
Novel Verification Techniques for ARM A15

Multi-core Subsystem Using IEEE 1647

Abstract— Modern designs are becoming bigger and more

complex, yielding revolutionary and evolutionary products in the

user space. This trend manifests in longer DV cycles and tougher

challenges. Specman/e based eRM provides an elegant solution

for handling these issues efficiently. Here we present our

testbench methodology and the application of Specman/e in a
ARM® Cortex® -A15 multi-core subsystems verification effort.

Index Terms—Specman/e, eRM, ARM, CortexA15,

Configurable Testbench.

I. INTRODUCTION

Considering the various configurations of the design

(DUV) and its variants, the verification environment capable of

verifying these different configurations of the design

subsystem and be scalable enough to verify future generation

variants of the design was needed. Successive iterations of the

designs can have modified functional behavior and such

variations were to be supported by the same testbench

verification environment while simultaneously maintaining

backward compatibility with older versions of design. This

enables running the same set of tests across all configurations

as well as future variants of design.

Once a regression test suit is created that is robust and

comprehensive enough to hit all the required functional

scenarios and coverage bins then it can be ported over to a

different design variant allowing coverage collection against

same set of scenarios.

 In the simplest form design feature variations involved

changes to number cores, power control features, debug
hardware, proprietary and legacy interfaces and their scaling

with respect to the number of cores.

Having such an all-encompassing verification environment

would allow using common test cases and other common

verification assets developed across all design variants.

We wanted these components which are developed at IP

level environment to be reused at System on chip (SoC) level

environment as well. In order to the do this the system level

programming view as seen by the design at IP level

environment had to be compatible and identical to what it

would see in the actual SoC that it was intended to be used in.

This would allow the software test cases and basic library

components to be plugged into SoC environment giving a

significant reduction in integration testing time in those
environments and software development. In addition the

components such as custom checkers and assertions from IP

level could be ported over to SoC environment as well.

In order to be able to simulate the verification scenarios on

Hardware emulator or FPGA based platforms the environments

needed to have synthesizable components. This would allow

easy reproduction of test scenarios across various simulation

platforms. Irrespective of the platform the system level

topological view seen by the design had to be identical.

We wanted the environment to support high level

verification language (HVL). Use of HVL would provide

advanced capabilities such as randomization of tests and

complex sequences and scenario generation. This would also

provide coverage driven verification environment and thus

allow gauging the completeness of the verification effort.

Standard verification components and Bus Functionality

Modules (BFM) available for HVL languages from third party
vendors as well as the proprietary ones created internally can

be integrated easily into the environment and ensure easy

interaction with each other. HVL provides a standardized way

for test development which allows multiple people to work on

test development for different features of the design

simultaneously.

II. CHALLENGES OF IMPLEMENTATION

The requirements mentioned above are somewhat diverse

in nature and exclusive with respect to each other. For instance

having system level view presented to design that resembles

the one faced inside the SoC is essential for various reasons
mentioned above sections like software, testcases, assets

development and reuse across IP level and SoC level view.

Additionally, having such capabilities at the IP environment

allows easy replication of SoC level bugs for faster debug.

However, having such capability at the IP environment makes

it complex, as a result the verification engineer has to

comprehend the details of how the testbench is implemented in

addition to the design understanding. Similarly, having a

testbench which would provide the portability across various

simulator platforms with identical system view and at the same

Vaibhav Mahimkar, Akshit Dayal, Tomas Huynh, Van Huynh, Erwin Hermanto.

EP-Processors, Texas Instruments Incorporated, Stafford, Texas

time having HVL components for advanced verification

features are somewhat contradicting since the HVL

components are non synthesizable and the portability to

hardware and FPGA platforms need synthesizable elements to

be present in the testbench. Our testbench architecture has

distinct synthesizable and non synthesizable component layers

which enable portability across multiple platforms.

III. ENVIRONMENT ARCHITECTURE AND IMPLEMENTATION

To achieve these capabilities a layered testbench approach

was adopted. The different layers are partitioned according to

the level of abstraction they represent as explained below.

Layer 1:

Figure 1. Layer 1

This is the primary/base layer and is placed closest to the

DUV. Figure 1. Layer 1 shows this layer. It interacts directly with

DUV’s interfaces at protocol/physical level and represents the

signals activity such as control, handshake, bus values.
Components of this layer are cycle accurate representation of

components that the DUV would be interfaced with inside the

SoC. Blocks such as power, reset, clock, fuse controllers are

example of such components and these provide the setup and

initialization capabilities of the DUV via Layer 1. In our case,

since the design is a processor based subsystem additional

blocks like boot controller, interrupt handlers, bus and

memory system controllers around the design provide the

complete SoC identical topology from a Software

programming perspective. All the components of this layer are

synthesizable and can be ported over to various platforms
allowing the DUV to have a consistent system level view

across all platforms.

