
Novel Mixed Signal Verification
Methodology Using Complex UDNs

1

Rakesh Dama, Ravi Reddy, Andy Vitek
Roche Sequencing Solutions

Outline

2

• Introduction
• Modeling Analog Nets using UDNs
• Defining a Generic UDN
• Modeling of SAR-ADC
• Power Aware Verification
• Q&A

Introduction

3

• Mixed signal designs are increasing by number and complexity

• Modeling approach for analog design is determined by
– Accuracy (SPICE > Verilog-AMS > SV-RNM)
– Simulation perf (SV-RNM >> Verilog-AMS > SPICE)
– Effort (SV-RNM > Verilog-AMS > SPICE)

• SV-RNM is ideal for SOCs due to:
– Simulation performance (approx. 300x Spice, 100x Verilog-AMS)
– Portability of models
– Acceptable accuracy and effort

SV-RNM and UDN

4

• Simple ‘real’ nets
– Single Driver nets
– Straight forward and simple

• User Defined Nettype (UDN)
– Multiple Driver nets
– Multiple values can be passed

(such as Voltage, Current, Impedance)
– A User Defined Resolution function

computes the resultant value

From: How To’s of Advanced Mixed Signal Verif, DVCon 2015

Declaring UDN with Resolution

5

nettype Type my_udn with my_udr ; // complex UDN (struct type UDT)

typedef struct {
real voltage;
real current;

} Type; // UDT

function automatic Type my_udr(input Type drivers[]);
int n_drivers = 1;
my_udr.voltage = 0;
my_udr.current = 0;

foreach (drivers[ii]) begin
my_udr.voltage += drivers[ii].voltage;
my_udr.current += drivers[ii].current; // sum
n_drivers++;

end

my_udr.voltage = my_udr.voltage/n_drivers; //avg

Endfunction // UDR

SV has restrictions on
the data-types that can
be used in a UDT .

A UDN is unique and
connects to only its
type (same UDT and
UDR)

UDN Usage

6

nettype Type my_udn with my_udr ; // complex UDN (struct type UDT)

typedef struct { real voltage; real current;} Type; // UDT

module receiver (input VIN);
my_udn VIN;
real power;

// model
always @(*) begin
power = VIN.voltage*VIN.current;

end

endmodule

module driver1 (output VOUT);

I2

module driver1 (output VOUT);
my_udn VOUT;

// model
assign VOUT =

Type’{volts_t, amps_t};

.....
endmodule I1

my_udn

my_udn

Any change in the drivers (in I1 and I2) of the UDN (my_udn) will trigger the UDR function
(my_udr) and the resolved value is computed and made available to the modules.

Motivation for a Generic UDN
• In an analog circuit

– A net has different types of drivers (voltage, current, capacitive, switches…)
– The same net has to be resolved in different ways at run time

• UDN nets must connect to ‘same type’ ports – i.e. same UDT + UDR
• No dynamic selection of UDR allowed

• Should multiple UDN types be declared?
• Even so, how to connect port of different types?

• While EE_net (Cadence) implements a generic electric equivalent, it
cannot handle capacitance and more – how to implement ideal switch?

7

Concept of a Generic UDN

• A generic UDN that can replace all other UDNs across the design
– Only a single UDT and a single UDR function
– Can be used to connect any set of ports in a design
– Can resolve different scenarios at run time
– Provides extensibility for new use cases (when the need arises)
– Ability to compute resultant currents and voltages (like EE_net)
– Offers modeling efficiency by standardizing and abstracting out UDR

8

Generic UDN – UDT and UDR
• Analog port types are defined

– V_OUT, I_OUT > V_PT, I_PT > V_CAP > V_IN, I_IN
– UDT has a field, port_type, to assign port type for

a port
• A UDR function is written to resolve based on

port types of all ports connected to the net.
– The dominant port type is resolved, i.e. strongest

driver
– Based on the resolved port_type, values for V and I

are resolved
– When the strongest driver is `Z, then the next

dominant driver determines the resolved values

9

// UDT for generic UDN
typedef struct {
// V_OUT, V_PT, V_CAP...
PORT_TYPE port_type;

// Driven values on ports
real v_value;
real i_value;
real g_value;
real c_value;

// vars for active drivers
real v_active;
real i_active;
real g_active;
real c_active;

} GENERIC_PORT;

A Generic UDN example

10

Vout

RCV

Vcap
Vin

// Resolution function for generic UDN
function automatic GENERIC_PORT GEN_RES (input drv[]);

