
Not Just for Hardware Debug: Prototype Debuggers for System 

Validation and Optimization 
 

Michael Sachtjen, Mentor Graphics, 613-963-1069, Michael_Sachtjen@mentor.com 

Joe Gaubatz, Mentor Graphics, 503-685-4811, Joseph_Gaubatz@mentor.com 

Simulation and emulation are great for finding and fixing hardware bugs. Software debuggers are great 

for finding and fixing general purpose software bugs. But traditional debugging tools often fall short in 

finding and fixing system-level bugs in complex SOC designs. In a series of short case studies, this 

presentation will explore how the use of embedded debug instrumentation in modern FPGA prototype 

debuggers can meet the emerging need for system-level debug. 

The adoption a commercial silicon debug solution transformed the ways our teams approached debug 

and hardware/software co-verification. We hope that the lessons learned from these case studies can 

be of use to other design and verification teams. We will be presenting the reasons why our teams 

initially adopted the debug solution we did, how we deployed that solution to maximize its usefulness 

and why we found our solutions to be useful far beyond the original bugs we were tasked to find. The 

bugs and use models presented are intentionally kept a high level of abstraction. This is not a paper 

about how to use a silicon debugger to track down a specific class of bugs or improve the performance 

of a particular type of system. The strategies employed and lessons learned should be valuable to a wide 

variety of users and industries. 

System-Level Debug Challenges are a Silicon Visibility Challenge 

Conceptually, system-level debug challenges are shared whether the hardware implementation is ASIC 

or FPGA technology.  In practice, differences arise in the commercial availability of silicon debug 

solutions.  A handful of commercial options are available to the FPGA design and validation teams 

whereas ASIC silicon debug solutions remain the province of homegrown solutions.  Therefore, we will 

begin by addressing the limitations of commercial FPGA solutions with respect to the ability to debug 

system-level issues. 

The key challenges in system-level debug and debug productivity fall broadly into three categories: 

 Trace breadth 

 Trace depth 

 Turn-around time to debug the appropriate set of signals relevant to the problem 

Trace breadth means being able to trace all the signals relevant to debugging a particular issue.  Since 

system-level issues involve functionality in multiple hardware blocks and, frequently, application and/or 

OS software functionality and its interaction with those blocks, the ability to trace signals from one or 

more peripheral or accelerator block plus the set of software memory map registers used by the 

software to interact with those blocks define a minimal trace set size.  However, that set is typically 

mailto:Michael_Sachtjen@mentor.com
mailto:Joseph_Gaubatz@mentor.com


insufficient.  The interaction of the hardware blocks and software occurs across the SoC/chip 

interconnect resulting in additional signals to trace.  Lastly, when software is involved, the need to trace 

processor interactions with memory may also be relevant.  To debug system-level interactions, the need 

to trace hundreds or thousands of signals and registers across multiple clock domains is typical, 

especially during the initial phases of debug identification and isolation.  The introduction of multiple 

clock domains derives a further requirement that the trace data must be correlated in time in order to 

comprehend true cause-and-effect relationships. 

Due to instrument design and resource efficiency in implementation, most commercial solutions offer 

limited trace breadth.  Practical trace breadth is governed by three factors:  Number of  clock domains to 

be instrumented, the number of signals per clock domain to be traced and the resource efficiency of the 

embedded logic analyzer.  The more clock domains containing signals to be traced, typically the fewer 

signals that can be instrumented per clock domain.  With common commercial solutions, it is difficult to 

instrument more than a few hundred signals across more than 2-3 clock domains due to the relative 

resource inefficiency of the embedded logic analyzers. 

Trace depth determines the ability to capture sufficient activity to recognize system-level cause-and-

effect relationships.  The interaction of software and multiple hardware blocks occurs via transactions 

communicated across the chip interconnect.  Since the effect of a bug may surface many transactions 

later from the cause, the ability to trace seconds of trace data can determine whether the validation 

engineer can debug an issue from one trace set or if multiple runs are required to capture multiple 

snapshots of trace data which the engineer must cobble together manually to root cause the issue.  Of 

course, the process of manually cobbling together multiple trace sets opens the door for human error in 

aligning trace data creating the real possibility that a false cause will be identif ied due to errors in 

