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Abstract-SystemVerilog is a powerful language which can be used to build models of RTL in order to facilitate early 

testbench testing. The early RTL model uses higher level abstractions like SystemVerilog threads, queues, dynamic arrays 

and associative arrays. Using high level abstractions allows a functional model to be created with little effort. A simple 

fabric model is created implementing AXI-like READY/VALID channels. 

 

 

I. INTRODUCTION 

Building a UVM [2] testbench is a hard job, made harder when operational RTL is not yet available to test. 

SystemVerilog [1] is a powerful modeling language that can be used to build a high level model of hardware before 

RTL is available. This model is fast to write, and can be as functionally complete as needed. This paper will describe 

the creation and use of a fabric model to build and bring up a testbench. When the RTL is available it can be 

plugged into the testbench model with little change required. 

 

The main contributions of this paper are: showing a fully functional model of a medium complexity communication 

fabric; writing the model using SystemVerilog; and building a reusable testbench that can support block testing as 

well as support system level tests. The testbench implementation is not discussed in this paper. Contact the author 

for more information. 

  

The Fabric 

The fabric is a simple two port switch with buffering. Each communication pathway contains 5 channels. Each 

channel is a Ready/Valid channel with similarities to an AMBA® AXI™ [4] channel. The fabric supports multiple 

outstanding transactions, pipelining and large burst data transfers. It also supports traffic priority (quality of service). 

This is the model. It is written using SystemVerilog. Associative arrays are used to manage out-of-order 

transactions. Queues and dynamic arrays are used for managing lists. Classes are used to hold the transferred 

information - a class each for RA (Read Address), WA (Write Address), RD (Read Data), WD (Write Data) and B 

(Write Response), respectively. Packed structs are used for managing the tag bit fields. 

 

The Testbench 

The testbench is built to test the features supported by the fabric. It is a basic block testbench, testing transfer, 

buffering limits and other edge conditions in the RTL. This testbench will also be reusable to the system tests. The 

testbench is a basic UVM testbench with transfer sequences and background traffic sequences available. 

 

The DUT 

The actual device under test will be two fabrics connected together, as in Figure 2 

 

II. BACKGROUND 

The RTL implements an AXI-like fabric. It is a simple fabric (simpler than AMBA AXI), but has support for quality 

of service, out-of-order completion, and other high end features. The verification team wishes to get an early start on 

verification of this fabric. But early, functional RTL is not available. 
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In order for the verification team to get an early start on the verification environment, having an early model of the 

DUT is desirable. 

 

In this paper, a theoretical verification team has built a UVM testbench, and needs to make sure that the testbench 

can check and verify the hardware. The tests are quite simple – generating streams of READs and WRITEs.  This 

theoretical verification team is testing a simple AXI-like fabric. (It is not an AXI system). The fabric is a simple two 

port switch as seen in Figure 1. The system under test connects two of these fabrics. 

 

 
Figure 1 - Simple two port switch 

 

The DUT and fabric models will be used instead of the real RTL and have enough functionality to provide a useful 

test environment for early testbench bring up. The model is not a completely functioning version of the RTL. 

Modeling the complete functionality for the RTL would be too large a task for early verification, and offer limited 

extra verification points. 

 

The fabric has two ports on top and two ports on the bottom. The top ports can be routed to either bottom port. The 

DUT is a combination of two of these fabrics, as in Figure 2. A request is issued at either Master 1 (M1) or Master 2 

(M2). It flows out to either Slave 1 (S1) or Slave 2 (S2) depending on many factors including QOS and Address 

Maps ranges defined. 

 
Figure 2 - DUT, Slave Memory and Testbench 

 

A connection is virtual – the data transfer occurs in hops from master to slave. Additionally, the connections are 

managed as independent channels. The channels are WRITE ADDRESS (WA), WRITE DATA (WD), WRITE 



RESPONSE (B), READ ADDRESS (RA) and READ DATA (RD). Each channel operates independently, with a 

few basic rules. For example, WRITE DATA must start after the corresponding WRITE ADDRESS. READ DATA 

must start after the corresponding READ ADDRESS. Data transfers from different transactions can be interleaved. 

