
Novel Approaches for C vs. RTL Formal
Verification of Vertex Attribute Address

Generator Unit

Nianchen Wu, Christopher Starr, Xiushan Feng
Samsung Austin R&D Center (SARC)

1

Outline
• Background
o Design introduction
o Selection of verification method and tool
o Verification challenges

• Create a multi-cycle execution C model
• Verify the design through control flow graph (CFG)

o Partition the state space into state transitions paths
o Verify the transition paths with symbolic trajectory evaluation (STE) method

• Verification result, analysis and conclusion

2

Introduction of VAAG
• Vertex attribute address generation
oGenerates vertex addresses for

fetching vertex attributes
o Two address calculation unit (ACAL)
o One address coalescing unit (CLSC)

• Address coalescing
o Merge multiple addresses that have

the same most significant bits (MSB)

3

Verification Method and Tool Selection
• Complex arithmetic data paths cause huge state

space inside VAAG
o Formal property verification (FPV):

Hard to cover all state spaces, complicated
constraints, hard to converge

o C vs. RTL formal verification (C2RTL):
Exhaustively cover all possible cases, shorter
test bench development time

• Tool: Synopsys Hector
o Verify RTL based on C model in cycle accuracy

4

C2RTL Verification Challenges
• We’ve fully verified ACAL, but faced big

challenge on verifying CLSC
• Lots of features in attribute addresses
o Coalescing latency varies with different

features of the attribute address Example
• Huge mismatch between C model and

RTL implementation
o Delays, implementation algorithms...
o Hard to prove output equivalence directly

5

• Split the original problem into pipeline stages
• “Unroll”: The modified C model only needs to generate result for the

current cycle
• “Mapping”: The result (prime output) of cycle (n-1) will be mapped to

the prime input of cycle n

Create a Multi-Cycle Execution C Model

// Original C Model
int a = 0, b = 3;
for(int i = 0; i < 5; i++)
{

a = a * b;
}
return a;

// Modified C Model
int a = 0, b = 3, c;
c = a * b;

// Time-Frame Expansion Mapping
assume a(cycle_0) = a_initial_value
assume a(cycle_1) = c(cycle_0)
assume a(cycle_2) = c(cycle_1)
assume a(cycle_3) = c(cycle_2) This “unroll” and “mapping” process is

like adding DFFs inside the C model 6

• Unroll the CLSC’s C model and map to RTL

Application in Verifying CLSC

Mapping is
achieved in formal
verification tool

ACAL had been verified:
Using ACAL’s RTL to generate
addresses and input to CLSC’s
C and RTL model

Modified CLSC’s C model
only processes 1 address
per time

7

Verification through RTL Usage is Hard
• Complex RTL usage scenarios: Still might be incomplete!
• Verification requirement is different based on different RTL usage

BACK

8

Verification through Control Flow Graph
• The behavior of CLSC’s C model is relatively simple
• The number of valid transition paths is limited
• A transition path can be verified through the STE method

Show Transition Details Show All Possible Paths 9

Introduction of STE Method
• Symbolic Trajectory Evaluation

o A model checking technology that uses symbolic simulation
o Example: The following 2-stage adder could be described as the following

STE assertion and the linear directive graph:
(clk == 0 && (a == A) && (b == B)) |-> ##2 (g == A + B)

10

Apply STE to Transition Paths Verification

• Check state transition: (S = State; T = Transition condition)
lemma v1_v2 = (S == IDLE) && T == C_4) |-> ##1 (S == Non-COAL)
lemma v2_v3 = (S == None-COAL) && T == C_6) |-> ##1 (S == COAL)
lemma v3_v3 = (S == COAL) && T == C_1) |-> ##1 (S == COAL)
lemma v3_v4 = (S == COAL) && T == C_2) |-> ##1 (S == IDLE)

• Check the coalescing result in this transition path: (p = Phase)
lemma result_p4 = (CLSC_Address_p3 == CLSC_Cached_Address_p4)
lemma result_p6 = (CLSC_Address_p3 == CLSC_Cached_Address_p6)

