
No RTL Yet? No Problem

UVM Testing a SystemVerilog Fabric Model

Rich Edelman
Mentor Graphics, Fremont, CA

rich_edelman@mentor.com

510-354-7436

Abstract-SystemVerilog is a powerful language which can be used to build models of RTL in order to facilitate early

testbench testing. The early RTL model uses higher level abstractions like SystemVerilog threads, queues, dynamic arrays

and associative arrays. Using high level abstractions allows a functional model to be created with little effort. A simple

fabric model is created implementing AXI-like READY/VALID channels.

I. INTRODUCTION

Building a UVM [2] testbench is a hard job, made harder when operational RTL is not yet available to test.

SystemVerilog [1] is a powerful modeling language that can be used to build a high level model of hardware before

RTL is available. This model is fast to write, and can be as functionally complete as needed. This paper will describe

the creation and use of a fabric model to build and bring up a testbench. When the RTL is available it can be

plugged into the testbench model with little change required.

The main contributions of this paper are: showing a fully functional model of a medium complexity communication

fabric; writing the model using SystemVerilog; and building a reusable testbench that can support block testing as

well as support system level tests. The testbench implementation is not discussed in this paper. Contact the author

for more information.

The Fabric

The fabric is a simple two port switch with buffering. Each communication pathway contains 5 channels. Each

channel is a Ready/Valid channel with similarities to an AMBA® AXI™ [4] channel. The fabric supports multiple

outstanding transactions, pipelining and large burst data transfers. It also supports traffic priority (quality of service).

This is the model. It is written using SystemVerilog. Associative arrays are used to manage out-of-order

transactions. Queues and dynamic arrays are used for managing lists. Classes are used to hold the transferred

information - a class each for RA (Read Address), WA (Write Address), RD (Read Data), WD (Write Data) and B

(Write Response), respectively. Packed structs are used for managing the tag bit fields.

The Testbench

The testbench is built to test the features supported by the fabric. It is a basic block testbench, testing transfer,

buffering limits and other edge conditions in the RTL. This testbench will also be reusable to the system tests. The

testbench is a basic UVM testbench with transfer sequences and background traffic sequences available.

The DUT

The actual device under test will be two fabrics connected together, as in Figure 2

II. BACKGROUND

The RTL implements an AXI-like fabric. It is a simple fabric (simpler than AMBA AXI), but has support for quality

of service, out-of-order completion, and other high end features. The verification team wishes to get an early start on

verification of this fabric. But early, functional RTL is not available.

mailto:rich_edelman@mentor.com

In order for the verification team to get an early start on the verification environment, having an early model of the

DUT is desirable.

In this paper, a theoretical verification team has built a UVM testbench, and needs to make sure that the testbench

can check and verify the hardware. The tests are quite simple – generating streams of READs and WRITEs. This

theoretical verification team is testing a simple AXI-like fabric. (It is not an AXI system). The fabric is a simple two

port switch as seen in Figure 1. The system under test connects two of these fabrics.

Figure 1 - Simple two port switch

The DUT and fabric models will be used instead of the real RTL and have enough functionality to provide a useful

test environment for early testbench bring up. The model is not a completely functioning version of the RTL.

Modeling the complete functionality for the RTL would be too large a task for early verification, and offer limited

extra verification points.

The fabric has two ports on top and two ports on the bottom. The top ports can be routed to either bottom port. The

DUT is a combination of two of these fabrics, as in Figure 2. A request is issued at either Master 1 (M1) or Master 2

(M2). It flows out to either Slave 1 (S1) or Slave 2 (S2) depending on many factors including QOS and Address

Maps ranges defined.

Figure 2 - DUT, Slave Memory and Testbench

A connection is virtual – the data transfer occurs in hops from master to slave. Additionally, the connections are

managed as independent channels. The channels are WRITE ADDRESS (WA), WRITE DATA (WD), WRITE

RESPONSE (B), READ ADDRESS (RA) and READ DATA (RD). Each channel operates independently, with a

few basic rules. For example, WRITE DATA must start after the corresponding WRITE ADDRESS. READ DATA

must start after the corresponding READ ADDRESS. Data transfers from different transactions can be interleaved.

