
Novel Verification Techniques for ARM A15 

Multi-core Subsystem Using IEEE 1647 
 

 

 

 
Abstract— Modern designs are becoming bigger and more 

complex, yielding revolutionary and evolutionary products in the 

user space. This trend manifests in longer DV cycles and tougher 

challenges.  Specman/e based eRM provides an elegant solution 

for handling these issues efficiently. Here we present our 

testbench methodology and the application of Specman/e in a 
ARM® Cortex® -A15 multi-core subsystems verification effort.   

Index Terms—Specman/e, eRM, ARM, CortexA15,  

Configurable Testbench. 

 

I. INTRODUCTION  

Considering the various configurations of the design 

(DUV) and its variants, the verification environment capable of 

verifying these different configurations of the design 

subsystem and be scalable enough to verify future generation 

variants of the design was needed. Successive iterations of the 

designs can have modified functional behavior and such 

variations were to be supported by the same testbench 

verification environment while simultaneously maintaining 

backward compatibility with older versions of design. This 

enables running the same set of tests across all configurations 

as well as future variants of design.  

Once a regression test suit is created that is robust and 

comprehensive enough to hit all the required functional 

scenarios and coverage bins then it can be ported over to a 

different design variant allowing coverage collection against 

same set of scenarios.  

 In the simplest form design feature variations involved 

changes to number cores, power control features, debug 
hardware, proprietary and legacy interfaces and their scaling 

with respect to the number of cores.  

Having such an all-encompassing verification environment 

would allow using common test cases and other common 

verification assets developed across all design variants.  

We wanted these components which are developed at IP 

level environment to be reused at System on chip (SoC) level 

environment as well. In order to the do this the system level 

programming view as seen by the design at IP level 

environment had to be compatible and identical to what it 

would see in the actual SoC that it was intended to be used in. 

This would allow the software test cases and basic library 

components to be plugged into SoC environment giving a 

significant reduction in integration testing time in those 
environments and software development. In addition the 

components such as custom checkers and assertions from IP 

level could be ported over to SoC environment as well. 

In order to be able to simulate the verification scenarios on 

Hardware emulator or FPGA based platforms the environments 

needed to have synthesizable components. This would allow 

easy reproduction of test scenarios across various simulation 

platforms.  Irrespective of the platform the system level 

topological view seen by the design had to be identical. 

We wanted the environment to support high level 

verification language (HVL). Use of HVL would provide 

advanced capabilities such as randomization of tests and 

complex sequences and scenario generation.  This would also 

provide coverage driven verification environment and thus 

allow gauging the completeness of the verification effort. 

Standard verification components and Bus Functionality 

Modules (BFM) available for HVL languages from third party 
vendors as well as the  proprietary ones created internally can 

be integrated easily into the environment and ensure easy 

interaction with each other. HVL provides a standardized way 

for test development which allows multiple people to work on 

test development for different features of the design 

simultaneously. 

II. CHALLENGES OF IMPLEMENTATION 

The requirements mentioned above are somewhat diverse 

in nature and exclusive with respect to each other. For instance 

having system level view presented to design that resembles 

the  one faced inside the SoC  is essential for various reasons 
mentioned above sections like software, testcases, assets 

development and reuse across IP level and SoC level view. 

Additionally, having such capabilities at the IP environment 

allows easy replication of SoC level bugs for faster debug. 

However, having such capability at the IP environment makes 

it complex, as a result the verification engineer has to 

comprehend the details of how the testbench is implemented in 

addition to the design understanding.  Similarly, having a 

testbench which would provide the portability across various 

simulator platforms with identical system view and at the same 
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time having HVL components for advanced verification 

features are somewhat contradicting since the HVL 

components are non synthesizable and the portability to 

hardware and FPGA platforms need synthesizable elements to 

be present in the testbench.  Our testbench architecture has 

distinct synthesizable and non synthesizable component layers 

which enable portability across multiple platforms. 

 

III. ENVIRONMENT ARCHITECTURE AND IMPLEMENTATION 

To achieve these capabilities a layered testbench approach 

was adopted. The different layers are partitioned according to 

the level of abstraction they represent as explained below. 