manual alignment of trace data.  Secondary, yet relevant, considerations include the intrusiveness of the 

instrumentation.  If streaming of trace data off-chip is required to capture sufficiently deep traces, then 

two less attractive side-effects are possible.  First, streaming creates a bottleneck impacting the rate of 

trace sampling and/or the trace breadth.  Since trace-sampling rates typically cannot be sacrificed due to 

the impact to debug accuracy, the compromise to trace breadth may significantly impact debug 

productivity as covered above.  Secondly, streaming can and usually is intrusive to the design 

functionality.  Streaming requires the use of chip I/Os.  Most designs and prototypes of the designs 

make full use of the I/Os available.  It may or may not be acceptable to “de-feature” the design to free 

I/O resources for streaming depending on whether the functionality is related to the issue being 

debugged.  The ability to de-feature a design and re-purpose I/Os requires foresight in design or, 

potentially, a non-trivial amount of design re-work to utilize. 

Most commercial silicon debug solutions do not support off-chip streaming limiting the user to make-do 

with the trace depth that can be captured in an FPGA’s on-chip memory (e.g., block RAM).  One 

advantage to the simplicity of the solution is the ease in calculating the trace depth available.  An 

embedded logic analyzer tracing signals associated with a 100 MHz clock and a trace buffer 8k trace-

width-words in depth can capture 0.00008 seconds of trace.  That simply is inadequate to debug system-

level interactions.  For that reason, commercial solutions offer the ability to conditionally capture trace 

data allowing the user to define when data is valid and should be recorded to the trace buffer.  

Conditional capture works well when enough information is known to focus on activity relevant for 



debugging.  Applying compression technology to the trace can greatly increase effective trace depth and 

can work with conditional capture to achieve deep traces without the intrusiveness of off-chip 

streaming. 

Turn-around time when debugging.  Debugging is an iterative process of tracing back from an 

observable effect back to the root cause.  Trace breadth and depth directly impact the debug turn-

around time.  Since the root cause is not yet known, all the signals relevant to debug are not known 

upfront.  Yet, all debug instrumentation is finite in the number of signals that can be instrumented and 

traced.  Whenever the design must be re-instrumented to include additional or different signals in the 

trace set, the turn-around time can be many hours, often overnight if re-synthesis and place and route 

of the design is required (and it usually is).  Thus, productivity in debugging issues found in silicon is 

typically measured in days or weeks. 

Most commercial solutions link the instrumentation of signals to be traced with the act of tracing.  This 

exacerbates the debug productivity challenges.  Some commercial solutions attempt to ease the 

problem by providing 8:1 multiplexors (muxes) on the inputs to the embedded logic analyzer.  Muxing 

the input, in theory, should significantly improve debug productivity.  In practice, the benefits have been 

marginal as muxes define 8 distinct trace sets.  Either a significant amount of redundancy is required to 

include “high value” signals in all trace sets effectively reducing the theoretical 8x breadth improvement 

by about half or it has no impact on turnaround productivity as signals required to debug an issue are 

placed in mutually exclusive trace sets.  However, there is one solution that separates the 

instrumentation of signals for potential tracing from configuring the instruments to trace a specific 

subset of the signals instrumented. 

Other considerations for turnaround time and debug productivity include the ease-of-use and power of 

the software bundled with the instruments that make it easy to instrument the design and configure 

things such as the trigger and conditional capture conditions at run-time.  However, this paper is not a 

review of the differences between commercial offerings.  Therefore, we assume the software, more or 

less, adequately supports the capabilities of the instrumentation in its application to debugging system-

level issues and that debugging is based on waveform views of signals. 

In this presentation we will look at three case studies of debugging system-level issues in silicon.  

Collectively, the examples show silicon debug solutions fill an important gap in validating and supporting 

complex chips and SoCs.  Silicon debug solutions can do what traditional pre-silicon hardware and 

software debugging tools cannot.  A quick overview of the examples: 

1. Software and hardware designers on a project labored for weeks attempting to reproduce in 

simulation system-level bugs exposed in silicon.  Applying an FPGA debug solution resolved the 

issue in a few days. 

2. Silicon debug isn’t always about fixing binary correct/incorrect functionality.  The second 

example shows how it can help improve the overall quality of a system. 

