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Abstract- Mixed signal verification using discrete modeling of analog circuits is highly efficient for designs where 

simulation speed dictates functional verification efficacy. System Verilog provides User Defined Nettype (UDN) for 

modeling analog nets. Users write customized resolution functions for different types of nets depending on the net’s behavior 

– such as sum, average, max, min and other types of resolutions. But there are instances where the same net has to be 

resolved differently at run time. Also, instead of writing multiple resolution functions as the need arises, modeling efficiency 

can be improved by using standardized resolution functions. To achieve this, we propose a methodology using structure 

type UDN, i.e. complex UDN, along with a set of standardized resolution functions. Towards this, a resolution function that 

resolves the output of drivers according to different scenarios has been developed. In addition, the approach enables 

modeling difficult-to-model circuits such as a two-way switch. 

 

I.   INTRODUCTION 

Thorough verification of mixed signal circuits has become indispensable owing to the increased use of analog 

circuits in SoCs. While verification approaches using co-simulation and continuous modeling languages such as 

Verilog-AMS accurately model the analog circuits, they require significant effort and simulation clock cycles as seen 

in Fig. 1. When simulation performance and portability across multiple levels of SoC are required, discrete modeling 

of the mixed signal circuits and verification methodology based on discrete real number modeling (RNM) is the best 

approach. Currently, System Verilog provides features such as wreal ports and User Defined Nettypes (UDN) to model 

analog values and nets. Wreal is used to represent single driver nets, while UDN is used to represent multi-driver nets. 

UDN requires users to write a resolution function that reduces the driven values from multiple drivers to a single final 

value. A resolution function could do summation, averaging, pick a minimum or maximum value, or any other custom 

resolution. System Verilog (2012) also provides a struct data-type that can be used with UDNs and enables passing a 

set of values between ports. All the ports connected to a UDN must be of the ‘same type’, where ‘same type’ means 

the same data-type and the same resolution function. This would seem to limit the possibility of resolving a net value 

to only one functional type (i.e. only add, only average etc.).  Available standard resolution functions from EDA 

vendor (Cadence) resolve to a single functional type or mimic an electric equivalent port (EEnet). While these are 

sufficient for most common scenarios, there are instances where the same net behaves differently depending on the 

circuit topology at run time. This paper proposes the use of struct type UDN (Complex UDN) to accomplish resolution 

on the fly. In addition, modeling efficiency can be improved by using a defined set of UDNs and a list of port types, 

across the design. 
 

 Figure 1. Model accuracy and performance of mixed-signal simulation [1]. 
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II.   ANALOG PORTS AND UDNS TO MODEL ANALOG NETS 

Examining an analog circuit, one could find that analog ports generally belong to one of the following types: voltage 

source (V_OUT), current source (I_OUT), pass-through port (V_PT, I_PT) connecting V_OUT or I_OUT to 

downstream receivers (such as a switch), storage port (V_CAP) such as capacitive nodes in parallel and receiver ports 

(V_IN, I_IN). Among these ports, several valid combinations of connectivity are possible. The resulting value of 

voltage or current on a net connecting different ports depends on the type of the ports, and other factors such as 

impedance on the drivers and receivers. To model the behavior of the analog nets, UDN feature in SV could be used. 

Assuming ideal sources, the resolution for a net connecting V_OUT to V_IN would be a single value if all the V_OUTs 

have the same value, else an unknown value.  The resolution for a net connecting I_OUT to I_IN would be the 

algebraic sum of the I_OUT currents. If a net connects V_CAPs, then the resolution would be a weighted average of 

the voltage on the capacitors. But SV requires that if a net is declared as a particular UDN type, then all the ports 

connected to it must be of the same UDN type (i.e. same data type and resolution function). This limits the modeling 

of other combinations of connectivity between different port types if separate resolution functions are written for 

different port combinations. 

While Cadence EEnet provides an electrical equivalent of a net [2] which can be used to connect voltage and current 

sources using complex UDN (struct {real V, I, R} EEstruct), it still isn’t possible to model nets connected 

to storage nodes and two-way switches using the EEnet [3]. To encompass the missing features of the EEnet, our 

approach defines a 'generic UDN' (using complex UDN). Our methodology uses this generic UDN and other scalar 

UDNs (simple UDNs), as appropriate for the modeling scenario at hand. The simple UDNs include 'wreal4state' and 

'wrealsum' nettypes. The generic UDN is a complex UDN, which includes the port type as part of the port information 

along with voltage, current, resistance and capacitance information of the port. The generic UDN resolution function 

takes the information about port type of all ports connected and resolves the net accordingly. In brief, the generic UDN 

computes the total input resistance/capacitance on a net. Using this information, current entering into each receiver 

port and total current/voltage on the net are computed. In addition, new port types can be defined and used in the 

resolution function without the need to redeclare net type of the ports. 