Layer 2:

Higher level layers represent functional abstraction of

equivalent protocol/physical activity carried out at base layer

(layer 1). Second layer surrounds the synthesizable layer 1 and

is implemented using HVL, in our case using Specman/e. See

Figure 2. Layer 2. This layer provides system level calls which in

turn interact with protocol specific components of Layer one

in sequenced manner. For example a power on reset could be

implemented as a system call in this layer, which when

invoked would configure the reset, clock, boot components of

layer 1 to create a valid power on reset activity on the DUV.

Such functions hide the details of the implementations of
physical layer from the higher layer. Any changes to design at

protocol/physical level to be absorbed by the functions of this

layer. As a result this intermediate layer serves as a

programming interface to the physical Layer1 and hides all the

protocol level details and sequencing from the higher layer.

Figure 2. Layer 2

Layer 3:

Figure 3. Layer 3

Third layer is the top most layer that provides the HVL

features such as coverage metrics and scoreboarding and is

implemented in Specman/e. See Figure 3. Layer 3. This is where

standard/proprietary BFMs are integrated and used to create

test sequences and custom checkers specific to the feature

being tested. Verification engineers can use the BFM
sequences specific to the functionality they are testing in

addition to high level system calls provided by layer 2. This

allows simultaneous and independent test development

targeted towards the specific functionality.

Each of these layer can be configured at setup time to

customize for different scenarios of a particular design variant

as well as variations in behavior between two design variants.

Moving from one design to other requires a configuration

change which is achieved by feeding in the specific

configuration file.

 IEEE 1647 e language facilitates having clean partitioning

between different layered components necessary for

coexistence of synthesizable and non-synthesizable views of

the environment.

Combination of various layers above provide the test writer a

high level and seamless way to interact with the design

allowing reuse of developed assets as well as coverage driven

metrics in one common environment.

IV. MEMORY COHERENCY AND CONSISTENCY

Memory operations in a uniprocessor are assumed to
execute sequentially wherein the load operation returns the last

store to the same location and memory operations execute in

order as specified in program [2]. In a heterogeneous processor

system, the same sequential order needs to be preserved to the

same memory location without any software overhead or added

complexity in executed program. Even though some or all the

processors in a system can execute instructions out of order (as

long as they do not cause any hazards), the illusion of

sequential consistency of memory operations to the same

location needs to be preserved. What this implies is that the

memory view by each processor in the system is same as if it
was the only processor in the system and the stores complete in

sequential order specified in program and loads return the last

value written to a memory location by any coherent master.

The hardware feature which suffices the rules outlined by

the memory consistency model is complex and that added

hardware complexity percolates in the verification process.

One such protocol which works within the framework of the

memory consistency model is the ARM AMBA ACE protocol

and is the focus of our verification targets. We further discuss a

reusable DV infrastructure across a configurable multicore A15

subsystem and its portability for verification in a heterogeneous

cache coherent multiprocessor system on chip.

V. MEMORY COHERENCY VERIFICATION REQUIREMENTS

The requirement for coherency is outlined at a subsystem

and SoC level to appreciate the requirements for each and how

requirements map back from SoC to subsystem verification

effort.

A. Transaction Generation

The ACE protocol supports 29 different type of ACE

transactions on the read, write and snoop channel. Each

depends on the page table attribute of the region the

cacheline/block belongs to and the state of the block within the
local cache of a cached master i.e. whether it is in Modified,

owned, exclusive, shared or invalid state. Furthermore, the type

of coherent transaction also is determined by the fact if it’s a

full vs a partial cacheline access by the master. Lastly the type

of transaction varies if the initiating coherent master can cache

the accessed line or not. These represent the various knobs to

tweak while configuring a BFM to mimic the transaction by a

coherent master via an equivalent VIP in the unit level

verification environment or as parameters if the transactor is
RTL representation of a coherent master in a SoC verification

environment. The various groups or classes of transaction are

shown in the diagram below, which the transactor must be able

to produce.