3. The third example illustrates how a commercial silicon debug solution provided a second level of 

support in identifying and resolving a bug that escaped to silicon that incorporated a proprietary 

silicon debug capability. 



Root Causing System-Level Bugs that Escape Simulation Detection 

The first case study involves a team working on an FPGA prototype. This was a complete product 

prototype using two FPGAs which would later be converted to pin compatible ASICs. This scenario 

allowed co-design of hardware and software components within the complete system context.  As is 

typical of chip and system prototypes, the early and concurrent development and testing of embedded 

software was a key objective of the prototyping stage.  As hardware designers completed and verified 

features of the chips, software designers could enable those features for testing. 

The fun began when software testing exposed two features behaving incorrectly. Both hardware and 

software designers searched for the cause of the issues.  The hardware designers verified in simulation 

that properly configured, the hardware blocks work as expected.   Meanwhile, the software designers, 

via register reads in the hardware, were able to confirm that the hardware blocks were configured 

correctly.  This resulted in the all too common situation where software and hardware engineers 

pointed their fingers at the other side as responsible for the bug.  The back-and-forth continued for 

approximately 2 weeks including extensive code reviews and various attempts to reproduce the 

situation in simulation.  

After tiring of finger pointing without resolving the issue, the project team employed a silicon debugging 

solution in the hopes of finding new and materially different information by observing the actual silicon 

behavior as it interacted with the software instead of the simulated behavior.  This is when one of the 

authors was brought into the team to assist with the use of the silicon debug solution.  With no specific 

knowledge of any of the bugs, we identified a set of signals that would provide broad, general purpose 

debug visibility.  Taking advantage of capabilities in this silicon debug solution used, we were able to 

instrument a large number of signals and then easily configure the instruments at run-time to trace 

specific subsets that seemed relevant to debugging each issue.  This capability provided very quick 

turnaround as we reconfigured the active trace set to follow the causation as we traced back from first 

observation to root cause.  Having experience using the FPGA vendor’s debug solution, this run-time 

trace configuration and broad instrumentation saved us many days resulting from re-instrumentation 

and re-build spins that would have limited debug sessions to one or two a day instead of the near 

simulation-type multiple debug sessions daily. 

Our method for selecting a broad, general-purpose debug instrumentation set can be applied to virtually 

any design.  We selected all of the interface signals (signals between major blocks of the design) as well 

as some other key signals such as the register interface bus (the software register-memory map).  

Depending on the design and complexity of IP blocks, the addition of key state registers would result in a 

highly useful, default debug instrumentation for any design. Using the initial general-purpose 

instrumentation the hardware designer was able to find the source of the bug in one day. The designer 

started by viewing a few high level status signals. That brought his attention to the right area. He was 

able to select a few more signals in that area and quickly determined that the software configured the 

block with the correct values.  However, the configuration involved out of order transactions, which 

caused the hardware to start performing its tasks before being fully configured.  The designer selected a 

few more signals to verify the behavior and was then able to show the software designer the timing and 



order of the configuration. This information directed the software designer exactly to how he needed to 

modify the code to correct the error. 

Of course, the hardware engineer could boast that the problem was in software, not his hardware.  In 

reality, this situation is far more common than the industry would like.  How often has ambiguity in a 

system or interface specification resulted in bugs that escape pre-silicon verification? How many 

escaped silicon and system validation?  How many have delayed product shipment due to the time to 

identify and fix the problem? These are exactly the types of system-level issues that require the 

clarifying visibility into hardware in order to quickly and accurately resolve the issue and keep projects 

on schedule. But, it also requires a silicon debug solution that enables a productive debug use model. 

The ability to dynamically change the trigger condition and signal selection without recompiling 

accelerated the debug cycle from days to hours even with silicon visibility. 