 

Layer 1:  

 

 

Figure 1. Layer 1 

 

This is the primary/base layer and is placed closest to the 

DUV. Figure 1. Layer 1 shows this layer. It interacts directly with 

DUV’s interfaces at protocol/physical level and represents the 

signals activity such as control, handshake, bus values. 
Components of this layer are cycle accurate representation of 

components that the DUV would be interfaced with inside the 

SoC. Blocks such as power, reset, clock, fuse controllers are 

example of such components and these provide the setup and 

initialization capabilities of the DUV via Layer 1. In our case, 

since the design is a processor based subsystem additional 

blocks like boot controller, interrupt handlers, bus and 

memory system controllers around the design provide the 

complete SoC identical topology from a Software 

programming perspective. All the components of this layer are 

synthesizable and can be ported over to various platforms 
allowing the DUV to have a consistent system level view 

across all platforms.  

 

Layer 2: 

 

Higher level layers represent functional abstraction of 

equivalent protocol/physical activity carried out at base layer 

(layer 1). Second layer surrounds the synthesizable layer 1 and 

is implemented using HVL, in our case using Specman/e. See 

Figure 2. Layer 2.  This layer provides system level calls which in 

turn interact with protocol specific components of Layer one 

in sequenced manner. For example a power on reset could be 

implemented as a system call in this layer, which when 

invoked would configure the reset, clock, boot components of 

layer 1 to create a valid power on reset activity on the DUV.  

Such functions hide the details of the implementations of 
physical layer from the higher layer. Any changes to design at 

protocol/physical level to be absorbed by the functions of this 

layer. As a result this intermediate layer serves as a 

programming interface to the physical Layer1 and hides all the 

protocol level details and sequencing from the higher layer. 

 

 

Figure 2. Layer 2 

Layer 3: 

 

 

Figure 3. Layer 3 

 

Third layer is the top most layer that provides the HVL 

features such as coverage metrics and scoreboarding and is 

implemented in Specman/e. See Figure 3. Layer 3. This is where 

standard/proprietary BFMs are integrated and used to create 

test sequences and custom checkers specific to the feature 

being tested. Verification engineers can use the BFM 
sequences specific to the functionality they are testing in 

addition to high level system calls provided by layer 2. This 

allows simultaneous and independent test development 

targeted towards the specific functionality. 

 



Each of these layer can be configured at setup time to 

customize for different scenarios of a particular design variant 

as well as variations in behavior between two design variants. 

Moving from one design to other requires a configuration 

change which is achieved by feeding in the specific 

configuration file.   
 

 IEEE 1647 e language facilitates having clean partitioning 

between different layered components necessary for 

coexistence of synthesizable and non-synthesizable views of 

the environment.  

Combination of various layers above provide the test writer a 

high level and seamless way to interact with the design 

allowing reuse of developed assets as well as coverage driven 

metrics in one common environment. 

 

IV.  MEMORY COHERENCY AND CONSISTENCY 

Memory operations in a uniprocessor are assumed to 
execute sequentially wherein the load operation returns the last 

store to the same location and memory operations execute in 

order as specified in program [2]. In a heterogeneous processor 

system, the same sequential order needs to be preserved to the 

same memory location without any software overhead or added 

complexity in executed program. Even though some or all the 

processors in a system can execute instructions out of order (as 

long as they do not cause any hazards), the illusion of 

sequential consistency of memory operations to the same 

location needs to be preserved. What this implies is that the 

memory view by each processor in the system is same as if it 
was the only processor in the system and the stores complete in 

sequential order specified in program and loads return the last 

value written to a memory location by any coherent master.   

The hardware feature which suffices the rules outlined by 

the memory consistency model is complex and that added 

hardware complexity percolates in the verification process. 

One such protocol which works within the framework of the 

memory consistency model is the ARM AMBA ACE protocol 

and is the focus of our verification targets. We further discuss a 

reusable DV infrastructure across a configurable multicore A15 

subsystem and its portability for verification in a heterogeneous 

cache coherent multiprocessor system on chip. 

 

V. MEMORY COHERENCY VERIFICATION REQUIREMENTS 

The requirement for coherency is outlined at a subsystem 

and SoC level to appreciate the requirements for each and how 

requirements map back from SoC to subsystem verification 

effort. 

A. Transaction Generation 

The ACE protocol supports 29 different type of ACE 

transactions on the read, write and snoop channel. Each 

depends on the page table attribute of the region the 

cacheline/block belongs to and the state of the block within the 
local cache of a cached master i.e. whether it is in Modified, 

owned, exclusive, shared or invalid state. Furthermore, the type 

of coherent transaction also is determined by the fact if it’s a 

full vs a partial cacheline access by the master. Lastly the type 

of transaction varies if the initiating coherent master can cache 

the accessed line or not. These represent the various knobs to 

tweak while configuring a BFM to mimic the transaction by a 

coherent master via an equivalent VIP in the unit level 

verification environment or as parameters if the transactor is 
RTL representation of a coherent master in a SoC verification 

environment. The various groups or classes of transaction are 

shown in the diagram below, which the transactor must be able 

to produce. 

