceleration of SystemVerilog Testbenches)

Hans van der Schoot, Anoop Saha, Ankit Garg, Krishnamurthy Suresh

Mentor Graphics Corporation

{hans_vanderschoot, anoop_saha, ankit_garg, k_suresh}@mentor.com

ABSTRACT
A methodology is presented for writing modern SystemVerilog

testbenches that can be used not only for software simulation, but

especially for hardware-assisted acceleration. The methodology is

founded on a transaction-based co-emulation approach and enables

truly single source, fully IEEE 1800 SystemVerilog compliant,

transaction-level testbenches that work for both simulation and

acceleration. Substantial run-time improvements are possible in

acceleration mode and without sacrificing simulator verification

capabilities and integrations including SystemVerilog coverage-

driven, constrained-random and assertion-based techniques as well as

prevalent verification methodologies like OVM or UVM.

General Terms
Verification, Performance.

Keywords
Acceleration, Emulation, Co-modeling, SystemVerilog, OVM/UVM.

1. INTRODUCTION
This paper describes a methodology for writing modern

SystemVerilog testbenches that can be used not only for software

simulation, but especially for hardware-assisted acceleration.

Hardware-assisted speedup in testbench execution is compelling

when one considers that ever growing verification complexity

coupled with short time to market windows and scarce engineering

resources make the need for fast simulation run times increasingly

critical. For instance, think of viewing a full frame of graphics in a

matter of minutes instead of a day of simulation. Simply put, faster

testbenches enable longer and more test cases to be run in less time,

allowing more requirements to be covered and more bugs uncovered.

Hardware-assisted testbench acceleration can in principle be

achieved with full emulation through a fully synthesizable testbench,

or more conventionally with co-simulation where an RTL DUT is

mapped onto an emulation platform that interacts with the simulated

testbench on a workstation at a clock cycle basis. With today‟s

advanced transaction-level testbenches, however, the pragmatic

approach is to have certain testbench components – the lower pin-

level components like drivers, monitors etc. – synthesized into real

hardware and running inside the emulator together with the DUT,

while other non-synthesizable testbench components – the higher

transaction-level components like generators, scoreboards, coverage

collectors etc. – remain in software running inside the simulator.

Communication between simulator and emulator is consequently

transaction-based, not cycle-based, reducing communication

overhead and increasing performance because data exchange is

infrequent and information rich and high frequency pin activity is

confined to run at full emulator clock rates.

The methodology presented herein promotes this so-called co-

emulation (also known as co-modeling) approach and aims to

maximize reuse between pure simulation-based verification and

hardware-assisted acceleration. It enables truly single source, fully

IEEE 1800 SystemVerilog compliant, transaction-level testbenches

that work interchangeably for both simulation and acceleration. In

acceleration mode it offers substantial run-time improvements while

retaining all simulator verification capabilities and integrations. This

includes in particular support for modern coverage-driven,

constrained-random and assertion-based techniques in

SystemVerilog as well as prevalent verification methodologies like

OVM or UVM, and VMM. The subsequent sections lay out the

details of and illustrate the proposed transaction-based acceleration

methodology for SystemVerilog in terms of the testbench

architecture and modeling rules and guidelines.

2. TERMINOLOGY
Co-emulation, or (transaction-level) co-modeling, is the process of

modeling and simulating untimed behavioral models in conjunction

with synthesizable hardware models running on an emulator,

intercommunicating through transactions or function/task calls. The

untimed transaction-based behavioral models are collectively

referred to as the HVL side, while the cycle-accurate synthesizable

hardware models constitute the HDL side.

SCE-MI 2, or Standard Co-Emulation Modeling Interface 2, is a set

of standard modeling interfaces defined within Accellera for multi-

channel communication between software models describing system

behavior (i.e. the HVL side) and structural models describing the

implementation of a hardware design (i.e. the HDL side). It is based

on SystemVerilog-DPI as the foundation to realize communication

between HDL code running in an emulator and C/C+/SystemC code

running on a workstation.

A transactor is a component responsible for converting untimed

transactions into series of cycle-accurate clocked events to be applied

to a given pin interface, and/or conversely, for converting cycle-

accurate pin activity observed into higher level transactions. In the

specific context of hardware-assisted verification, a transactor is a

SystemVerilog interface or module on the HDL side that has a

signal-level interface with the DUT and a transaction-level interface

with the HVL side. Transactors are sometimes also referred to as

BFMs (Bus Functional Models) and the two terms are considered

synonymous in this paper.

TBXTM, or TestBench XpressTM, is the third generation hardware-

assisted acceleration solution from Mentor Graphics, enabling state-

of-the-art, comprehensive transaction-based co-emulation coupled to

Mentor Graphics‟s Veloce emulation platform. It includes synthesis

support of a rich extension of the RTL subset of SystemVerilog with

behavioral clock generation and reset logic, initial and final blocks,

implicit FSMs, SystemVerilog-DPI functions and tasks,

synchronization events, waits, system tasks, and more, thereby

offering maximum HDL modeling flexibility without performance

penalties.