A QUALITY OF SERVICE (qos) property exists for each transfer that can be used to prioritize traffic. There are 

many other features of the fabric, but these basic features are sufficient for the testbench to be built and rudimentary 

testing to begin. 

 

III. THE CHANNEL 

The channel is the most basic bus. It is a collection of signals, organized as the RA, RD, WA, WD and B sub-

channels. It is implemented as a SystemVerilog interface. 

The Bus Pins 

interface channel(input wire clk); 

  // Read Address  

  logic  RA_ready; 

  logic  RA_valid; 

  tag_t  RA_tag; 

  addr_t RA_addr; 

  int    RA_beat_count; 

  int    RA_qos; 

 

  // Read Data  

  logic  RD_ready; 

  logic  RD_valid; 

  tag_t  RD_tag; 

  int    RD_beat_count; 

  data_t RD_data; 

  int    RD_qos; 

 

  // Write Address  

  logic  WA_ready; 

  logic  WA_valid; 

  tag_t  WA_tag; 

  addr_t WA_addr; 

  int    WA_qos; 

 

  // Write Data  

  logic  WD_ready; 

  logic  WD_valid; 

  tag_t  WD_tag; 

  int    WD_beat_count; 

  data_t WD_data; 

  int    WD_qos; 

 

  // Write Response  

  logic  B_ready; 

  logic  B_valid; 

  tag_t  B_tag; 

  int    B_qos; 

  ... 

endinterface 

Figure 3 - The Channel (The Bus) 

 

The channel represents the pins of the bus.  

 



The Fabric “Payload” 

In addition to the pins, each transfer in the fabric is represented by a simple class, each containing the same transfer 

information as might appear on the bus. Using these classes to represent the transfers on the fabric makes the fabric 

quite simple, and powerful. (See Appendix XVI for the definition of the types). 

 

  class read_address_c; 

    tag_t  RA_tag; 

    addr_t RA_addr; 

    int    RA_beat_count; 

    int    RA_qos; 

  endclass 

         

  class read_data_c; 

    tag_t  RD_tag;  

    int    RD_beat_count; 

    data_t RD_data; 

    int    RD_qos; 

  endclass 

           

  class write_address_c; 

    tag_t  WA_tag; 

    addr_t WA_addr; 

    int    WA_qos; 

  endclass 

       

  class write_data_c; 

    tag_t  WD_tag; 

    int    WD_beat_count; 

    data_t WD_data; 

    int    WD_qos; 

  endclass 

     

  class write_response_c; 

    tag_t  B_tag; 

    int    B_qos; 

  endclass 

Figure 4 - The Fabric Communication Packets 

 

IV. THE TESTBENCH 

The testbench is a “regular” UVM testbench, with an environment, test, agent, driver, sequencers, sequences and 

transactions (sequence items). The basic sequence issues a write of semi-random data to an address, then issues a 

read of the same address, and compares the data read with the data written. In this way, it is self-checking. Other 

sequences, corresponding to traffic types (such as video streaming, audio streaming or push notifications) are 

beyond the scope of this paper, but quite easy to create as a collection of memory accesses with the characteristic 

bandwidth, latency and length. 

The sequence 

The sequences issue reads and writes. The built-in sequence issues a write then a read from the same address. It then 

compares the read and written data. Each sequence is assigned a memory range in which it reads and writes. 

The transaction 

The transaction is either a READ or a WRITE. It has an address and a data payload. Additionally, there is a Quality 

of Service request field (qos). The tag field is not used by the testbench, but is set by the synthetic fabric we are 

building. 