 
 

Fig. 4.   Read/Write/Snoop channel transactions) 

B. Response Generation 

Response generation alludes to the generation of all the 
degrees of freedom of responses for every permitted 

transaction by the master. This again depends of the state of the 

block of cache memory accessed. For instance there is a 

possibility of 5C1 responses for each of the snoop transactions 

and are dependent on the state of the cacheline being snooped. 

C. Concurrent Memory Collision Generation 

The prior points indicate the requirement for every coherent 

master which might harbor a local cache or not (for 

performance improvement). In addition there should be 

scenarios which check the validity of the protocol or the master 

complying with the protocol by generating conflict cases, 

wherein, the crux of the memory consistency model tested. 

This implies concurrently accessing the same block of memory 

while preserving store order and observability of the last store 

upon a read operation by the coherent. 

 
 

Fig. 5.  Concurrent memory access by coherent masters. 
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VI. COHERENCY VERIFICATION CHALLENGES IN SOC 

Coherency verification imposes many challenges when 
verifying in a multi-coherent master heterogeneous processor 

system. The complexity increases many fold and controllability 

is greatly reduced upon swapping a BFM with actual HDL 

described design component.  The challenges play a vital role 

in molding the verification strategy. 

 

1) Protocol Permitted Possible Scenarios: Meeting 

coherency verification requirements become manifold in a 

system with multiple coherent masters. Complexity apart, 

number of all possible scenarios increases linearly with number 

of masters. The possible number of ACE crossings for an ‘N’ 

Coherent master system is roughly (7000*N) [1]. 

 

2) ACE Transaction and Response generation: Generation 

of ACE transactions using the real design of coherent master 

vs BFM is non trivial and is more involved than using a BFM 

to thrash out the ACE transactions. It requires a lot of 

Software overhead and added effort for verification in a SoC. 

In SoC’s this overhead arises due to software sequencing for 

setting cache warming, page tables setup, LPAE setup, setup 

of the global snoop monitor in the system. Additionally, 

software sequence to program the other coherent master in the 

system is required to generate all the flavors of ACE 
transaction and coercing all combination of responses.  

 

3) Timing and Controllability of concurrent transaction 

generation: Unlike unit level testbenches the transaction 

generation is not fine grained enough to have a cycle by cycle 

control over scenario generation. For instance if one wants to 

test  out the overlap of ReadOnce snoop after a WACK for a 

WriteClean is received but before the slave returns the BRESP 

for it, the window of opportunity is just a few cycles. Thus it 

becomes very difficult to control boundary cases of 

overlapped scenarios. 

 
Fig. 6.  Memory Access conflict scenarios. 

 
4) Data integrity: The nature of memory consistency 

verification requires the generation of concurrent accesses to 

shared memory location. Most SoC tests rely on self-checking 

as one of the correctness models for test scenarios, which is 

nullified by the nondeterministic nature of concurrent access. 

Due to concurrent access and the lack of fine grain 

controllability in SoC, it is difficult to control the order of 

concurrent accesses; hence it is not known which coherent 

master was able to order memory access ahead of others. This 

is one of the key components of the correctness model without 

which verification of memory consistency model is 
incomplete. 

VII. COHERENCE VERIFICATION: JOINING DOTS FROM 

SUBSYSTEM TO SOC 

We laid out the case of coherence verification and the 

challenges within the scope which increases linearly with 

coherent masters [1] within the verification scope. We 

enumerate the steps geared towards tackling them. 

 

1) Reusable-Configurable Testbench: The reusable and 

configurable testbench has an API layer which enabled the 

DUT to interact with BFM’s and also supplies configuration 

information to monitors which are fanned out to other DV 
assests. This API layer enabled us to reuse our tests and 

testbench DV assests like functional coverage, protocol 

checkers, assertions and monitors. It also enabled us to auto-

generate our tests which are pseudo-random in nature. The 

API carries encoded information to the external coherent 

masters at SoC or PPI layer at the subsytem layer. The 

encoded information describes the current state of cacheline, 

page table shareability attribute, miss policy, allocation hint, 

the external coherent master id, randomization of the type and 

byte-size of the ACE transaction. This API layer based test 

generation ensures reusability of test, software library, and 
various test bench components. Furthermore, the test and 

software library were directly portable with minimal change 

from subsystem, to SoC pre-silicon verification and even post 

silicon validation. The reusability is a key component to avoid 

reinventing the wheel and reworking the verification effort 

across multiple A15 configurations and also in a 

heterogeneous processing system constituted of ARM CPUs 

and TI C6x DSP’s. 