3. REQUIREMENTS
Several requirements are at play when devising a transaction-based

acceleration methodology for SystemVerilog. Firstly, it must adhere

to the principles of co-emulation which implies the need to partition

a testbench into a synthesizable HDL side and a distinct HVL side

handled by separate tools running on two different physical devices –

emulator and workstation – and interacting at the transaction-level.

The HDL side, then, must bear the limitations of modern day

synthesis technology, and the communication with the HVL side

must be fast and efficient so as to minimize impact on raw emulator

performance.

Today‟s transaction-based testbenches like OVM/UVM testbenches

have a layered foundation that exhibits a separation between timed

and untimed (or partially timed) aspects of the testbench. As

illustrated in Figure 1, a transactor layer forms the bridge between

the cycle-accurate signal level of abstraction near the DUT and the

transaction level of abstraction in the rest of the testbench. A co-

emulation flow enforces this separation and requires that the

transactor layer components are included on the HDL side to run

alongside the DUT on the emulator. It further requires that the HDL

and HVL sides are completely separated hierarchies with no cross

module or signal references, and with the code on the HVL side

strictly untimed. This means that the HVL side cannot include any

explicit time advance statements like clock synchronizations, #

delays and wait statements, which may occur only on the HDL side.

Abstract event synchronizations and waits for abstract events are

permitted on the untimed HVL side, and it is still time aware in the

sense that the current time as communicated with every context

switch from HDL to HVL side can be read. As a result of the HDL-

HVL partitioning, performance can be maximized because testbench

and communication overhead is reduced and all intensive pin

wiggling takes place in the grey area in Figure 1 targeted to run at

emulation speeds.

Figure 1. Transaction-based testbench

Another important methodology requirement is that it yields „single-

source‟ testbenches for both simulation and acceleration. This means

that the HVL-HDL partitioning must function the same in co-

emulation and in simulation alone, yet without the use of hooks like

compile-time or run-time switches that would disable entire branches

of code and pretty well implement two separate code bases. It also

implies that the benefits of using SystemVerilog and verification

methodologies like OVM or UVM for creating modular, reusable

verification components and testbenches must be preserved along

with associated simulator capabilities for analysis and debug. Key to

achieving that proves to be the application of what is known in the

object oriented world as a remote proxy design pattern. In this design

pattern access to a remote object – e.g. a component on the HDL side

– is controlled by a surrogate in the application domain – e.g. a

component on the HVL side – through some indirect reference to

uniquely access the remote object. Figure 2 illustrates this, where

driver, responder and monitor components in blue act as proxies on

the HVL side for the real transactors in yellow on the HDL side

implementing synthesizable driver, responder and monitor BFMs,

respectively. Communication between each transactor and its proxy

occurs through a remote procedure invocation mechanism using

BFM-like task and function calls, as detailed later. The mechanism is

inspired by the known Accellera SCE-MI 2 function model and has

the same kind of performance benefits as SCE-MI 2 [1]. This

modeling practice in effect enables an acceleration methodology for

SystemVerilog that is verification methodology neutral and thus

applicable to OVM or UVM, and VMM.

Figure 2. Transaction-based testbench with transactor proxies

A prior attempt towards enabling a methodology for accelerating

SystemVerilog and OVM testbenches was made by Saha et al. in [5],

proposing a considerably different use model for HVL-HDL

communication referred to as XTLM (eXtended TLM). XTLM

comprises a library of „acceleration-friendly‟ TLM-based interface

components in SystemVerilog, optionally derived from the TLM

components in the OVM class library. It provides TLM fifos and

channels, ports and exports that are enhanced for message passing

across the HVL-HDL abstraction boundary using an intermediate C

layer and SCE-MI 2 compliant SystemVerilog DPI-C. The rationale

was that with the Accellera SCE-MI 2 standard already defining the

communication semantics between HDL transactors and C models

[1], XTLM implements an extra layer above the C layer to make the

latter transparent to the user. Because of its usage of C as an

intermediate language layer though, this approach naturally inherits

the restrictions of that language.

In comparison, where XTLM enables a set of fabricated HVL-HDL

connections built from the XTLM library components with a fixed

API, the transaction transport mechanism presented in this paper

utilizes exclusively built-in SystemVerilog constructs for a flexible

user-defined API that is simpler and more intuitive and therefore

generally easier to learn. And with the intermediate C layer gone, it

proposes just a small structural change at the boundary between DUT

and testbench as part of the verification methodology used, where

XTLM is structurally much more obtrusive. A detailed description of

XTLM and usage examples can be found in [5].

4. THE METHODOLOGY
For a typical SystemVerilog testbench a single top level module

encapsulates all elements of the testbench. This includes all

verification environment components, clock and reset generators, the

RTL DUT, and any SystemVerilog interfaces used to bundle the

external pins of the DUT for access by environment components. In

the common case of class-based verification components, such as

OVM components, the access to the pins to drive or sample values is

through a virtual interface handle – a pointer to a concrete interface.

Virtual interfaces are the established means to connect an OVM

testbench or any dynamic, object-oriented SystemVerilog testbench

to a statically elaborated HDL model.