 

class transaction extends uvm_sequence_item; 

  ... 

  tag_t            tag; // Set in the initiator (master_if.sv) 



 

  rw_t             rw; 

  bit [31:0]       addr; 

  array_of_bytes_t data; 

  rand int         qos; 

  ... 

endclass 

Figure 5 - transaction.svh 

 

The Test 

The test is a simple test, but is flexible to provide many parallel threads. It uses two arrays to hold the interesting 

interfaces – the master (initiators) and the monitor interface. These are set from above using the uvm_config_db 

mechanism. 

 

The test has two associative arrays that hold the agent and sequence handles. The number of these created is 

controlled by the command line option +threads=N. The number of agents is the number of threads. The number of 

sequences is four times the number of agents. During the run_phase, the number of transactions that each sequence 

should create is set from the command line using the +transactions=M option. Each of the created sequences is 

started, and simulation ends when each sequence has completed. 

 
class test1 extends uvm_test; 

  `uvm_component_utils(test1) 

 

  virtual master_interface          vif [1:2]; 

  virtual monitor_interface monitor_vif [1:2]; 

 

  agent     agent_h [int]; 

  sequenceA   seq_h [int]; 

 

  // The controls. 

  int parallel_threads = 16; 

  int number_of_transactions = 100; 

... 

    master_count = 0; 

    for (int i = 0; i < parallel_threads; i++) begin 

      for (int j = 1; j <= 2; j++) begin 

        agent_h[master_count] = agent::type_id::create( 

          $sformatf("agent-%0d-%0d", j, master_count), this); 

        agent_h[master_count].vif = vif[j]; 

        master_count++; 

      end 

    end 

  endfunction 

 

`define N 4 

 

  task run_phase(uvm_phase phase); 

    int sequence_count; 

    phase.raise_objection(this); 

 

    sequence_count = 0; 

    foreach (agent_h[i]) begin 

      for (int j = 0; j < `N; j++) begin 

        // N sequences on each sequencer 

        seq_h[sequence_count] = sequenceA::type_id::create($sformatf("seq%0d", 

          sequence_count)); 

        seq_h[sequence_count].sequence_id = sequence_count; 

        seq_h[sequence_count].base_address = (sequence_count+1) * 2048;             

        seq_h[sequence_count].number_of_transactions = number_of_transactions; 

        sequence_count++; 



      end 

    end 

 

    foreach (seq_h[i]) 

      fork 

        automatic int j = i; 

        #(j*1000) seq_h[j].start(agent_h[j/`N].sqr); 

      join_none 

    wait fork; 

 

    phase.drop_objection(this); 

  endtask 

... 

endclass 

Figure 6 - test.svh 

 

V. THE FABRIC BASICS 

The fabric connects to the pins of the AXI-like interfaces, but instead of pins, the DUT will use SystemVerilog 

interfaces. Those interfaces were defined above as ‘interface channel’ buses. 

 

There are two input channels, i0 and i1, and two output channels, o0 and o1. There are 4 instances to manage the 

interfaces and queues, two each of slaves and masters (fabric_slave1, fabric_slave2, fabric_master1 and 

fabric_master2). 

 

import uvm_pkg::*; 

import types_pkg::*; 

 

module fabric #(parameter type FABRIC_TAG_T) (input wire clk, 

  channel i0, channel i1, 

  channel o0, channel o1); 

 

  fabric_slave_interface    fabric_slave1(i0); 

  fabric_slave_interface    fabric_slave2(i1); 

 

  fabric_master_interface   fabric_master1(o0); 

  fabric_master_interface   fabric_master2(o1); 

 

Figure 7 - fabric.sv 

 

When the fabric is instantiated, it is parameterized with a type (FABRIC_TAG_T); the type of the tag which is 

appropriate for this instance. For example, in the DUT there are two fabrics instantiated, one with ‘fabric_tag_t’ and 

one with ‘fabric2_tag_t’ as in Figure 8 

 

     

  fabric #(fabric_tag_t)  fA(clk, i0, i1, m0, m1); 

  fabric #(fabric2_tag_t) fB(clk, m0, m1, o0, o1); 

   

 

Figure 8 - Using FABRIC_TAG_T to parameterize the fabric 

 

The fabric contains queues and arrays to manage the transfers. It also has one big job, deciding which transfer goes 

out which output port (The big blue oval below). The various algorithms for quality of service and priority are 

beyond the scope of this paper, but would be quite easy to explore using this framework. 