A QUALITY OF SERVICE (qos) property exists for each transfer that can be used to prioritize traffic. There are

many other features of the fabric, but these basic features are sufficient for the testbench to be built and rudimentary

testing to begin.

III. THE CHANNEL

The channel is the most basic bus. It is a collection of signals, organized as the RA, RD, WA, WD and B sub-

channels. It is implemented as a SystemVerilog interface.

The Bus Pins

interface channel(input wire clk);

 // Read Address

 logic RA_ready;

 logic RA_valid;

 tag_t RA_tag;

 addr_t RA_addr;

 int RA_beat_count;

 int RA_qos;

 // Read Data

 logic RD_ready;

 logic RD_valid;

 tag_t RD_tag;

 int RD_beat_count;

 data_t RD_data;

 int RD_qos;

 // Write Address

 logic WA_ready;

 logic WA_valid;

 tag_t WA_tag;

 addr_t WA_addr;

 int WA_qos;

 // Write Data

 logic WD_ready;

 logic WD_valid;

 tag_t WD_tag;

 int WD_beat_count;

 data_t WD_data;

 int WD_qos;

 // Write Response

 logic B_ready;

 logic B_valid;

 tag_t B_tag;

 int B_qos;

 ...

endinterface

Figure 3 - The Channel (The Bus)

The channel represents the pins of the bus.

The Fabric “Payload”

In addition to the pins, each transfer in the fabric is represented by a simple class, each containing the same transfer

information as might appear on the bus. Using these classes to represent the transfers on the fabric makes the fabric

quite simple, and powerful. (See Appendix XVI for the definition of the types).

 class read_address_c;

 tag_t RA_tag;

 addr_t RA_addr;

 int RA_beat_count;

 int RA_qos;

 endclass

 class read_data_c;

 tag_t RD_tag;

 int RD_beat_count;

 data_t RD_data;

 int RD_qos;

 endclass

 class write_address_c;

 tag_t WA_tag;

 addr_t WA_addr;

 int WA_qos;

 endclass

 class write_data_c;

 tag_t WD_tag;

 int WD_beat_count;

 data_t WD_data;

 int WD_qos;

 endclass

 class write_response_c;

 tag_t B_tag;

 int B_qos;

 endclass

Figure 4 - The Fabric Communication Packets

IV. THE TESTBENCH

The testbench is a “regular” UVM testbench, with an environment, test, agent, driver, sequencers, sequences and

transactions (sequence items). The basic sequence issues a write of semi-random data to an address, then issues a

read of the same address, and compares the data read with the data written. In this way, it is self-checking. Other

sequences, corresponding to traffic types (such as video streaming, audio streaming or push notifications) are

beyond the scope of this paper, but quite easy to create as a collection of memory accesses with the characteristic

bandwidth, latency and length.

The sequence

The sequences issue reads and writes. The built-in sequence issues a write then a read from the same address. It then

compares the read and written data. Each sequence is assigned a memory range in which it reads and writes.

The transaction

The transaction is either a READ or a WRITE. It has an address and a data payload. Additionally, there is a Quality

of Service request field (qos). The tag field is not used by the testbench, but is set by the synthetic fabric we are

building.

class transaction extends uvm_sequence_item;

 ...

 tag_t tag; // Set in the initiator (master_if.sv)

 rw_t rw;

 bit [31:0] addr;

 array_of_bytes_t data;

 rand int qos;

 ...

endclass

Figure 5 - transaction.svh

The Test

The test is a simple test, but is flexible to provide many parallel threads. It uses two arrays to hold the interesting

interfaces – the master (initiators) and the monitor interface. These are set from above using the uvm_config_db

mechanism.