While this practice works fine for simulation it falls short for co-

emulation, demanding two separated hierarchies – one synthesizable

– that transact together without direct cross signal accesses. A

methodology that does meet the requirements for co-emulation can

be defined in terms of three high level steps as follows:

1. Employ two distinct HVL and HDL top level module

hierarchies;

2. Identify the timed testbench portions and model for

synthesis under the HDL top level hierarchy;

3. Implement a transaction-level interface between the

HVL and HDL top level hierarchies.

The next sections describe each of these steps in detail.

4.1 Two Distinct Top Level Module Hierarchies
As the conventional single top testbench architecture is not suited for

co-emulation, the first step is to rearrange and create dual HVL and

HDL top level module hierarchies. This is conceptually quite simple,

as shown in Figure 3. The HDL side must be synthesizable and

Figure 3. Separated HVL and HDL top level module hierarchies

should contain essentially all clock synchronous code, namely the

RTL DUT, clock and reset generators, and the BFM code for driving

and sampling DUT interface signals. The HVL side should contain

all other (untimed) testbench code including the various transaction-

level testbench generation and analysis components and proxies for

the HDL transactors.

This modeling paradigm is facilitated by virtue of advancements

made in synthesis technology across multiple tools. For example,

Mentor Graphics‟ Veloce TBXTM provides technology that can

synthesize not only SystemVerilog RTL but also implicit FSMs,

initial and final blocks, named events and wait statements, import

and export DPI-C functions and tasks, system tasks, memory arrays,

behavioral clock and reset specification along with variable clock

delays, assertions, and more. All supported constructs can be mapped

on a hardware accelerator, and all models synthesized with Veloce

TBXTM run at full emulator clock rate for high performance.

Moreover, they can be simulated natively on any IEEE 1800

SystemVerilog compliant simulator. This synthesis advancement was

a precursor to the SCE-MI 2 standard developed within Accellera to

enable effective development of „emulation-friendly‟ transactors [1].

Sample A.1 of the Appendix illustrates the rearrangement of a

conventional single top hierarchy (module top in Sample A.1.a) into

a dual HDL-HVL top hierarchy (modules hdl_top and hvl_top in

Sample A.1.b) for co-emulation. This code example and subsequent

code examples are based on a SystemVerilog testbench for a floating

point unit (FPU) design adopted from the OVM cookbook [2]. As

one can see, the FPU design and pin interface have moved to the

HDL top level module (i.e. lines 10-17 and 12-19 in SampleA.1.a.

and A.1.b), together with the clock generator (i.e. lines 26-33 and 21-

25 in Sample A.1.a. and A.1.b). The clock generator has changed

slightly with the use of a specific initial block in place of the non-

synthesizable fork-join block.

A common package has also been introduced for convenient sharing

of test parameters between the separate HDL and HVL top level

hierarchies (i.e. lines 3-5 and 1-5, 10, 32 in Sample A.1.a. and

A.1.b). The remainder of the single top hierarchy has been preserved

under the HVL top level module including a virtual pin interface

connection, now by hierarchical cross reference hdl_top.fpu_if

into the HDL top level module (i.e. line 40 in Sample A.1.b).

Certainly, neither a pin-level HVL-HDL interface nor an HVL-HDL

cross module reference is permitted in the dual top co-emulation

architecture, but this will be remedied in the next step where each

transactor layer component is split into a synthesizable BFM on the

HDL side and a corresponding untimed testbench component on the

HVL side using a purely transaction-based communication

mechanism.

It is worth pointing out that next to hardware-assisted acceleration

there are other good reasons to adopt a dual top testbench

architecture. For instance, it can facilitate the use of multi-processor

platforms for simulation, the use of compile and run-time

optimization techniques, or the application of good software

engineering practices for the creation of highly portable,

configurable VIP as discussed in [3].

4.2 Timed Testbench Modeled Under HDL Top

Forming the abstraction bridge between the timed signal level and

untimed transaction level of abstraction, transactor layer testbench

components like drivers, monitors or responders convert „what is

being transferred‟ into „how it must be transferred‟, or vice versa, in

accordance with a given interface protocol. The timed portion of

such a component is reminiscent of a conventional BFM, a collection

of threads and associated tasks and functions for the (sole) purpose

of translating to and from timed pin-level activity on the DUT. In

SystemVerilog object-oriented testbenches this is commonly

modeled inside classes, e.g. classes derived from the ovm_driver

or ovm_monitor base classes in OVM. The DUT pins are bundled

inside SystemVerilog interfaces and accessed directly from within

these classes using the virtual interface construct. Virtual interfaces

thus act as the link between the dynamic object-oriented testbench

and the static SystemVerilog module hierarchy.

With regard to co-emulation, BFMs are naturally timed and must be

part of the HDL top level module hierarchy, while dynamic class

objects are generally not synthesizable and must be part of the HVL

hierarchy. In addition, a transactor layer component usually has some

high level code next to its BFM portion that is not synthesizable

either, for example a transaction-level interface to upstream

components in the testbench layer. All BFMs must therefore be

„surgically‟ extracted and modeled instead as synthesizable

SystemVerilog HDL modules or interfaces.

Using this principle it is possible without much difficulty to write

powerful state machines to implement synthesizable BFMs.