III. GENERIC USER DEFINED NETTYPE 

The proposed generic UDN uses a complex UDN with a struct data type shown in Fig. 2. The struct data type 

includes a variable to store the type of the analog port from a predefined set. The port types are chosen to be majorly 

of three classifications – active drivers, pass through ports and secondary drivers. Active drivers are the strongest 

drivers such as a voltage source and current source. Pass through ports are ports of modules that just connect two 

branches of active sources, e.g. switch. Secondary drivers are weaker drivers, which drive only if no active sources 

are driving the net, e.g. capacitor. All active sources are assumed to be ideal sources and non-ideal behavior shall be 

implemented inside a module’s behavioral model. This means connection between a voltage source (V_OUT) and 

current source (I_OUT) is illegal in this methodology. This assumption is made with an understanding that scenarios 

where voltage source and current source driving the same net are rare (or not needed). 
 

 

Figure 2.  Generic UDN data type. 
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The resolution function of the generic UDN uses the port type to determine the strongest driver. Active drivers are 

stronger than secondary drivers and secondary drivers are stronger than pass through ports. Once the strongest port 

type is determined, the resolved value of the net is calculated accordingly. For example, if the port type of the net is 

V_OUT then a single voltage value is resolved. If port type is determined to be V_CAP, then a weighted average is 

calculated. Further, when a given net is resolved to be of a stronger type, but the stronger type is not driving, i.e. 

`wrealZState (`wZ), then the calculation is done according to the next weaker port type on the net. This enables 

connecting a variety of port types to the same net and resolving the behavior of the net on the fly. As an added feature, 

checks are done inside the resolution function for the legality of connections. For example, it is illegal to connect 

V_OUT port types and I_OUT port types to a net. However, we chose to enable such checks only at time zero for 

performance reasons. 

IV. METHODOLOGY USING THE GENERIC UDN 

To enable user to easily choose port types and configure ports, a Graphical User Interface (GUI) was developed. 

The GUI enables user to select the port type and record other port parameters including resistance and capacitance 

values. The GUI reads-in an SV file containing the module declaration and port list. Each port of the module can be 

individually configured. After configuring the ports as needed, the program writes out code necessary for UDN usage 

and additional scalar variables for easier manual debug. Most use cases require simple UDNs, while a few instances 

require the use of complex UDNs. Using simple UDNs when possible improves simulation efficiency. This is due to 

the fact that the generic UDN resolution function requires more computation, comparatively. Fig. 3 shows the GUI to 

configure ports of a module. 

Figure 3. GUI to configure ports in a module. 
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V. MODELING AN SAR ADC 

A 4-bit SAR ADC has been modeled using this methodology. Notably, the charge redistribution on the capacitors 

has been modeled. Inside the capacitor bank (CAP_BANK in Fig. 5), the capacitor ports connecting to common node 

(Vcommon) are selected as V_CAP. Port type selection for ports of different modules in the CAP_BANK is shown 

in Fig. 4. The switches connecting to the bottom plates of the capacitor and common node are modeled as one-way, 

ideal switches that transfer input voltage (from voltage sources) to the output. So, the output port of the switch is 

chosen as V_OUT. As can be seen in Fig. 4, the net ‘Vcommon’ has different types of ports connected to it, i.e. 

V_CAP, V_OUT and V_IN (of the comparator). Accordingly, the resolved value of the net is equal to Vref when 

SW1 is closed. When SW1 is open, the resolved value is the weighted average of the voltage on the parallel capacitors 

C1, C2, C3, C4 and Cdum with C4:C3:C2:C1:Cdum = 8:4:2:1:1. The ports of the remaining modules in the SAR ADC 

(shown in Fig. 5) are modeled as digital ports or as simple UDNs. 

 
Figure 4. Port types in the capacitor bank to model charge redistribution. 