 

 
Fig. 7.  Unit Level TB: API layer interacting with PPI Layer 
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Fig. 8.  SoC level TB: API layer interacting over switch fabric to other 

coherent masters 

 
2) Functional Coverage: Functional coverage was a 

tracking metric to ensure that we are hitting all possible 

scenarios and corner cases. The specman-e based functional 

coverage was directly portable from unit level to SoC 

testbench env. Furthermore, specific assertions targeting 

timing based conflict cases were used for the cover property 

and incorporated into functional coverage. This ensured that 

timing based non-deterministic, conflict cases are hit and 

triggered a failure if a specific directed test was unable to meet 

the test objective. 

3) Correctness Model: The correctness model for memory 
consistency problem should be two fold primarily. For each, 

shared memory location the order of stores should be observed 

in program order and each load should return the last value 

written at that memory location. The ordering aspect of the 

memory consistency problem is solved by writing protocol 

checkers that checks the compliance of the coherent master to 

the ACE protocol and the same is reused at the SoC env for 

pre-silicon verification. For ordering to be observed true 

sharing is considered sufficient enough however something 

more involved is required to ensure data integrity. True 

sharing requires the processors involved to explicitly 

synchronize with each other to ensure program correctness[3]. 
The second aspect of the memory consist deals with 

validating that the last store is read back. This involves data 

checking which is very difficult to predict if multiple coherent 

masters are thrashing the same memory location concurrently. 

This part of the problem is solved by using false sharing 

amongst all the coherent masters in the system. Each coherent 

master owns a byte of the same cacheline and uses a read 

modify pattern to increment its own byte. Thus observation of 

an incrementing pattern for each byte wherein the coherent 

master not only checks the incrementing pattern for its own 

byte but all bytes in the cache line. This partial line RMW 
(read modify write) and an observation of incrementing 

pattern for each byte ensures the data integrity and a coherent 

master can employ a self-checking mechanism. Hence, 

enabling portability of test scenarios beyond unit level 

verification environment. The diagram below illustrates the 

false sharing mechanism. Here M n is a cached master and Cp 

is a coherent non-cached I/O master, typical of modern day 

heterogeneous processing systems and in our case is a mixed 

ARM and TI DSM based system and other coherent I/O’s 

talking to memory shared memory controller. 

 
Fig. 9.  False sharing 

VIII. GETTING IT DONE WITH SPECMAN/E 

Use of specman/e allowed us to have clean partitioning 

between synthesizable and non-synthesizable views of the 

testbench environment and decoupled the compile flows based 

on the view. Layer 2 and layer 3 overlay on layer 1, and these 

can be pulled in by inclusion of one file during compile for the 

required view. For alternate view layer 1 is sufficient enough 

for complete simulation runs.  

Specman/e compiler works in compile as well interpreter 

mode and permits addition of new functions or modifications 

to existing structures at simulation time without having to 

recompile the entire testbench environment. This was very 

helpful in initial stages of development for debugging 

environment code on-the-fly during simulation. 

Certain sections of environment code such as coverage 

bins, checkers had to reused with slight modifications for 

different structures of design and ‘defined as’ macro feature of 

specman/e was very helpful in generating such repetitive code 
with required parameters. An example for replicating coverage 

bin with an equivalent parameterized macro in specman/e is 

shown below. 

 

 

 
Fig. 10.  Macro usage 

 



IX. SUMMARY 

1) We successfully met coverage requirements with 

Specman-e. 

         
2) We created a unified DV environment that supported 

quad-core, dual-core, and single-core ARM SS. 

3) Reuse Metrics 

 
4) We delivered plug and play ARM Cortex-A15 SW 

library and tests to SoC teams. 

X. CONCLUSION 

A layered hierarchical testbench environment implemented 
with combination of HDL and Specman/e components allowed 

us to create a scalable verification environment for ARM 

Cortex A15 processor based subsystem at IP level. Moreover, 

it also allowed us to achieve coverage goals across various 

design configurations and variants at the IP level with maximal 

reuse. It also facilitated reuse of verification assets and 

software library for SoC validation. Furthermore, the layered 

approach also enabled us to port the synthesizable components 

of the testbench to the FPGA and portability of tests, from 

subsystem all the way onto evaluation boards for further testing 

and characterization. Novelty resides in the way verification 

environment is structured to encompass all the above features 

in single environment.  
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