Silicon Debug Improves Chip/System Quality 

The success of a chip or system does not depend solely on correct functionality.  If the performance or 

power consumption of the product does not meet market requirements or beat competitive offerings, 

the chip or system is highly unlikely to be successful.  The second “bug” this company uncovered using 

the silicon debug solution wasn’t a functional correctness issue.  Systems performance was far lower 

than expected, so poor that the system would be unviable in the market unless it was fixed. While 

chasing down the first bug, the hardware designer noticed the hardware blocks were idle for far longer 

than expected. He noticed that the same software addressable registers were set several times with the 

same value before the block was finally allowed to run. By showing the software designer which 

registers were being set and when, the software designer was able to identify the sources of redundant 

register settings and optimize the code. Although the performance issue may have eventually been 

found using traditional software profiling tools, the visual waveform provided by the silicon debug 

solution allowed the team to quickly identify and then address the problem.  When it comes to these 

qualitative issues, it is better to have multiple views offering different perspectives into the behavior of 

the system to both identify and rectify quality issues. 

Silicon debug solutions are complementary to embedded software debug and analysis solutions.  The 

hardware designers and software designers found the waveform viewer an invaluable tool for 

facilitating communication between the two groups. The software designers would not be able to 

interpret the waveforms by themselves, but with the hardware designers showing the cause and effect 

of the software transactions the software designers were able to gain valuable insight into the behavior 

of the hardware. On the surface this might sound like a very inefficient way for a software designer to 

do debugging if a hardware designer is required to assist in the debug, but what this company found was 

that by facilitating communication between the two, the two teams worked more closely as 

collaboration is facilitated by silicon observability.  There were a lot less “I can’t find the problem on my 

side, it must be on your side” conversations and a lot more “let’s see what’s going on” conversations. 

Each team felt more invested in the other team’s success because they saw how it impacted the product 

and project’s success.  This resulted in further, broader use of the silicon debug solution which found 

more opportunities for enhancing system performance that would have otherwise been missed.  Since 



its use was in the FPGA prototype, the enhancements impacted both software and hardware 

optimizations. 

As an example of hardware optimizations for system performance, it was possible to recognize that 

certain register were accessed more frequently than other registers.  Since a typical register read 

operation took about 25 clocks to complete, this represented a ripe area of optimization. The hardware 

team created a special low latency bus that could access a register in about 2 clock cycles – an order of 

magnitude improvement for this aspect of the system performance. 

On the software side it was recognized that certain hardware accelerators were not running at peak 

efficiency. The design included two buffers of raw data. As one buffer filled, the data in the other buffer 

was processed. Software controlled the ping-pong between the two buffers. They noticed that after the 

“ping” buffer was processed, it took valuable clock cycles to enable the “pong” buffer. By analyzing the 

control path delays the designers were able to safely send a “start” command to the pong buffer before 

the processing of the ping buffer data completed.  As is often the case, optimizing performance by 

exploiting certain delays in operations can result in the creation of bugs as timing is pushed to the limit.  

Such a bug occurred when the ping-pong timing was incorrect resulting in software overwriting a 

memory location at the same time that hardware was processing the data.  From the software 

perspective, they could see the memory value was corrupted but they could not determine the cause.  

Combining the silicon debug capabilities with the embedded software debug capabilities allowed both 

teams to recognize the simultaneous access to the same memory location.  This turned out to be 

another example of the value of a good, broad default debug instrumentation.  No change in 

instrumentation was required to debug this issue. 

Due to the unprecedented visibility now available to the project team, optimization became a key metric 

of product development.  The project manager kept a daily white board update of today’s system 

performance encouraging even broader, deeper exploitation of the system visibility now available to the 

teams. Figure 1 shows the type of insight a silicon debug solution gave the team when they were looking 

for areas that could be optimized for performance. Long periods of idle time become glaringly obvious 

with a waveform view of system level interactions. 

  



 

Figure 1: Example of System Optimization 

Silicon debug solutions work best when they are non-intrusive to the design functionality as mentioned 

earlier in this paper.  The silicon debug solution used was non-intrusive.  However, hardware designers 

are often ignorant of how intrusive embedded software debuggers are!  If you are an experienced 

software engineer, you’ve surely experienced at least once in your life the pleasure of observing a bug in 

the operation of your software that magically disappears as soon as debug visibility or a printf statement 

is added.  The fact is, a software breakpoint results in the execution of hundreds of instructions to 

implement.  A lot can happen and data can dissipate during that time.  The software team recognized 

and appreciated the non-intrusive nature of the silicon debug solution. In addition to the latency and 

intrusive nature of software breakpoints, they are ineffective at halting hardware. The interaction 

between hardware and software are where many system bugs lurk and a software breakpoint changes 

the timing and interaction between the two. The team was able to observe things such as cache misses 

in a non-intrusive way which resulted in resizing the cache and rearranging code so that it would fit in 

the instruction cache with less calls to main memory. 