 
 

 

Figure 5. Schematic of SAR ADC with port types annotated. 
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To begin the process of Analog to Digital conversion, the Vin is sampled by connecting the bottom plates of 

capacitors to Vin and top plates to Vref (Fig. 4). Since the net Vcommon is being driven by a voltage source Vref, the 

resolved value is Vref and is stored irrespective of the previous voltage on the capacitors. Once sampling is done, the 

Vcommon node is left floating (`wZ) and bottom plates of capacitors are connected to ground. This traps a charge 

equal to C*(Vin–Vref) with a voltage at the top plate equaling '– (Vin–Vref)'. The resolution function detects that 

V_OUT driver (Vref) is `wZ and evaluates the resolved value as a weighted average. After the sampling step, the 

bottom plate of each capacitor is connected to Vref in a sequence (MSB to LSB). Depending on the output of the 

Comparator module, the capacitor is left connected to Vref or connected back to ground. If Vref is connected to a 

capacitor's bottom plate, then the charge across the capacitor is modeled as C*(– (Vin–Vref)+Vref). The resolution 

function computes resulting final voltage using the charge across each capacitor. System Verilog simulation 

waveforms in Fig. 6 show this happening on each clock cycle. Vref is chosen as 0.8V and with a 4-bit output, each 

LSB is equal to 0.05V. As can be seen in Fig. 6, a Vin of 0.05V results in data_out as 4’b0001 and a Vin of 0.15 gives 

data_out as 4’b0011. Fig. 7 shows Spice simulation versus RNM simulation of the conversion process of two data 

samples. Fig. 8 shows an overlay of analog and real waveforms of the Vcommon node.  

 

 
Figure 6. RNM simulation of the SAR ADC using generic UDN. 

 
 

 
Figure 7: Waveforms of RNM simulation and Spice co-simulation. 

 

 

Figure 8: Overlay of analog and real waveforms of Vcommon (shown separate in Fig. 7). 
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Table 1 shows performance metrics calculated from a 512-point FFT of the time domain data (512 samples) from 

both Spice and RNM simulations. To generate time domain data, a sine wave of 0.55MHz with an amplitude of 

250mV, sampled at a rate of 11.1MSPS, was used. Simulation performance was on par with wreal SV-RNM [2]. The 

performance gain over Spice simulation was a factor of 250 (using a test case to convert 512 samples of data). Fig. 9 

and Fig. 10 show the input signal to the ADC and output of the ADC, for Spice and RNM simulations respectively. 

Fig. 11 shows the overlap of the outputs of the ADC for Spice and RNM.  Fig. 12 shows the overlapped FFT of Spice 

and RNM simulations. 
 

TABLE I 

ADC PERFORMANCE METRICS - RNM VS SPICE 

 RNM Spice 

SNR (dB) 20.05 18.16 

THD (%) 10.9 10.2 

SINAD 16.63 15.89 

ENOB 3.03 2.72 

Simulation Time (seconds) 4.7 1183.3 

 
 
 

Figure 9: Input and output of ADC - Spice.  

      

Figure 10: Input and output of ADC -RNM.  

 

Using complex UDN to enable modeling of the SAR ADC at a lower hierarchical level, we were able to easily 

identify a functional bug where the switch polarity of the MSB capacitor (C4 in Fig. 4) was incorrect. Due to the 

incorrect polarity, the bottom port of C4 was being connected to 'Gnd' instead of 'Vref' and vice-versa during the 

conversion process. This bug resulted in an incorrect output of '0.5*Vref', or 8 LSBs, greater than the actual value and 

our modeling of charge redistribution exposed the bug. Fig. 13 shows waveforms of the correct and 'buggy' data. 
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Figure 11: Overlapped ADC outputs of Spice and RNM. 

 

 

 
Figure 12: Overlapped FFT of Spice and RNM 

 

 

 
 

Figure 13: Actual and 'Buggy' Waveforms (Using Complex UDN Real Number Modeling) 
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VI. MODELING A BIDIRECTIONAL SWITCH 

Using this approach, a bidirectional switch was implemented for both voltage and current carrying nets. The switch 

implementation works by presenting the resolved resistance, current and voltage of all external sources from one port 

to the other port using V_PT ports as seen in Fig. 14. Using this modeling, we achieve a better functionality of a 

bidirectional switch compared to Cadence wtran implementation. A wtran bidirectional switch only accepts a scalar 

value [3]. Due to this, when connecting two current carrying nets, a wtran switch implementation would be unable to 

account for the input impedance of current sinks on either side. For example, consider the sample circuit where two 

branches of current are connected, as shown in Fig. 15. The wtran implementation would be unable to account for 

current flowing into the sinks R1 and R2, and resolution would be an algebraic sum of the current values of sources.  