Furthermore, when modeling these BFMs as SystemVerilog

interfaces it is possible to continue to utilize virtual interfaces to bind

the dynamic HVL and static HDL sides. The key difference with

conventional SystemVerilog object-oriented testbenches is that the

BFMs have moved from the HVL to the HDL side and the HVL-

HDL connection must now be a transaction-level link between

testbench objects and BFM interfaces. That is, testbench objects may

no longer access signals in an interface directly, but only indirectly

by calling (transaction-level) functions and tasks declared inside a

BFM interface. This yields the testbench architecture already

discussed briefly in Section 2 and depicted in Figure 2. It works

natively in simulation and it has been demonstrated to work also in

co-emulation (i.e. with Mentor Graphics‟ Veloce TBXTM acceleration

solution). The next section details the concrete mechanism for HVL-

HDL communication using remote function/task calls.

4.3 Transaction-Level HVL–HDL Interface

With the timed and untimed portions of a testbench fully partitioned,

what remains is establishing a transaction-based communication

mechanism for co-emulation. As suggested above, the use of virtual

interface handles on the HVL side bound to concrete interface

instances on the HDL side enables a flexible transaction transport

mode for HVL-HDL communication provided thus that BFMs are

implemented as SystemVerilog interfaces in the HDL hierarchy, not

as modules. The flexibility stems from the fact that user-defined

tasks and functions in these interfaces form the API.

Following the remote proxy design pattern discussed earlier,

components on the HVL side acting as proxies to BFM interfaces

can call relevant tasks and functions declared inside the BFMs via

virtual interface handles to drive and sample DUT signals, initiate

BFM threads, configure BFM parameters or retrieve BFM status. By

retaining specifically the original transactor layer components like

driver and monitor classes as the BFM proxies (see Figure 2) –

minus the extracted BFMs themselves – impact on the original

SystemVerilog object-oriented testbench is minimized. The proxies

form a thin layer in place of the original transactor layer, which

allows all other testbench layer components to remain intact. This

offers maximum leverage of existing verification capabilities and

methodologies.

The remote task/function call mechanism is based for the most part

on the known Accellera SCE-MI 2 function model, and so it has the

same kind of performance benefits as SCE-MI 2. In the traditional

SCE-MI 2 function-based model it is the SystemVerilog DPI

interface that is the natural boundary for partitioning workstation and

emulator models [1], whereas the proposed methodology here uses

the class object to interface instance boundary as the natural

boundary for the same partitioning. Extensions specifically designed

for SystemVerilog testbench modeling are added, most notably task

calls in the workstation to emulator direction in which use of time-

consuming/multi-cycle processing elements is allowed. This is

essential to be able to model BFMs on the HDL side that are callable

from the HVL side.

The HVL-HDL co-modeling interface mechanism is depicted in

Figure 4. A proxy class bus_driver has a virtual interface handle

m_bfm to a corresponding BFM model bus_driver_bfm

implemented as a synthesizable interface. Time-consuming tasks and

non-blocking functions in the interface can be called by the driver

proxy via the virtual interface to execute bus cycles, set parameters

or get status information. Notice the „bfm‟ suffix in the BFM

interface name, which is recommended as a naming convention. Also

notice the use of the bus pin interface confined to the BFM by

inclusion through its port list.

Figure 4. BFM interface with HVL proxy class

4.3.1 Transaction Object Conversion
Classes and other dynamic or unpacked data types in SystemVerilog

are generally not synthesizable and can therefore not be used as BFM

function/task arguments. For SystemVerilog object-oriented

testbenches that extensively use class-based transactions (e.g. those

derived from the ovm_transaction base class in OVM) it means

that these transactions cannot simply be passed as is between the

BFM interfaces and their proxies. However, since BFM functions

and tasks are user-defined, it may be pertinent to pass transaction

class members as individual packed arguments, just as shown in the

code example of Figure 4 for the address and data attributes of bus

transactions. Or one may choose to utilize special conversion

routines to convert explicitly between class-based transactions and

suitable packed type representations that are synthesizable such as a

bit vector or packed struct. When utilized, it is recommended to

standardize on from_class(...) and to_class(...) methods

defined in an external converter class for each transaction type that

must cross the HVL-HDL boundary. A concrete example is given in

Sample A.2 of the Appendix for FPU request transactions.

Sample A.3 of the Appendix provides an example transformation of

a purely class-based FPU monitor from the OVM cookbook example

kit [2] into a functionally equivalent BFM/proxy pair suited for both

simulation and co-emulation. The FPU monitor proxy reimplements

tasks monitor_request() and monitor_response() (i.e.

lines 21-30 and 32-46 in Sample A.3.b) to call corresponding tasks in

the BFM (i.e. lines 58-68 and 70-73 in Sample A.3.b) to perform the

pin-level sampling of FPU request and response transactions and

output these to the BFM proxy. External converter classes with

from_class(...) and to_class(...) methods are used to

convert between FPU transaction objects and convenient

synthesizable packed struct representations of these transactions (i.e.

lines 27 and 39 in Sample A.3.b), as shown in Sample A.2 for FPU

requests.