// code to resolve using port_types
// ………

endfunction

// Generic UDN for generic UDN
nettype GENERIC_PORT GENPORT with GEN_RES;

// Module definitions
module V (output GENPORT v_src);
real v_val;
assign v_src = { V_OUT, v_val, `Z, `Z,};
// port_type, volts, amps, impedance, ...

always
#1 v_val = 0.5*sin(2*PI*100*time);

endmodule

// TB
module TB ();
wire net1; //net coerced to GENPORT
wire net2; //net coerced to GENPORT
V v1 (net1);
SW sw1 (net2, net1);
C c1 (net2);
R r1 (net2);

endmodule

net1 net2
SW

Vout

Modeling a SAR ADC

11

CAP_BANK

Simulation Results of SAR ADC

12

Vref

Vin
Start

Vcommon

Data_out

- Vcommon node is the capacitive node where charge re-distribution happens
- Conversion starts 2-clk cycles after the falling edge of ‘Start’ signal and takes 4-clks for data_out
- Capacitors are connected to Vref in a sequence (MSB to LSB), this changes the Vcommon volts
- Digital logic determines if capacitor stays connected to Vref or Gnd

Comparison with SPICE

13

Spice

SV-RNM

RNM Spice

SNR (dB) 20.05 18.16

THD (%) 10.9 10.2

SINAD 16.63 15.89

ENOB 3.03 2.72

Sim Time (seconds) 4.7 1183.3

Sim Performance
improvement of 250x over

SPICE

Bug
• Switch polarity reversal for MSB cap

– Due to schematic error, the Vref and GND connections for MSB were interchanged
– Resulting in 0.5*Vref or 8-LSBs of error
– Lowering model boundary can expose this bug.

14

Model Boundary
without the

ability to model
capacitors.

Bug Exposed
• Switch polarity reversal for MSB cap

– Resulting in 0.5*Vref or 8-LSBs of error

• Lowering model boundary enabled easy detection of the bug

15

Assumptions and Limitations
• To simplify, all active source are ideal (zero output resistance)

– Non-ideal behavior has to be implemented in the source driver model

• V_OUT and I_OUT connections aren’t allowed

• Implementation done in Cadence Incisive simulator only
• For efficiency reasons, generic UDN to be used to augment simple UDN
• Certain port combinations are yet to be implemented

– Series capacitance, chaining of two-way switches (V_PT, I_PT ports)

• Debug of generic UDR is tricky due to limited debug hooks

16

Future Enhancement - Power Aware Ports
• Adding attributes to the UDT – PD_name and PD_state
• Power Domain information is available at run time
• Checkers inside the models utilize this PD info to verify power intent

17

PD = V_HIGH
PD_state = ON

// Checker to verify the pin ‘in_a’
always @(*) begin
// LSF check
if ($volts(PD) != $volts(in_a.PD))

`PA_err(“Missing LSF”);
// Iso check
if (in_a.PD_state == OFF

&& in_a.v_value != 0) // iso-0
`PA_err("ISO failure");

// Iso needed - log information
if ($less_on(PD, in_a.PD)

`PA_log("Iso needed @%m.in_a"); end

PD = V_LOW
PD_state = OFF

// Check vdd supply domain
assert (vdd.PD == V_LOW)

else `PA_err("Domain err");

// Drive power state info
out_a.PD = PD;

{V_LOW, OFF, …}

Module A Module B

out_a

vdd`
in_a

Questions?

18

Thanks!

19

Additional – Bi-directional Switch

• Presents the resolved resistance, capacitance, current and voltage of all
external sources from one port to the other port using V_PT ports

• Accurate when connecting two current branches

20

Additional – Bi-directional Switch e.g.

21

A switch connecting two current
carrying branches is tricky to
implement to reflect true currents
on either side

	Novel Mixed Signal Verification Methodology Using Complex UDNs
	Outline
	Introduction
	SV-RNM and UDN
	Declaring UDN with Resolution
	UDN Usage
	Motivation for a Generic UDN
	Concept of a Generic UDN
	Generic UDN – UDT and UDR
	A Generic UDN example
	Modeling a SAR ADC
	Simulation Results of SAR ADC
	Comparison with SPICE
	Bug
	Bug Exposed
	Assumptions and Limitations
	Future Enhancement - Power Aware Ports
	Questions?
	Thanks!
	Additional – Bi-directional Switch
	Additional – Bi-directional Switch e.g.