 



 
 

Figure 9 – Request flow: queue to bus to queue to queue to bus to queue 

 

 

Figure 9 is a block diagram of the major structures in the fabric. The left-side connections are i0 and i1. The right-

side connections are o0 and o1. Inside each fabric, at the inputs and outputs are two slaves and two masters 

respectively. For example the fabric i0 port is connected outside to a master interface. On the inside, fabric i0 port is 

connected to a fabric slave. 

 

 
Figure 10 - Master and Slave 

 

Tracing the Read Address (RA) and Read Data (RD) channels can help explain the connectivity. (See Figure 1 and 

Figure 9). The master issues a Read Address (RA). That RA is sent across the i0 channel by wiggling the pins on the 

i0 channel. The fabric slave connected to i0 recognizes the RA and creates a read_address_c packet. That 

read_address_c packet contains all the information from the RA transfer. It is placed into a “work queue” for one of 

the fabric masters. A thread in the fabric master detects that something has arrived in its work queue, and processes 

it. The read_address_c packet from the work queue is turned into pin wiggles and sent out the connected interface 

(either o0 or o1). Outside of the fabric another slave will receive this transfer. 

 

In Figure 11, a Read Address (RA) request on the top of the diagram (light blue arrows) traverses across the 

structures of the fabric, resulting in a Read Address (RA) request executing on the slave memory. The Read Data 

(RD) response (deep green arrows) traverses the reverse path from the slave memory back to the originating master 

requester. 



 
Figure 11 - Tracing RA request and RD response 

 

VI. FABRIC SLAVE 

The fabric slave implementation is quite simple. The slave waits for VALID and READY to both be high on a 

positive clock edge. When his happens, a transfer occurs. The transfer in this case copies the bus values into a class 

container that represents the transfer (i.e. read_address_c). The read_address_c packet is pushed into the ra_q that is 

managed in the slave. Some other thread will decide what to do with the new member of the queue. 

import types_pkg::*; 

import delay_pkg::*; 

 

interface fabric_slave_interface(channel bus); 

 

  read_address_c  ra_q[$]; 

  read_data_c     rd_q[$]; 

 

  write_address_c wa_q[$]; 

  write_data_c    wd_q[$]; 

  write_response_c b_q[$]; 

 

  always @(posedge bus.clk) begin: RA_Channel 

    if ((bus.RA_ready == 1) && (bus.RA_valid == 1)) begin 

      read_address_c ra; 

      ra = new(); 

      ra.RA_tag = bus.RA_tag; 

      ra.RA_qos = bus.RA_qos; 

      ra.RA_addr = bus.RA_addr;; 

      ra.RA_beat_count = bus.RA_beat_count; 

      ra_q.push_front(ra); 

 

      @(negedge bus.clk); 

      bus.RA_ready = 0; 

    end 

  end 

Figure 12 - Fabric Slave Interface 



  

VII. FABRIC RA SLAVE SERVICE 

In the fabric, a thread (the RA_Channel1 thread) is waiting for something in the ra_q from the fabric_slave1. When 

something arrives, it is removed from the queue and a new tag is created. This new tag is the key to tracing the 

return values. 

 
  always begin: RA_Channel1 

    wait (fabric_slave1.ra_q.size() != 0); 

    ... 

    while (fabric_slave1.ra_q.size() > 0) begin 

      read_address_c ra; 

      ra = fabric_slave1.ra_q.pop_back(); 

 

      setup_fabric_tag_R(0, ra, ra.RA_tag, fabric_tag); 

       

      if ( fabric_tag.slave_o_port == 0 ) 

        fabric_master1.ra_q.push_front(ra); 

      else 

        fabric_master2.ra_q.push_front(ra); 

    end 

  end 

Figure 13 - Fabric Slave - RA Channel 

 

setup_fabric_tag_R – The new tag. 