For the example given it is assumed that the BFM interface is

instantiated somewhere under the HDL top level hierarchy and that

its corresponding proxy object on the HVL side has a virtual

interface reference to the BFM. The actual binding of the virtual

interface to the hierarchical HDL path of the BFM is not shown for

brevity. Any such binding mechanism can be made to work also in

the context of co-emulation. For OVM testbenches a recommended

method described in [3] utilizes a general purpose OVM container

class for wrapping any SystemVerilog type so that it can be used

with the OVM configuration mechanism. It works just fine for

binding BFM / proxy pairs.

4.3.2 HDL-to-HVL Back-pointers
For modeling flexibility and completeness a transaction-level HVL-

HDL co-modeling interface can be defined in both directions.

Similar to an HVL proxy class calling tasks and functions declared in

an HDL interface, as discussed thus far, one can define how an HDL

interface can call functions1 declared in an HVL class. This would

enable transaction-based HVL-HDL communication initiated from

the HDL side. Specifically, a BFM interface may call relevant class

member functions of its proxy object on the HVL side for instance to

provide sampled transactions for analysis or indicate other status

information. Figure 5 illustrates this. As shown, the handle of a BFM

interface to the BFM proxy can be assigned simply inside the proxy

itself via its virtual interface handle to the BFM. Access to any data

members in the BFM proxy would not be permitted, just as cross

signal references into the BFM are not allowed. Due to language

restrictions on matching types, the proxy class definition together

Figure 5. Driver BFM interface with HVL proxy

1 Since clocks are running exclusively on the HDL side, only

functions – not tasks – should be called from HDL to HVL side.

Strictly speaking only time-consuming tasks are problematic, but it is

recommended to avoid tasks altogether.

with any types it depends on must be imported inside the BFM

interface via one or more packages.

The use of such object handles in BFM interfaces back to their proxy

classes, or „back-pointers‟, is not firmly required for modeling

reactive HVL-HDL communication. Yet this is particularly useful

for components like monitors. A typical monitor continuously listens

to an interface to extract transactions and pass them out to other

testbench components for analysis, just like the FPU monitor in

Sample A.3 of the Appendix. It initiates communication of observed

transactions to „subscribers‟ like scoreboards, coverage collectors or

interrupt monitors. It is in effect more natural to have a monitor BFM

„push‟ instead of the BFM proxy „pull‟ these transactions out. More

importantly, doing so presents opportunities for significant

performance optimization. Observed transactions are commonly

distributed for analysis using void functions (e.g. the TLM

write(...) function in OVM – i.e. line 46 in Sample A.3.a). Such

one-way non-blocking calls can be dispatched and executed

concurrently without even stopping the emulator clocks.

Sample A.4 of the Appendix provides a second take on remodeling

the OVM-based FPU monitor for co-emulation. The monitor BFM

now calls a void function write of its proxy via a back-pointer to

push sampled FPU request-response pairs out to the HVL side (i.e.

lines 62 and 22-26 in Sample A.4.b). The reader is invited to inspect

the example in more detail with respect to the one in Sample A.3.

5. ADDITIONAL CONSIDERATIONS

Prying apart transactor layer components into synthesizable BFMs

on the HDL side and untimed transaction-level proxy objects on the

HVL side, as described in the previous section, has the consequence

that the BFMs must be elaborated statically before run-time. At first

sight some of the capabilities of a truly dynamic testbench may seem

lost. Recall though that it is only the timed interface protocol that is

to be implemented on the HDL side. Since the DUT interface and

protocol are largely static there is no real loss of functionality. The

idea is to retain the bits and pieces that must be dynamic inside the

BFM proxy under the HVL top level module hierarchy. It should be

apparent that a BFM interface is then in principle controllable

completely through its dynamic proxy, via remote function or task

calls. For instance, in terms of OVM it means that while BFMs

cannot be created using the OVM factory or configured using the

OVM configuration mechanism, the BFM proxies can be controlled

in this way and hence indirectly the static BFMs themselves.

Thanks to the application of the remote proxy design pattern,

prevalent testbench topology practices can also be facilitated without

much alteration. Figure 6 depicts the normal view of an OVM agent

for simulation and the adapted view for co-emulation. From the

perspective of the OVM testbench on the HVL side there is no

difference. Certainly, a matching topology of BFM interfaces under

the HDL top can be configured only statically at elaboration-time,

but as suggested by the code example in Figure 7 it is rather

straightforward to employ SystemVerilog conditional or loop

generate constructs on the HDL side in combination with a shared

package of static test parameters imported and used by both HDL

and HVL sides. The topology of a typical testbench is after all static

in nature since it is expected to be fully elaborated before any

testbench component starts running (e.g. the „end-of-elaboration‟

phase in OVM executes before the „run‟ phase). In case a truly

dynamic alternative is desired it is possible to elaborate a fixed

number of BFMs on the HDL side of which only a subset become

active as maintained by the type and number of dynamically created

BFM proxy objects.

Figure 6. Simulation and co-emulation view of an OVM agent

Another methodology consideration is that current synthesis

technology does not readily handle SystemVerilog coverage groups.

