
Novel Approaches for C vs. RTL Formal
Verification of Vertex Attribute Address

Generator Unit

Nianchen Wu, Christopher Starr, Xiushan Feng
Samsung Austin R&D Center (SARC)

1

Outline
• Background
o Design introduction
o Selection of verification method and tool
o Verification challenges

• Create a multi-cycle execution C model
• Verify the design through control flow graph (CFG)

o Partition the state space into state transitions paths
o Verify the transition paths with symbolic trajectory evaluation (STE) method

• Verification result, analysis and conclusion

2

Introduction of VAAG
• Vertex attribute address generation
oGenerates vertex addresses for

fetching vertex attributes
o Two address calculation unit (ACAL)
o One address coalescing unit (CLSC)

• Address coalescing
o Merge multiple addresses that have

the same most significant bits (MSB)

3

Verification Method and Tool Selection
• Complex arithmetic data paths cause huge state

space inside VAAG
o Formal property verification (FPV):

Hard to cover all state spaces, complicated
constraints, hard to converge

o C vs. RTL formal verification (C2RTL):
Exhaustively cover all possible cases, shorter
test bench development time

• Tool: Synopsys Hector
o Verify RTL based on C model in cycle accuracy

4

C2RTL Verification Challenges
• We’ve fully verified ACAL, but faced big

challenge on verifying CLSC
• Lots of features in attribute addresses
o Coalescing latency varies with different

features of the attribute address Example
• Huge mismatch between C model and

RTL implementation
o Delays, implementation algorithms...
o Hard to prove output equivalence directly

5

• Split the original problem into pipeline stages
• “Unroll”: The modified C model only needs to generate result for the

current cycle
• “Mapping”: The result (prime output) of cycle (n-1) will be mapped to

the prime input of cycle n

Create a Multi-Cycle Execution C Model

// Original C Model
int a = 0, b = 3;
for(int i = 0; i < 5; i++)
{

a = a * b;
}
return a;

// Modified C Model
int a = 0, b = 3, c;
c = a * b;

// Time-Frame Expansion Mapping
assume a(cycle_0) = a_initial_value
assume a(cycle_1) = c(cycle_0)
assume a(cycle_2) = c(cycle_1)
assume a(cycle_3) = c(cycle_2) This “unroll” and “mapping” process is

like adding DFFs inside the C model 6

• Unroll the CLSC’s C model and map to RTL

Application in Verifying CLSC

Mapping is
achieved in formal
verification tool

ACAL had been verified:
Using ACAL’s RTL to generate
addresses and input to CLSC’s
C and RTL model

Modified CLSC’s C model
only processes 1 address
per time

7

Verification through RTL Usage is Hard
• Complex RTL usage scenarios: Still might be incomplete!
• Verification requirement is different based on different RTL usage

BACK

8

Verification through Control Flow Graph
• The behavior of CLSC’s C model is relatively simple
• The number of valid transition paths is limited
• A transition path can be verified through the STE method

Show Transition Details Show All Possible Paths 9

Introduction of STE Method
• Symbolic Trajectory Evaluation

o A model checking technology that uses symbolic simulation
o Example: The following 2-stage adder could be described as the following

STE assertion and the linear directive graph:
(clk == 0 && (a == A) && (b == B)) |-> ##2 (g == A + B)

10

Apply STE to Transition Paths Verification

• Check state transition: (S = State; T = Transition condition)
lemma v1_v2 = (S == IDLE) && T == C_4) |-> ##1 (S == Non-COAL)
lemma v2_v3 = (S == None-COAL) && T == C_6) |-> ##1 (S == COAL)
lemma v3_v3 = (S == COAL) && T == C_1) |-> ##1 (S == COAL)
lemma v3_v4 = (S == COAL) && T == C_2) |-> ##1 (S == IDLE)

• Check the coalescing result in this transition path: (p = Phase)
lemma result_p4 = (CLSC_Address_p3 == CLSC_Cached_Address_p4)
lemma result_p6 = (CLSC_Address_p3 == CLSC_Cached_Address_p6)