Fig. 4. Read/Write/Snoop channel transactions)

B. Response Generation

Response generation alludes to the generation of all the
degrees of freedom of responses for every permitted

transaction by the master. This again depends of the state of the

block of cache memory accessed. For instance there is a

possibility of 5C1 responses for each of the snoop transactions

and are dependent on the state of the cacheline being snooped.

C. Concurrent Memory Collision Generation

The prior points indicate the requirement for every coherent

master which might harbor a local cache or not (for

performance improvement). In addition there should be

scenarios which check the validity of the protocol or the master

complying with the protocol by generating conflict cases,

wherein, the crux of the memory consistency model tested.

This implies concurrently accessing the same block of memory

while preserving store order and observability of the last store

upon a read operation by the coherent.

Fig. 5. Concurrent memory access by coherent masters.

Coherent

Master 1

Coherent

Master 2

Coherent

Master n

Coherent

Master 3

Memory

Controller

VI. COHERENCY VERIFICATION CHALLENGES IN SOC

Coherency verification imposes many challenges when
verifying in a multi-coherent master heterogeneous processor

system. The complexity increases many fold and controllability

is greatly reduced upon swapping a BFM with actual HDL

described design component. The challenges play a vital role

in molding the verification strategy.

1) Protocol Permitted Possible Scenarios: Meeting

coherency verification requirements become manifold in a

system with multiple coherent masters. Complexity apart,

number of all possible scenarios increases linearly with number

of masters. The possible number of ACE crossings for an ‘N’

Coherent master system is roughly (7000*N) [1].

2) ACE Transaction and Response generation: Generation

of ACE transactions using the real design of coherent master

vs BFM is non trivial and is more involved than using a BFM

to thrash out the ACE transactions. It requires a lot of

Software overhead and added effort for verification in a SoC.

In SoC’s this overhead arises due to software sequencing for

setting cache warming, page tables setup, LPAE setup, setup

of the global snoop monitor in the system. Additionally,

software sequence to program the other coherent master in the

system is required to generate all the flavors of ACE
transaction and coercing all combination of responses.

3) Timing and Controllability of concurrent transaction

generation: Unlike unit level testbenches the transaction

generation is not fine grained enough to have a cycle by cycle

control over scenario generation. For instance if one wants to

test out the overlap of ReadOnce snoop after a WACK for a

WriteClean is received but before the slave returns the BRESP

for it, the window of opportunity is just a few cycles. Thus it

becomes very difficult to control boundary cases of

overlapped scenarios.

Fig. 6. Memory Access conflict scenarios.

4) Data integrity: The nature of memory consistency

verification requires the generation of concurrent accesses to

shared memory location. Most SoC tests rely on self-checking

as one of the correctness models for test scenarios, which is

nullified by the nondeterministic nature of concurrent access.

Due to concurrent access and the lack of fine grain

controllability in SoC, it is difficult to control the order of

concurrent accesses; hence it is not known which coherent

master was able to order memory access ahead of others. This

is one of the key components of the correctness model without

which verification of memory consistency model is
incomplete.

VII. COHERENCE VERIFICATION: JOINING DOTS FROM

SUBSYSTEM TO SOC

We laid out the case of coherence verification and the

challenges within the scope which increases linearly with

coherent masters [1] within the verification scope. We

enumerate the steps geared towards tackling them.

1) Reusable-Configurable Testbench: The reusable and

configurable testbench has an API layer which enabled the

DUT to interact with BFM’s and also supplies configuration

information to monitors which are fanned out to other DV
assests. This API layer enabled us to reuse our tests and

testbench DV assests like functional coverage, protocol

checkers, assertions and monitors. It also enabled us to auto-

generate our tests which are pseudo-random in nature. The

API carries encoded information to the external coherent

masters at SoC or PPI layer at the subsytem layer. The

encoded information describes the current state of cacheline,

page table shareability attribute, miss policy, allocation hint,

the external coherent master id, randomization of the type and

byte-size of the ACE transaction. This API layer based test

generation ensures reusability of test, software library, and
various test bench components. Furthermore, the test and

software library were directly portable with minimal change

from subsystem, to SoC pre-silicon verification and even post

silicon validation. The reusability is a key component to avoid

reinventing the wheel and reworking the verification effort

across multiple A15 configurations and also in a

heterogeneous processing system constituted of ARM CPUs

and TI C6x DSP’s.