The test has two associative arrays that hold the agent and sequence handles. The number of these created is

controlled by the command line option +threads=N. The number of agents is the number of threads. The number of

sequences is four times the number of agents. During the run_phase, the number of transactions that each sequence

should create is set from the command line using the +transactions=M option. Each of the created sequences is

started, and simulation ends when each sequence has completed.

class test1 extends uvm_test;

 `uvm_component_utils(test1)

 virtual master_interface vif [1:2];

 virtual monitor_interface monitor_vif [1:2];

 agent agent_h [int];

 sequenceA seq_h [int];

 // The controls.

 int parallel_threads = 16;

 int number_of_transactions = 100;

...

 master_count = 0;

 for (int i = 0; i < parallel_threads; i++) begin

 for (int j = 1; j <= 2; j++) begin

 agent_h[master_count] = agent::type_id::create(

 $sformatf("agent-%0d-%0d", j, master_count), this);

 agent_h[master_count].vif = vif[j];

 master_count++;

 end

 end

 endfunction

`define N 4

 task run_phase(uvm_phase phase);

 int sequence_count;

 phase.raise_objection(this);

 sequence_count = 0;

 foreach (agent_h[i]) begin

 for (int j = 0; j < `N; j++) begin

 // N sequences on each sequencer

 seq_h[sequence_count] = sequenceA::type_id::create($sformatf("seq%0d",

 sequence_count));

 seq_h[sequence_count].sequence_id = sequence_count;

 seq_h[sequence_count].base_address = (sequence_count+1) * 2048;

 seq_h[sequence_count].number_of_transactions = number_of_transactions;

 sequence_count++;

 end

 end

 foreach (seq_h[i])

 fork

 automatic int j = i;

 #(j*1000) seq_h[j].start(agent_h[j/`N].sqr);

 join_none

 wait fork;

 phase.drop_objection(this);

 endtask

...

endclass

Figure 6 - test.svh

V. THE FABRIC BASICS

The fabric connects to the pins of the AXI-like interfaces, but instead of pins, the DUT will use SystemVerilog

interfaces. Those interfaces were defined above as ‘interface channel’ buses.

There are two input channels, i0 and i1, and two output channels, o0 and o1. There are 4 instances to manage the

interfaces and queues, two each of slaves and masters (fabric_slave1, fabric_slave2, fabric_master1 and

fabric_master2).

import uvm_pkg::*;

import types_pkg::*;

module fabric #(parameter type FABRIC_TAG_T) (input wire clk,

 channel i0, channel i1,

 channel o0, channel o1);

 fabric_slave_interface fabric_slave1(i0);

 fabric_slave_interface fabric_slave2(i1);

 fabric_master_interface fabric_master1(o0);

 fabric_master_interface fabric_master2(o1);

Figure 7 - fabric.sv

When the fabric is instantiated, it is parameterized with a type (FABRIC_TAG_T); the type of the tag which is

appropriate for this instance. For example, in the DUT there are two fabrics instantiated, one with ‘fabric_tag_t’ and

one with ‘fabric2_tag_t’ as in Figure 8

 fabric #(fabric_tag_t) fA(clk, i0, i1, m0, m1);

 fabric #(fabric2_tag_t) fB(clk, m0, m1, o0, o1);

Figure 8 - Using FABRIC_TAG_T to parameterize the fabric

The fabric contains queues and arrays to manage the transfers. It also has one big job, deciding which transfer goes

out which output port (The big blue oval below). The various algorithms for quality of service and priority are

beyond the scope of this paper, but would be quite easy to explore using this framework.

Figure 9 – Request flow: queue to bus to queue to queue to bus to queue

Figure 9 is a block diagram of the major structures in the fabric. The left-side connections are i0 and i1. The right-

side connections are o0 and o1. Inside each fabric, at the inputs and outputs are two slaves and two masters

respectively. For example the fabric i0 port is connected outside to a master interface. On the inside, fabric i0 port is

connected to a fabric slave.

Figure 10 - Master and Slave

Tracing the Read Address (RA) and Read Data (RD) channels can help explain the connectivity. (See Figure 1 and

Figure 9). The master issues a Read Address (RA). That RA is sent across the i0 channel by wiggling the pins on the

i0 channel. The fabric slave connected to i0 recognizes the RA and creates a read_address_c packet. That

read_address_c packet contains all the information from the RA transfer. It is placed into a “work queue” for one of

the fabric masters. A thread in the fabric master detects that something has arrived in its work queue, and processes

it. The read_address_c packet from the work queue is turned into pin wiggles and sent out the connected interface

(either o0 or o1). Outside of the fabric another slave will receive this transfer.