Supplementing Proprietary ASIC Debug Capabilities 

The final case study comes from a company which prototyped their ASICs before committing to silicon.  

Although this company has a homegrown ASIC design for debug (DFD) architecture, they found the use 

of a commercial silicon debug solution worked better in their prototypes. For prototype debug, they 

employed a very systematic method of debugging. Like the company of the first two case studies, they 

instrumented all of their interface signals. When they first observed a bug this default instrumentation 

was sufficient to isolate the functional block likely containing the root cause. If the initial 

instrumentation was insufficient to root cause the bug, it typically required just one re-instrumentation 

to root cause and fix the bug. They found the ability to instrument large structures, deep traces, the 

ability to dynamically select different signals and triggers at run time, and the ability to debug across 

multiple clock domains to be among the most valuable turnaround time, debug productivity capabilities. 

Despite their success using the commercial silicon debug solution in prototyping, they made the 

conservative decision to continue using their proprietary debug solution in ASICs due to its past success 

in that context.  



Based on our discussions with several ASIC design organizations, it is common that proprietary DFD 

solutions utilize a tree of muxes that route key probe points to dedicated debug pins which can then be 

connected to a traditional logic analyzer. Probe points are carefully chosen and mux pin position 

carefully chosen.  If every probe point is available in combination of every other probe point using a 

standard muxing scheme the result is a complete cross bar switch, which consumes tremendous 

resources.  If you minimize your mux network then you end up with blocking scenarios as discussed at 

the beginning of the paper in reference to commercial solutions that place 8:1 muxes on the inputs to 

the embedded logic analyzer. You might be able to view signals A and B, or signals A and C together, but 

you cannot view signals B and C together. 

This company experienced a bug that escaped to ASIC silicon.  It is never good for customers to find bugs 

in your product.  Fortunately, they found the bug before the customer, but they were still under 

tremendous pressure to issue a software fix before the customer encountered it. The ASIC had 

insufficient probe points and the probe points that existed could not be viewed in the combination 

required to debug the problem. The scenario which triggered the bug was also known and repeatable. 

The prototype team was called upon to recreate the bug in the prototype. Once the bug was recreated, 

two re-instrumentations and 2 days were all that was required to find the root cause of the bug.  On the 

third day, a software fix was delivered and validated.  The software fix was in the customer’s hands on 

the fourth day.  The commercial silicon debug solution saved the company from a potentially bad 

situation and ensured their customer was able to stay on their system development and integration 

schedule.  The value of having a more powerful fallback debug capability that could be used effectively 

in the prototype also reduced the risks inherent in the homegrown ASIC DFD capabilities.  Regardless of 

relative strengths and weaknesses of the commercial solution versus the homegrown solution, resource 

constraints in final ASIC silicon and the inability to re-instrument ASICs (at least not in a reasonable 

amount of time and cost) will create challenges for any solution.  Thus, the value of prototyping ASICs 

extends beyond receipt of first silicon. 

All of these case studies illustrate the advantages of choosing an advanced silicon debug solution.  To be 

efficient for system level debug all of the challenges presented at the beginning of this paper must be 

addressed by your debug solution: trace breadth, trace depth and debug turnaround time. Additionally 

the solution must be resource efficient and easy to use. If any of these elements are missing, silicon 

debug is often viewed as a tool of last resort. But if all of these challenges are met, then the user is 

empowered to track down the root cause of the bug where the bug was discovered, in hardware. For 

the case studies presented, the debug solution used was Mentor Graphics’ Certus. 

Regardless of which silicon debug solution chosen (commercial solution or internally developed), the 

authors hope these case studies provide the rational to encourage everyone to adopt one for their ASIC 

prototypes, FPGA designs and ASIC silicon requirements.  The benefits in improving the quality of your 

future chips and improving your silicon and system-level debug productivity are well worth the 

investment.  In addition to the benefits prior to shipping product to your customers, silicon debug 

solutions, if integrated into the full chip and system functionality, can help provide better support of 

your products once in the field. 