Coverage groups are well suited for implementing transaction-level

coverage concerned with the higher level functional requirements of

a design. This stands in contrast to assertion coverage which lends

itself for measuring the occurrence of lower level physical events

involving the sampling of DUT signals and state variables,

potentially over multiple consecutive clock cycles [4]. Assertion

coverage fits naturally for BFMs and is in fact supported for

synthesis by Veloce TBXTM. Moreover, while surely coverage groups

could be of use in BFMs as well, key to handling any genuine

transaction-level coverage requirement for a BFM interfaceis once

again the BFM‟s HVL proxy object, which may have coverage

groups itself and forward transactions to other transaction-level

coverage analysis components (e.g. see Sample A.4.b).

Figure 7. Topology configuration

6. EMPIRICAL RESULTS
Table 1 lists empirical results of applying the proposed transaction-

based SystemVerilog testbench acceleration methodology. For

several different designs the run-times for executing a test with pure

simulation and with co-emulation are compared. The co-emulation

engine used is Mentor Graphic‟s Veloce TBXTM. The results clearly

indicate that co-emulation can be much faster than simulation alone.

Table 1. Empirical results

Design Simulation

Time

Veloce

TBXTM

Speed-up

Factor

Face Recognition

Engine (1 MG)
½ hr. 6.58 secs. 128x

Wireless MM Sub-

system (1 MG)
53 hrs. 658 secs. 288x

Menory

Controller (1.1 MG)
5 hrs. 308 secs. 60x

Mobile Display

Processor (1.2 MG)
5 hrs. 46 secs. 399x

Network

Switch (34 MG)
16½ hrs. 240 secs. 245x

Graphics Sub-

system (8 MG)
86½ hrs. 635 secs. 491x

Therefore, if simulation leaves you with insufficient throughput to

meet your verification requirements, rather than taking calculated

risks and limit the length of your simulation runs, you could greatly

improve verification throughput with realistic tests using co-

emulation.

7. SUMMARY AND CONCLUSIONS
A methodology was described for writing SystemVerilog and OVM

or UVM testbenches that can be used not only for software

simulation, but especially for hardware-assisted acceleration. For

modern transaction-level testbenches, the pragmatic approach to

hardware-assisted speedup in testbench execution is to have certain

testbench components – the lower pin-level components like drivers,

monitors etc. – synthesized into real hardware and running inside the

emulator together with the DUT, while other non-synthesizable

testbench components – the higher transaction-level components like

generators, scoreboards, coverage collectors etc. – remain in

software running inside the simulator. Communication between

simulator and emulator is then transaction-based, not cycle-based,

reducing communication overhead and increasing performance

because hardware-software data exchange is infrequent and

information rich, and high frequency pin activity is confined to run in

hardware at full emulator clock rates.

This so-called co-emulation or co-modeling approach is at the core

of the methodology presented, which further maximizes reuse

between pure simulation-based verification and hardware-assisted

acceleration through the application of an object-oriented remote

proxy design pattern. As a result, truly „single source‟ and fully IEEE

1800 SystemVerilog compliant transaction-level testbenches can be

created to work interchangeably for both simulation and acceleration.

In acceleration mode substantial run-time improvements are made

possible and without sacrificing simulator verification capabilities

and integrations such as modern coverage-driven, constrained-

random and assertion-based techniques and tools. Additionally, the

acceleration methodology is independent of the SystemVerilog

verification methodology used and applicable to all prevalent

methodologies today including OVM or UVM, and VMM.

In technical summary, the proposed simulation and acceleration

methodology stipulates that a testbench be partitioned into two

completely separated hierarchies, a synthesizable HDL side and a

strictly untimed HVL side. Cross module and signal references are

not permitted between the two sides. Instead, only transaction-level

data exchange is performed via „remote procedure invocation‟ in

SystemVerilog, and with Accellera SCE-MI 2 inspired performance

benefits. Specifically, each DUT interface protocol – or BFM – on

the HDL side is modeled as a synthesizable SystemVerilog interface

with designated tasks and functions that can be called from the HVL

side through a virtual interface by a dynamic class object that acts as

HVL proxy for the BFM. Transaction objects may thereby need to be

converted into synthesizable arguments. Conversely, the BFM

interface may also have an object handle back to its proxy to call

functions defined in the proxy. Reactive transaction-based

communication is thus supported across the HVL-HDL boundary in

both directions with either the HVL proxy or the BFM as call

initiator. Each pair of BFM and proxy is to be viewed essentially as a

joint pair representing a single transactor.

8. ACKNOWLEDGMENTS
Thanks to our colleagues John Stickley and Russell Vreeland for

their careful review of this paper.

9. REFERENCES
 [1] Accellera – Interfaces Technical Committee, “Standard Co-

Emulation Modeling Interface (SCE-MI) Reference Manual,”

Version 2.1 (Review Copy), October 21, 2010

[2] M. Glasser, “Open Verification Methodology Cookbook,”

Springer, 2009. (Associated example kit available at

www.ovmworld.org/contribution-detail/24891)

[3] A. Rose, M. Glasser, B. Osman, “OVM Configuration and

Virtual Interfaces,” White Paper, Mentor Graphics, 2010.

[4] H. van der Schoot, J. Bergeron, “Transaction-Level Functional

Coverage in SystemVerilog,” DVCon, 2006.