In Figure 11, a Read Address (RA) request on the top of the diagram (light blue arrows) traverses across the

structures of the fabric, resulting in a Read Address (RA) request executing on the slave memory. The Read Data

(RD) response (deep green arrows) traverses the reverse path from the slave memory back to the originating master

requester.

Figure 11 - Tracing RA request and RD response

VI. FABRIC SLAVE

The fabric slave implementation is quite simple. The slave waits for VALID and READY to both be high on a

positive clock edge. When his happens, a transfer occurs. The transfer in this case copies the bus values into a class

container that represents the transfer (i.e. read_address_c). The read_address_c packet is pushed into the ra_q that is

managed in the slave. Some other thread will decide what to do with the new member of the queue.

import types_pkg::*;

import delay_pkg::*;

interface fabric_slave_interface(channel bus);

 read_address_c ra_q[$];

 read_data_c rd_q[$];

 write_address_c wa_q[$];

 write_data_c wd_q[$];

 write_response_c b_q[$];

 always @(posedge bus.clk) begin: RA_Channel

 if ((bus.RA_ready == 1) && (bus.RA_valid == 1)) begin

 read_address_c ra;

 ra = new();

 ra.RA_tag = bus.RA_tag;

 ra.RA_qos = bus.RA_qos;

 ra.RA_addr = bus.RA_addr;;

 ra.RA_beat_count = bus.RA_beat_count;

 ra_q.push_front(ra);

 @(negedge bus.clk);

 bus.RA_ready = 0;

 end

 end

Figure 12 - Fabric Slave Interface

VII. FABRIC RA SLAVE SERVICE

In the fabric, a thread (the RA_Channel1 thread) is waiting for something in the ra_q from the fabric_slave1. When

something arrives, it is removed from the queue and a new tag is created. This new tag is the key to tracing the

return values.

 always begin: RA_Channel1

 wait (fabric_slave1.ra_q.size() != 0);

 ...

 while (fabric_slave1.ra_q.size() > 0) begin

 read_address_c ra;

 ra = fabric_slave1.ra_q.pop_back();

 setup_fabric_tag_R(0, ra, ra.RA_tag, fabric_tag);

 if (fabric_tag.slave_o_port == 0)

 fabric_master1.ra_q.push_front(ra);

 else

 fabric_master2.ra_q.push_front(ra);

 end

 end

Figure 13 - Fabric Slave - RA Channel

setup_fabric_tag_R – The new tag.

The original transfer contained a ‘tag’ or ‘id’. That tag was created by the master interface, and is a simple counter

to be able to match up and organize parallel transfers. Without the tag, the master would not know which

outstanding READ address went with which READ data. This function will determine which output slave port the

RA request goes to.

The tag_matcher_R associative array is used to keep track of in-flight transfers and to do error checking.

 function automatic void setup_fabric_tag_R(input master_port,

 read_address_c ra,

 ref tag_t tag,

 ref FABRIC_TAG_T fabric_tag);

 fabric_tag.tag = tag;

 fabric_tag.master_i_port = master_port;

 fabric_tag.slave_o_port = fabric_tag.tag & 1'b1;

 tag = fabric_tag;

 if (tag_matcher_R.exists(tag)) begin

 $display("tag_matcher_R already has tag=%p", tag);

 $finish(2);

 end

 tag_matcher_R[tag] = ra;

 if (verbose_fabric)

 $display("FABRIC %t POP/PUSH %m RA tag=%0d %p", $time, tag, ra);

 endfunction

Figure 14 - Managing fabric tags

VIII. FABRIC TAGS

Tags are used within this AXI-like system to connect parallel requests to each other. Tags serve as ids for

transactions. As a transaction crosses this fabric, it chooses a path to take. We must ensure that the response ends up

back in the right place, so the tag is used to keep track of where the transaction has been, and where it is going.