The original transfer contained a ‘tag’ or ‘id’. That tag was created by the master interface, and is a simple counter 

to be able to match up and organize parallel transfers. Without the tag, the master would not know which 

outstanding READ address went with which READ data. This function will determine which output slave port the 

RA request goes to. 

 

The tag_matcher_R associative array is used to keep track of in-flight transfers and to do error checking. 

 

  function automatic void setup_fabric_tag_R(input master_port, 

                       read_address_c ra, 

                       ref tag_t               tag, 

                       ref FABRIC_TAG_T fabric_tag); 

    fabric_tag.tag = tag; 

    fabric_tag.master_i_port = master_port; 

    fabric_tag.slave_o_port = fabric_tag.tag & 1'b1; 

    tag = fabric_tag; 

 

    if (tag_matcher_R.exists(tag)) begin 

      $display("tag_matcher_R already has tag=%p", tag); 

      $finish(2); 

    end 

    tag_matcher_R[tag] = ra; 

    if (verbose_fabric) 

      $display("FABRIC %t POP/PUSH %m RA tag=%0d %p", $time, tag, ra); 

  endfunction 

Figure 14 - Managing fabric tags 

 

VIII. FABRIC TAGS 

Tags are used within this AXI-like system to connect parallel requests to each other. Tags serve as ids for 

transactions. As a transaction crosses this fabric, it chooses a path to take. We must ensure that the response ends up 

back in the right place, so the tag is used to keep track of where the transaction has been, and where it is going. 

In the fabric, the master could either be 0 or 1, and the slave can be 0 or 1. Two bits each are reserved in the fabric 

tag. 



The fabric tag consists of the original tag along with the slave and master information. As the transaction traverses 

the second fabric (this is a two fabric DUT), the tag is extended again, this time the tag is 16 bits – the previous 

“extended tag” simply looks like a “regular tag” to the second fabric. 

 

  typedef struct packed { 

    bit [ 1:0] slave_o_port; 

    bit [ 1:0] master_i_port; 

    bit [11:0] tag; 

  } fabric_tag_t; 

   

  typedef struct packed { 

    bit [ 1:0] slave_o_port; 

    bit [ 1:0] master_i_port; 

    bit [15:0] tag; 

  } fabric2_tag_t; 

Figure 15 - Fabric Tag Definition 

 

In the first level fabric, the slave and master occupy two bits. The tag is 12 bits long, for a total fabric tag length of 

16 bits. In the second level fabric, the slave and master occupy two bits, but this time the tag is 16 bits. The tag in 

the second level fabric is the first level fabric tag. (All 16 bits).  

 
Figure 16 - Fabric Tag Bit Vector 

 

For example, when a tag is traversing from the first level fabric to the second level, the fabric level 2 tag is assigned 

as: 

 

  fabric2_tag_t fabric2_tag; 

  fabric_tag_t  fabric_tag; 

 

  fabric2_tag.tag = fabric_tag; 

 

 

 

IX. FABRIC MASTER INTERFACE 

The fabric master RA_Channel thread wakes up when it finds something in the ra_q queue. That new arrival is 

popped off the queue, and turned into a pin wiggle. 