The complex UDN switch accounts for the current sinks and accurately computes the resultant currents on each net. 

Simulation results are shown in Fig.16. However, at present, connecting the switches in series doesn't work. 

 

Figure 14. Illustration of implementation of a two-way switch. 

 

 

 

Figure 15. An example circuit for two-way current switch. 

 

 
Figure 16. SV simulation result for the circuit in Fig. 14. 
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VII. ASSUMPTIONS AND LIMITATIONS 

Our methodology is based on the following assumptions: 

1. All active sources are ideal sources. Output resistance of V_OUT and I_OUT is not used to resolve a net. If non-

ideal behavioral implementation is needed, then it shall be implemented in the model of the module using the 

resistance information of all the receivers extracted from the generic UDN and thereby adjusting the driver’s 

output accordingly. 

2. Since all the active sources are modeled as ideal sources, V_* and I_* connections are forbidden. 

 

 Some of the limitations using this methodology are as follows: 

1. Implementation has been done entirely on Cadence Incisive simulator (version 15.2). Several features such as 

net coercion, automatic conversion of scalar values to simple UDN and some standard definitions may be 

different or unavailable on simulators from other vendors. 

2. Due to limited availability of debug hooks into the resolution function, and given that the generic UDN resolution 

function is a heavier function compared to simpler UDN resolution functions, debugging internal aspects of the 

UDN gets tricky. More support from vendors might ease this.  

3. In theory, all the analog nets in the design can be implemented using the generic UDN. However, due to the 

heavier resolution function, simulation performance may be impacted without much benefit. 

4. Although several possible cases of connections between different port types have been implemented, series 

capacitance behavior hasn’t been yet implemented. Two-way switch implementation doesn’t allow chaining, i.e. 

the implementation works only for one switch connecting two branches of active sources. 

VIII. FUTURE ENHANCEMENTS 

Analog circuits' low power information is embedded in the schematic, unlike digital circuits (UPF). To aid power 

aware verification of analog circuits, our methodology envisions to create "power aware" ports by adding additional 

attributes to the complex UDN struct, such as power domain (PD) name and PD state. Using the power domain 

information transmitted on the complex UDN, checkers can be written inside the models of analog modules. Power 

intent is defined in a file - power intent file (PIF). Information such as power domain names, power rail values and 

power rail names are recorded in the PIF. Within the model of a module, PD name and its state are driven out on 

output ports (complex UDN) and are received at the input ports. By using the PD name and PD state of the port, and 

information about the PD for the module or port (from PIF), checkers verify the power intent. For example, consider 

a scenario where an isolator (ISO) and level shifter (LSF) are missing as shown in Fig. 17. To check if an LSF is 

needed, a comparison of the power supply voltages of the driver and receiver is done. Pseudo-code for the checker is 

shown in Fig. 17. This is made possible by making the driver PD information available to the receiver using complex 

UDN. Similarly, for checking a missing ISO, the PD state information of the driver is used to check if 'in_a' signal is 

at the isolation value (0 in this example). This approach may significantly reduce the effort required when compared 

to approaches using formal tools, as it uses the functional context of the signals.  

 

 
Figure 17. Example of missing LSF and ISO. Power Aware checks. 

 

PD = V_HIGH 
PD_state = ON 

 

 
// Checker to verify the pin ‘in_a’ 

always @(*) begin 

 // LSF check 

  if ($volts(PD) != $volts(in_a.PD))  

     `PA_err(“Missing LSF”); 

 // Iso check 

  if (in_a.PD_state == OFF  

       && in_a.v_value != 0 ) // iso-0 

    `PA_err("ISO failure"); 

// Iso needed - log information 

  if ($less_on(PD, in_a.PD) 

    `PA_log("Iso needed @%m.in_a"); end 

       

PD = V_LOW 
PD_state = OFF 

 

// Check vdd supply domain 

assert (vdd.PD == V_LOW)  

   else `PA_err("Domain 

err"); 

 

// Drive power state info 

out_a.PD = PD; 

 

 

{V_LOW, OFF, …} 

Module A Module B 

out_a  

 vdd  
in_a  
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