
NOT JUST FOR HARDWARE DEBUG:
PROTOTYPE DEBUGGERS FOR SYSTEM
VALIDATION AND OPTIMIZATION

Introduction

Simulation and emulation are great for finding and
fixing hardware bugs. Software debuggers are
great for finding and fixing general purpose
software bugs. But traditional debugging tools often
fall short in finding and fixing system-level bugs in
complex SOC designs. In a series of short case
studies, this paper explores how the use of
embedded debug instrumentation in modern FPGA
prototype debuggers can meet the emerging need
for system-level debug.

The key challenges in system-level debug and
debug productivity fall broadly into three categories:
• Trace breadth
• Trace depth
• Turn-around time to debug the appropriate set of

signals relevant to the problem

Trace Breadth

Trace breadth means being able to trace all the
signals relevant to debugging a particular issue.

To debug system-level interactions, the need to
trace hundreds or thousands of signals and
registers across multiple clock domains is typical,
especially during the initial phases of debug
identification and isolation. The introduction of
multiple clock domains derives a further
requirement that the trace data must be correlated
in time in order to comprehend true cause-and-
effect relationships.

To avoid frequent re-compiles, instrumenting
thousands of signals are required to debug even a
simple SOC.

Trace Depth

Trace depth determines the ability to capture
sufficient activity to recognize system-level cause-
and-effect relationships. Since the effect of a bug
may surface many transactions later from the
cause, the ability to trace seconds of trace data can
determine whether the validation engineer can
debug an issue from one trace set or if multiple
runs are required to capture multiple snapshots of
trace data which the engineer must cobble together
manually to root cause the issue.

Case Study 1 - Root Causing System-Level Bugs that Escape
Simulation Detection

The first case study involves a team doing
hardware/software co-design on a full system
prototype. Software testing exposed two features
behaving incorrectly. Both hardware and software
designers searched for the cause of the issues.
The hardware designers verified in simulation that
properly configured, the hardware blocks work as
expected. Meanwhile, the software designers, via
register reads to the hardware, were able to
confirm that the hardware blocks were configured
correctly.
After employing an advanced silicon observability
solution, the team was able to root cause the bug in
a matter of hours. By directly observing the impact
software instructions had on hardware operations
the team was able to quickly recognize that, though
software was setting the correct hardware
configuration registers, the order of operation was
incorrect and the hardware started processing data
before it was fully configured.

It can take many iterations of signal selections and
trigger settings to find the root cause of a bug.

Turn-Around Time

Turn-around time when debugging. Debugging is
an iterative process of tracing back from an
observable effect back to the root cause. Since the
root cause is not yet known, all the signals relevant
to debug are not known upfront. The signals the
user wants to initially observe will rarely be
sufficient to find the root cause of the bug. Yet, re-
instrumenting can take hours, often over-night, if
re-synthesis and place & route are required.
Therefore the turn-around time from capturing one
set of signals to a different set of signals if often the
largest impact on time to root cause a bug.

Case Study 2 - Silicon Debug Improves Chip/System Quality

The second case study comes from the same
team. Systems performance was far lower than
expected, so poor that the system would be
unviable in the market unless it was fixed. While
chasing down the first bug the hardware designer
noticed the hardware blocks were idle for far longer
than expected.
Utilizing the ability to directly observe the timing
relationship between software instructions and
hardware operations identified a considerable
number of areas for improvement in both software
and hardware. They not only got their performance
up to the target specification but continued making
performance improvements to further improve the
product.
Some of the performance improvements included:
• Reordering software instruction sequences to

match hardware execution time.
• Creating a low-latency bus for frequently used

hardware registers.
• Remove redundant software accesses to

hardware registers.

Case Study 3 - Supplementing Proprietary ASIC Debug
Capabilities

The final case study comes from a company which
prototyped their ASICs before committing to silicon.
This company employed a homegrown design for
debug (DFD) solution on their ASIC.
This company experienced a bug that escaped to
ASIC silicon. Fortunately, they found the bug before
the customer, but they were still under tremendous
pressure to issue a software fix before the
customer encountered it. The ASIC had insufficient
probe points and the probe points that existed
could not be viewed in the combination required to
debug the problem. The prototype team was called
upon to recreate the bug in the prototype. Once the
bug was recreated, two re-instrumentations and 2
days were all that was required to find the root
cause of the bug. On the third day, a software fix
was delivered and validated. The software fix was
in the customer’s hands on the fourth day.

Michael Sachtjen
Michael_Sachtjen@mentor.com

Joe Gaubatz
Joseph_Gaubatz@mentor.com

	Slide Number 1