Fig. 7. Unit Level TB: API layer interacting with PPI Layer

(Coherent) WU/WLU
Snoops

(Memory

Update)WB/WC/EVICT

ARSNOOPS
Snoops

WU/WLU

?
Barrier

Snoops

Snoops

Priority

Fig. 8. SoC level TB: API layer interacting over switch fabric to other

coherent masters

2) Functional Coverage: Functional coverage was a

tracking metric to ensure that we are hitting all possible

scenarios and corner cases. The specman-e based functional

coverage was directly portable from unit level to SoC

testbench env. Furthermore, specific assertions targeting

timing based conflict cases were used for the cover property

and incorporated into functional coverage. This ensured that

timing based non-deterministic, conflict cases are hit and

triggered a failure if a specific directed test was unable to meet

the test objective.

3) Correctness Model: The correctness model for memory
consistency problem should be two fold primarily. For each,

shared memory location the order of stores should be observed

in program order and each load should return the last value

written at that memory location. The ordering aspect of the

memory consistency problem is solved by writing protocol

checkers that checks the compliance of the coherent master to

the ACE protocol and the same is reused at the SoC env for

pre-silicon verification. For ordering to be observed true

sharing is considered sufficient enough however something

more involved is required to ensure data integrity. True

sharing requires the processors involved to explicitly

synchronize with each other to ensure program correctness[3].
The second aspect of the memory consist deals with

validating that the last store is read back. This involves data

checking which is very difficult to predict if multiple coherent

masters are thrashing the same memory location concurrently.

This part of the problem is solved by using false sharing

amongst all the coherent masters in the system. Each coherent

master owns a byte of the same cacheline and uses a read

modify pattern to increment its own byte. Thus observation of

an incrementing pattern for each byte wherein the coherent

master not only checks the incrementing pattern for its own

byte but all bytes in the cache line. This partial line RMW
(read modify write) and an observation of incrementing

pattern for each byte ensures the data integrity and a coherent

master can employ a self-checking mechanism. Hence,

enabling portability of test scenarios beyond unit level

verification environment. The diagram below illustrates the

false sharing mechanism. Here M n is a cached master and Cp

is a coherent non-cached I/O master, typical of modern day

heterogeneous processing systems and in our case is a mixed

ARM and TI DSM based system and other coherent I/O’s

talking to memory shared memory controller.

Fig. 9. False sharing

VIII. GETTING IT DONE WITH SPECMAN/E

Use of specman/e allowed us to have clean partitioning

between synthesizable and non-synthesizable views of the

testbench environment and decoupled the compile flows based

on the view. Layer 2 and layer 3 overlay on layer 1, and these

can be pulled in by inclusion of one file during compile for the

required view. For alternate view layer 1 is sufficient enough

for complete simulation runs.

Specman/e compiler works in compile as well interpreter

mode and permits addition of new functions or modifications

to existing structures at simulation time without having to

recompile the entire testbench environment. This was very

helpful in initial stages of development for debugging

environment code on-the-fly during simulation.

Certain sections of environment code such as coverage

bins, checkers had to reused with slight modifications for

different structures of design and ‘defined as’ macro feature of

specman/e was very helpful in generating such repetitive code
with required parameters. An example for replicating coverage

bin with an equivalent parameterized macro in specman/e is

shown below.

Fig. 10. Macro usage

IX. SUMMARY

1) We successfully met coverage requirements with

Specman-e.

2) We created a unified DV environment that supported

quad-core, dual-core, and single-core ARM SS.

3) Reuse Metrics

4) We delivered plug and play ARM Cortex-A15 SW

library and tests to SoC teams.

X. CONCLUSION

A layered hierarchical testbench environment implemented
with combination of HDL and Specman/e components allowed

us to create a scalable verification environment for ARM

Cortex A15 processor based subsystem at IP level. Moreover,

it also allowed us to achieve coverage goals across various

design configurations and variants at the IP level with maximal

reuse. It also facilitated reuse of verification assets and

software library for SoC validation. Furthermore, the layered

approach also enabled us to port the synthesizable components

of the testbench to the FPGA and portability of tests, from

subsystem all the way onto evaluation boards for further testing

and characterization. Novelty resides in the way verification

environment is structured to encompass all the above features

in single environment.

REFERENCES

[1] Multicore ARM SoCs Face Cache Coherency Dilemma :

Featured Techtalk, Mirit Fromovich, Cadence.

[2] Adve, S. V. and K. Gharachorloo, “ Shared memory consistency
models: A tutorial,” IEEE Computer, December 1996, pp. 66-
76.

[3] http://people.csail.mit.edu/saman/papers/anderson95/node2.html