[5] A. Saha, K. Suresh, A. Jain, V. Kulshrestha, S. Gupta, “An

Acceleratable OVM Methodology Based on SCE-MI 2,” DVCon,

2008.

Appendix – Code Samples

Sample A.1. From conventional single top to dual top hierarchy for co-emulation

 (a) Single top hierarchy (b) Dual top hierarchy

1 module top;

2

3 parameter int HALF_PERIOD = 12;

4 parameter int DATA_SIZE = 8;

5 parameter int ADDR_SIZE = 10;

6

7 env #(DATA_SIZE, ADDR_SIZE) e;

8 fpu_vif fpu_vif_obj;

9

10 bit clk;

11 fpu_pin_if #(32) fpu_if (clk);

12

13 fpu fpu_dut(fpu_if.clk,

14 fpu_if.opa,

15 ...,

16 fpu_if.snan

17);

18

19 initial begin

20 e = new("env");

21

22 fpu_vif_obj = new(fpu_if);

23 set_config_object(

24 "*", "fpu_vif", fpu_vif_obj, 0);

25

26 // start the clock running

27 clk = 0;

28 fork

29 forever begin

30 #HALF_PERIOD;

31 clk = !clk;

32 end

33 join_none

34

35 run_test();

36 end

37

38 endmodule

1 package test_params_pkg;

2 parameter int HALF_PERIOD = 12;

3 parameter int DATA_SIZE = 8;

4 parameter int ADDR_SIZE = 10;

5 endpackage

6

7

8 module hdl_top;

9

10 import test_params_pkg::*;

11

12 bit clk;

13 fpu_pin_if #(32) fpu_if (clk);

14

15 fpu fpu_dut(fpu_if.clk,

16 fpu_if.opa,

17 ...,

18 fpu_if.snan

19);

20

21 // tbx clkgen

22 initial begin // Clock generator

23 clk = 0;

24 forever #(HALF_PERIOD) clk = ~clk;

25 end

26

27 endmodule

28

29

30 module hvl_top;

31

32 import test_params_pkg::*;

33

34 env #(DATA_SIZE, ADDR_SIZE) e;

35 fpu_vif fpu_vif_obj;

36

37 initial begin

38 e = new("env");

39

40 fpu_vif_obj = new(hdl_top.fpu_if);

41 set_config_object(

42 "*", "fpu_vif", fpu_vif_obj, 0);

43

44 run_test();

45 end

46

47 endmodule

Sample A.2. Converting transaction objects for co-emulation

1 class fpu_request extends ovm_transaction;

2

3 shortreal a;

4 shortreal b;

5 rand op_t op;

6 rand round_t round;

7

8 ...

9

10 endclass

11

12

13 package fpu_trans_util_pkg;

14 typedef struct packed {

15 bit [31:0] a;

16 bit [31:0] b;

17 op_t op;

18 round_t round;

19 } fpu_request_s;

20

21 typedef bit [$bits(fpu_request_s)-1:0]

22 fpu_request_vector_t;

23

24 ...

25

26 endpackage

27

28 class fpu_request_converter;

29

30 function void to_class(

31 output fpu_request req,

32 input fpu_request_vector_t v);

33 fpu_request_s s = v;

34 req = new();

35 req.a = $bitstoshortreal(s.a)

36 req.b = $bitstoshortreal(s.b);

37 req.op = s.op;

38 req.round = s.round;

39 endfunction

40

41 function void from_class(

42 input fpu_request req,

43 output fpu_request_vector_t v);

44 fpu_request_s s;

45 s.a = $shortrealtobits(req.a);

46 s.b = $shortrealtobits(req.b);

47 s.op = req.op;

48 s.round = req.round;

49 v = s;

50 endfunction

51

52 endclass

Sample A.3. Transforming an FPU monitor for co-emulation

 (a) Original monitor (b) XRTL monitor BFM with proxy

1 class fpu_monitor extends ovm_component;

2

3 ovm_analysis_port #(fpu_pair) pair_ap;

4

5 // VIF handle to pin interface

6 local virtual fpu_pin_if #(32) m_fpu_pins;

7

8 ...

9

10 function void connect();

11 ... // Retrieve m_fpu_pins vif handle

12 endfunction

13

14 task run();

15 fork

16 monitor_request();

17 monitor_response();

18 join

19 endtask

20

21 task monitor_request();

22 forever begin

23 fpu_request req = new();

24

25 do

26 @(posedge m_fpu_pins.clk);

27 while (m_fpu_pins.start != 1);

28

29 req.a = $bitstoshortreal(m_fpu_pins.op_a);

30 req.b = $bitstoshortreal(m_fpu_pins.op_b);

31 req.op = op_t′(m_fpu_pins.fpu_op);

32 req.round = round_t′(m_fpu_pins.rmode);

33

34 $cast(m_req_in_process, req.clone());

35 end

36 endtask: monitor_request

37

38 task monitor_response();

39 forever begin

40 fpu_response rsp = new();

41 fpu_pair pair;

42

43 ... // Timed code to sample response

44

45 pair = new(m_req_in_process, rsp);

46 pair_ap.write(pair);

47 end

48 endtask: monitor_response

49

50 endclass

1 class fpu_monitor extends ovm_component;

2

3 ovm_analysis_port #(fpu_pair) pair_ap;

4

5 // VIF handle to XRTL BFM

6 local virtual fpu_monitor_bfm m_bfm;

7

8 ...