 

import types_pkg::*; 

import delay_pkg::*; 

import tb_pkg::*; 

import util_pkg::*; 

 

interface fabric_master_interface(channel bus); 

 

  read_address_c  ra_q[$]; 



  read_data_c     rd_q[$]; 

 

  write_address_c wa_q[$]; 

  write_data_c    wd_q[$]; 

  write_response_c b_q[$]; 

 

… 

 

  always begin: RA_Channel 

    wait (ra_q.size() != 0); 

    while (ra_q.size() > 0) begin 

      read_address_c ra; 

 

      ra = ra_q.pop_back(); 

 

      bus.RA_tag = ra.RA_tag; 

      bus.RA_qos = ra.RA_qos; 

      bus.RA_addr = ra.RA_addr; 

      bus.RA_beat_count = ra.RA_beat_count; 

 

      bus.RA_valid = 1; 

      while(1) begin 

        @(posedge bus.clk); 

        if ((bus.RA_ready == 1) && (bus.RA_valid == 1)) 

          break; 

      end 

      @(negedge bus.clk); 

      bus.RA_valid = 0; 

    end 

  end 

Figure 17 - Fabric Master - RA Channel Thread 

 

 

X. THE SLAVE 

The slave is quite simple, sharing a memory handle with the other slave. There is one physical memory 

(mem_interface), but two slave interfaces using it. The RA Channel recognizes a read request and pushes the tag 

onto the rd_work queue. The rd_work_queue is serviced by the RD_Channel thread. The RD_Channel thread wakes 

up and performs the requested number of reads, creating a RD response for each one.  

 

import types_pkg::*; 

import delay_pkg::*; 

 

interface slave_interface(channel bus); 

 

  virtual mem_interface mem; 

 

  addr_t  ra[tag_t]; 

  int     ra_beat_count[tag_t]; 

 

  beats_t rd[tag_t]; 

  addr_t  wa[tag_t]; 

  beats_t wd[tag_t]; 

  bit     wd_complete[tag_t]; 

  tag_t    b[tag_t]; 

 

  tag_t rd_work_queue[$]; 

 

  always @(posedge bus.clk) begin: RA_Channel 

    if ((bus.RA_ready == 1) && (bus.RA_valid == 1)) begin 

      ra[bus.RA_tag] = bus.RA_addr; 



      ra_beat_count[bus.RA_tag] = bus.RA_beat_count; 

      rd_work_queue.push_front(bus.RA_tag); 

 

      @(negedge bus.clk); 

      bus.RA_ready = 0; 

    end 

  end 

 

  always begin: RD_Channel 

    int unsigned addr; 

    beats_t beats; 

    tag_t tag; 

 

    wait (rd_work_queue.size() != 0); 

    while (rd_work_queue.size() > 0) begin 

      tag = rd_work_queue.pop_back(); 

      for (int i = 0; i < ra_beat_count[tag]; i++) begin 

        addr = (i + ra[tag]) & 24'hffffff; 

        beats[i] = mem.read(addr); 

      end 

      rd[tag] = beats; 

      beats.delete(); 

      RD_internal(tag); 

    end 

  end 

Figure 18 - Slave Interface - RA Channel and RD Channel 

 

XI. THE TEST TOP 

The test top instantiates 6 channels. Two channels for the input and two channels for the output and two channels for 

the intermediate connections between the fabrics. (See Figure 2). It instantiates two master interfaces, each 

connected to the input channels. It instantiates the two fabrics, each connected to the proper channels. Finally, it 

instantiates the two slaves and the two monitors and the actual memory. 

   

module top; 

  channel i0(clk); 

  channel i1(clk); 

  channel m0(clk); 

  channel m1(clk); 

  channel o0(clk); 

  channel o1(clk); 

     

  master_interface initiator0(i0); 

  master_interface initiator1(i1); 

     

  fabric #(fabric_tag_t)  fA(clk, i0, i1, m0, m1); 

  fabric #(fabric2_tag_t) fB(clk, m0, m1, o0, o1); 

   

  slave_interface  target0(o0); 

  slave_interface  target1(o1); 

   

  monitor_interface moni0(i0); 

  monitor_interface moni1(i1); 

     

  mem_interface mem(); 