11

Verification Result: A RTL Bug Example
• Mismatch between the result generated by C model and RTL
o The most significant M bits are different in address #1 and address #0
o Address #0 could be coalesced with the address waiting in the cache
o FSM transitioned from state COAL to Non-COAL

• Root cause:
o Some internal registers were NOT reset properly (X-prop issue)
o A corner case difficult to be found by other verification methodologies
// Buggy Code
…
else if (taddr2clr_s3 | taddr2clr_s4) taddr2 <= ‘0;
…

// Correct Code
…
else taddr2 <= ‘0;
…

12

• Running time comparison for different verification strategy

Verification Result: Performance Analysis

• Analysis of verifying CLSC by control flow graph
(-) Verifying a single state transition path in CLSC usually needs more time
(+) The number of paths is much less than the RTL usage scenarios
(+) Could miss bug if the provided RTL scenarios is incomplete, but C model
is always golden!

13

• A novel approach to solve complex sequential data path C2RTL
verification problem

• Create a multi-cycle execution C model to simplify the original problem
• Split the state space and verify a design through control flow graph could

be a reliable and effective verification strategy
• The verification method in this presentation could be applied for other

sequential logic that has complex usage scenario but simple C model

Conclusion

14

Q & A

15

Appendix A: CLSC Finite State Machine
1. COAL => COAL:

Address MSB == Cached
Address MSB && Below the
max coalesce number.

2. COAL => IDLE:
1. Address MSB == Cached

testbench_flatAddress
MSB && Reach the max
coalesce number.
(Output 1 address)

2. Address is out of
boundary.
(Output 2 addresses)

3. IDLE => IDLE:
Address is out of boundary.
(Output 1 address)

4. IDLE => Non-COAL
Any valid, in bound address.

5. Non-COAL => Non-COAL:
1. Address requires 2 cache

line.
(Output 1 address)

2. Address MSB != Cached
Address MSB. (Output 1
address)

6. Non-COAL => COAL:
Address MSB == Cached
Address MSB.

7. COAL => Non-COAL:
1. Address requires 2 cache

lines.
(Output 1 address)

2. Max coalesce number is
0.

3. Address MSB != Cached
Address MSB

8. Non-COAL => IDLE:
1. Address is out of

boundary.
(Output 2 addresses)

2. Address is Warp/Block
end.
(Output 1 address)

Back to Page 9

16

Appendix B: All Possible State
Transition Path for CLSC FSM

1. IDLE  IDLE  IDLE  IDLE  IDLE
2. IDLE  NCOL  IDLE  IDLE  IDLE
3. IDLE  IDLE  NCOL  IDLE  IDLE
4. IDLE  IDLE  IDLE  NCOL  IDLE
5. IDLE  NCOL  NCOL  IDLE  IDLE
6. IDLE  NCOL  IDLE  NCOL  IDLE
7. IDLE  IDLE  NCOL  NCOL  IDLE
8. IDLE  NCOL  NCOL  NCOL  IDLE
9. IDLE  NCOL  COAL  IDLE  IDLE
10. IDLE  NCOL  NCOL  COAL  IDLE
11. IDLE  NCOL  COAL  NCOL  IDLE
12. IDLE  NCOL  COAL  COAL  IDLE

Back to Page 9

17

	Novel Approaches for C vs. RTL Formal Verification of Vertex Attribute Address Generator Unit
	Outline
	Introduction of VAAG
	Verification Method and Tool Selection
	C2RTL Verification Challenges
	Create a Multi-Cycle Execution C Model
	Application in Verifying CLSC
	Verification through RTL Usage is Hard
	Verification through Control Flow Graph
	Introduction of STE Method
	Apply STE to Transition Paths Verification
	Verification Result: A RTL Bug Example
	Verification Result: Performance Analysis
	Conclusion
	Q & A
	Appendix A: CLSC Finite State Machine
	Appendix B: All Possible State Transition Path for CLSC FSM