9

10 function void connect();

11 ... // Retrieve m_bfm vif handle

12 endfunction

13

14 task run();

15 fork

16 monitor_request();

17 monitor_response();

18 join

19 endtask

20

21 task monitor_request();

22 forever begin

23 fpu_request req;

24 fpu_request_s req_s;

25

26 m_bfm.monitor_request(req_s);

27 req_converter.to_class(req, req_s);

28 $cast(m_req_in_process, req.clone());

29 end

30 endtask: monitor_request

31

32 task monitor_response();

33 forever begin

34 fpu_response rsp;

35 fpu_response_s rsp_s;

36 fpu_pair pair;

37

38 m_bfm.monitor_response(rsp_s);

39 rsp_converter.to_class(rsp, rsp_s);

40 ...

41 pair = new(m_req_in_process, rsp);

42 pair_ap.write(pair);

43 end

44 endtask: monitor_response

45

46 endclass

47

48

49 interface fpu_monitor_bfm(fpu_pin_if fpu_pins);

50 // pragma attribute fpu_monitor_bfm

 partition_interface_xif

51

52 ...

53

54 wire clk = fpu_pins.clk;

55

56 task monitor_request(output

57 fpu_request_s req); // pragma tbx xtf

58 @(posedge clk);

59 while (fpu_pins.start != 1)

60 @(posedge clk);

61 req.a = fpu_pins.op_a;

62 req.b = fpu_pins.op_b;

63 req.op = op_t′(fpu_pins.fpu_op);

64 req.round = round_t′(fpu_pins.rmode);

65 endtask

66

67 task monitor_response(output

68 fpu_response_s rsp); // pragma tbx xtf

69 ... // Timed code to sample response

70 endtask

71

72 endinterface

Sample A.4. Transforming an FPU monitor for co-emulation (take 2)

 (a) Original monitor (b) XRTL monitor BFM with proxy

1 class fpu_monitor extends ovm_component;

2

3 ovm_analysis_port #(fpu_pair) pair_ap;

4

5 // VIF handle to pin interface

6 local virtual fpu_pin_if #(32) m_fpu_pins;

7

8 ...

9

10 function void build();

11 ... // Retrieve m_fpu_pins vif handle

12 endfunction

13

14 task run();

15 @(posedge m_fpu_pins.clk);

16 fork

17 monitor_request();

18 monitor_response();

19 join

20 endtask

21

22 task monitor_request();

23 forever begin

24 fpu_request req = new();

25

26 do

27 @(posedge m_fpu_pins.clk);

28 while (m_fpu_pins.start != 1);

29

30 req.a = $bitstoshortreal(m_fpu_pins.op_a);

31 req.b = $bitstoshortreal(m_fpu_pins.op_b);

32 req.op = op_t′(m_fpu_pins.fpu_op);

33 req.round = round_t′(m_fpu_pins.rmode);

34

35 $cast(m_req_in_process, req.clone());

36 end

37 endtask: monitor_request

38

39 task monitor_response();

40 forever begin

41 fpu_response rsp = new();

42 fpu_pair pair;

43

44 ... // Timed code to sample response

45

46 pair = new(m_req_in_process, rsp);

47 pair_ap.write(pair);

48 end

49 endtask: monitor_response

50

51 endclass

1 class fpu_monitor extends ovm_component;

2

3 ovm_analysis_port #(fpu_pair) pair_ap;

4

5 // VIF handle to XRTL BFM

6 local virtual fpu_monitor_bfm m_bfm;

7

8 ...

9

10 function void connect();

11 .. // Retrieve m_bfm vif handle

12 m_bfm.proxy = this;

13 endfunction

14

15 task run();

16 fork

17 m_bfm.request_daemon();

18 m_bfm.response_daemon();

19 join

20 endtask

21

22 function void write(fpu_pair_s pair_s);

23 fpu_pair pair = new();

24 pair_converter.to_class(pair, pair_s);

25 pair_ap.write(pair);

26 endfunction

27

28 endclass

29

30

31 interface fpu_monitor_bfm(fpu_pin_if fpu_pins);

32 // pragma attribute fpu_monitor_bfm

 partition_interface_xif

33

34 ...

35

36 import fpu_tlm_pkg::fpu_monitor;

37 fpu_monitor proxy;

38 // pragma tbx oneway proxy.write

39

40 fpu_request_s req_in_process;

41

42 task request_daemon(); // pragma tbx xtf

43 ... // Sample requests (req_in_process);

44 endtask

45

46 task response_daemon(); // pragma tbx xtf

47 fpu_pair_s pair;

48

49 @(posedge clk);

50

51 forever begin

52 @(posedge clk);

53 while (fpu_pins.ready != 1)

54 @(posedge clk);

55

56 ...

57

58 pair.req = req_in_process;

59 pair.rsp.result = fpu_pins.outp;

60

61 ...

62

63 proxy.write(pair);

64 end

65 endtask

66

67 endinterface