     

  initial begin 

    uvm_config_db#(virtual master_interface )::set( null, "", "m0",       initiator0); 

    uvm_config_db#(virtual master_interface )::set( null, "", "m1",       initiator1); 

    uvm_config_db#(virtual monitor_interface)::set( null, "", "monitor0", moni0     ); 

    uvm_config_db#(virtual monitor_interface)::set( null, "", "monitor1", moni1     ); 



           

    target0.mem = mem; // Each target gets a handle to the memory 

    target1.mem = mem; 

     

    run_test("test1"); 

  end 

endmodule   

Figure 19 - t.sv - The Top 

 

XII. THE SIMPLE MEMORY 

The simple memory (mem_interface) has two functions: read and write. They provide an easy way to encapsulate 

the memory access. Each read and write is echoed to standard out, and if a location is read which has never been 

written, an error is generated and simulation stops immediately. The memory uses an associative array – it is a 

sparse array implementation.  

 

import types_pkg::*; 

 

interface mem_interface(); 

  data_t mem[bit[31:0]]; // Associative Array 

 

  function data_t read(int unsigned addr); 

    data_t beat; 

    if (!mem.exists(addr)) begin 

      $display("@%t: %m READ  mem[%d] NON-EXISTENT Address", $time, addr); 

      $finish(2); 

    end 

    beat = mem[addr]; 

    $display("@%t: %m READ  mem[%d] => %x", $time, addr, beat); 

    return beat; 

  endfunction 

 

  function void write(int unsigned addr, data_t beat); 

    $display("@%t: %m WRITE mem[%d] <= %x", $time, addr, beat); 

    mem[addr] = beat; 

  endfunction 

endinterface 

Figure 20 - mem_if.sv 

 

XIII. CONCLUSION 

This paper has described the implementation of a simple AXI-like skeleton fabric that was used to test the early 

development of a UVM testbench. It used high level SystemVerilog features such as threads, dynamic arrays, 

associative arrays, queues and simple classes to manage the complexity of implementing a real fabric.  

 

The current system is flexible and could be used as a test vehicle for new quality of service algorithms, or other 

address map schemes to control transfer flow. The code implementing the fabric is less than 1000 lines of code, and 

was written during a 5 day period, with another 5 days to debug by one person, as a part-time exercise. The model is 

easy to read and easy to extend with new functionality or capabilities. It is not a model that is suited for current 

synthesis tools, but rather is a model used to get complex functionality implemented early in the design phase; 

enabling early testing and verification.  

 

In this example, the DUT modeled was a fabric, but the power of SystemVerilog would allow any model to be 

written. SystemVerilog is a powerful, general purpose programming language. 
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XV. APPENDIX: TRANSFERS ON THE TWO INITIATORS 

This screenshot is of the two masters (initiators). There are four streams shown. Each stream represents an 

independent communication channel. For example the first stream is the initiator 1 write channel. Then the initiator 

1 read channel, initiator 2 write channel and initiator 2 read channel. Even with this limited set of channels and a 

limited simulation run time, it is easy to see that there are large quantities of data to check and analyze, even for this 

simple circuit. 

 
 
 
 

XVI. APPENDIX: TYPES.SVH 

 
  Miscellaneous types used throughout the testbench and DUT. 
   

  typedef bit [ 31:0]  tag_t; // Maximum size 

  typedef bit [ 31:0] addr_t; 

  typedef bit [127:0] data_t; 

  typedef bit [  7:0] byte_t; 

  typedef int        delay_t; 

 

  typedef enum bit [  1:0] {WRITE, READ, NOTUSED} rw_t; 

   

  typedef  byte_t array_of_bytes_t[   ]; // Dynamic Array  

  typedef  data_t          beats_t[int]; // Associative Array 

  typedef delay_t    beats_delay_t[int]; // Associative Array 

  typedef delay_t   rbeats_delay_t[   ]; // Dynamic Array 

Figure 21 - Initiator 1 and 2 Write and Read Channels 
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