11

Verification Result: A RTL Bug Example
• Mismatch between the result generated by C model and RTL
o The most significant M bits are different in address #1 and address #0
o Address #0 could be coalesced with the address waiting in the cache
o FSM transitioned from state COAL to Non-COAL

• Root cause:
o Some internal registers were NOT reset properly (X-prop issue)
o A corner case difficult to be found by other verification methodologies
// Buggy Code
…
else if (taddr2clr_s3 | taddr2clr_s4) taddr2 <= ‘0;
…

// Correct Code
…
else taddr2 <= ‘0;
…

12

• Running time comparison for different verification strategy

Verification Result: Performance Analysis

• Analysis of verifying CLSC by control flow graph
(-) Verifying a single state transition path in CLSC usually needs more time
(+) The number of paths is much less than the RTL usage scenarios
(+) Could miss bug if the provided RTL scenarios is incomplete, but C model
is always golden!

13

• A novel approach to solve complex sequential data path C2RTL
verification problem

• Create a multi-cycle execution C model to simplify the original problem
• Split the state space and verify a design through control flow graph could

be a reliable and effective verification strategy
• The verification method in this presentation could be applied for other

sequential logic that has complex usage scenario but simple C model

Conclusion

14

Q & A

15

Appendix A: CLSC Finite State Machine
1. COAL => COAL:

Address MSB == Cached
Address MSB && Below the
max coalesce number.

2. COAL => IDLE:
1. Address MSB == Cached

testbench_flatAddress
MSB && Reach the max
coalesce number.
(Output 1 address)

2. Address is out of
boundary.
(Output 2 addresses)

3. IDLE => IDLE:
Address is out of boundary.
(Output 1 address)

4. IDLE => Non-COAL
Any valid, in bound address.

5. Non-COAL => Non-COAL:
1. Address requires 2 cache

line.
(Output 1 address)

2. Address MSB != Cached
Address MSB. (Output 1
address)

6. Non-COAL => COAL:
Address MSB == Cached
Address MSB.

7. COAL => Non-COAL:
1. Address requires 2 cache

lines.
(Output 1 address)

2. Max coalesce number is
0.

3. Address MSB != Cached
Address MSB

8. Non-COAL => IDLE:
1. Address is out of

boundary.
(Output 2 addresses)

2. Address is Warp/Block
end.
(Output 1 address)

Back to Page 9

16

Appendix B: All Possible State
Transition Path for CLSC FSM

1. IDLE IDLE IDLE IDLE IDLE
2. IDLE NCOL IDLE IDLE IDLE
3. IDLE IDLE NCOL IDLE IDLE
4. IDLE IDLE IDLE NCOL IDLE
5. IDLE NCOL NCOL IDLE IDLE
6. IDLE NCOL IDLE NCOL IDLE
7. IDLE IDLE NCOL NCOL IDLE
8. IDLE NCOL NCOL NCOL IDLE
9. IDLE NCOL COAL IDLE IDLE
10. IDLE NCOL NCOL COAL IDLE
11. IDLE NCOL COAL NCOL IDLE
12. IDLE NCOL COAL COAL IDLE

Back to Page 9

17

	Novel Approaches for C vs. RTL Formal Verification of Vertex Attribute Address Generator Unit
	Outline
	Introduction of VAAG
	Verification Method and Tool Selection
	C2RTL Verification Challenges
	Create a Multi-Cycle Execution C Model
	Application in Verifying CLSC
	Verification through RTL Usage is Hard
	Verification through Control Flow Graph
	Introduction of STE Method
	Apply STE to Transition Paths Verification
	Verification Result: A RTL Bug Example
	Verification Result: Performance Analysis
	Conclusion
	Q & A
	Appendix A: CLSC Finite State Machine
	Appendix B: All Possible State Transition Path for CLSC FSM