In the fabric, the master could either be 0 or 1, and the slave can be 0 or 1. Two bits each are reserved in the fabric

tag.

The fabric tag consists of the original tag along with the slave and master information. As the transaction traverses

the second fabric (this is a two fabric DUT), the tag is extended again, this time the tag is 16 bits – the previous

“extended tag” simply looks like a “regular tag” to the second fabric.

 typedef struct packed {

 bit [1:0] slave_o_port;

 bit [1:0] master_i_port;

 bit [11:0] tag;

 } fabric_tag_t;

 typedef struct packed {

 bit [1:0] slave_o_port;

 bit [1:0] master_i_port;

 bit [15:0] tag;

 } fabric2_tag_t;

Figure 15 - Fabric Tag Definition

In the first level fabric, the slave and master occupy two bits. The tag is 12 bits long, for a total fabric tag length of

16 bits. In the second level fabric, the slave and master occupy two bits, but this time the tag is 16 bits. The tag in

the second level fabric is the first level fabric tag. (All 16 bits).

Figure 16 - Fabric Tag Bit Vector

For example, when a tag is traversing from the first level fabric to the second level, the fabric level 2 tag is assigned

as:

 fabric2_tag_t fabric2_tag;

 fabric_tag_t fabric_tag;

 fabric2_tag.tag = fabric_tag;

IX. FABRIC MASTER INTERFACE

The fabric master RA_Channel thread wakes up when it finds something in the ra_q queue. That new arrival is

popped off the queue, and turned into a pin wiggle.

import types_pkg::*;

import delay_pkg::*;

import tb_pkg::*;

import util_pkg::*;

interface fabric_master_interface(channel bus);

 read_address_c ra_q[$];

 read_data_c rd_q[$];

 write_address_c wa_q[$];

 write_data_c wd_q[$];

 write_response_c b_q[$];

…

 always begin: RA_Channel

 wait (ra_q.size() != 0);

 while (ra_q.size() > 0) begin

 read_address_c ra;

 ra = ra_q.pop_back();

 bus.RA_tag = ra.RA_tag;

 bus.RA_qos = ra.RA_qos;

 bus.RA_addr = ra.RA_addr;

 bus.RA_beat_count = ra.RA_beat_count;

 bus.RA_valid = 1;

 while(1) begin

 @(posedge bus.clk);

 if ((bus.RA_ready == 1) && (bus.RA_valid == 1))

 break;

 end

 @(negedge bus.clk);

 bus.RA_valid = 0;

 end

 end

Figure 17 - Fabric Master - RA Channel Thread

X. THE SLAVE

The slave is quite simple, sharing a memory handle with the other slave. There is one physical memory

(mem_interface), but two slave interfaces using it. The RA Channel recognizes a read request and pushes the tag

onto the rd_work queue. The rd_work_queue is serviced by the RD_Channel thread. The RD_Channel thread wakes

up and performs the requested number of reads, creating a RD response for each one.

import types_pkg::*;

import delay_pkg::*;

interface slave_interface(channel bus);

 virtual mem_interface mem;

 addr_t ra[tag_t];

 int ra_beat_count[tag_t];

 beats_t rd[tag_t];

 addr_t wa[tag_t];

 beats_t wd[tag_t];

 bit wd_complete[tag_t];

 tag_t b[tag_t];

 tag_t rd_work_queue[$];

 always @(posedge bus.clk) begin: RA_Channel

 if ((bus.RA_ready == 1) && (bus.RA_valid == 1)) begin

 ra[bus.RA_tag] = bus.RA_addr;

 ra_beat_count[bus.RA_tag] = bus.RA_beat_count;

 rd_work_queue.push_front(bus.RA_tag);

 @(negedge bus.clk);

 bus.RA_ready = 0;

 end

 end

 always begin: RD_Channel

 int unsigned addr;

 beats_t beats;

 tag_t tag;

 wait (rd_work_queue.size() != 0);

 while (rd_work_queue.size() > 0) begin

 tag = rd_work_queue.pop_back();

 for (int i = 0; i < ra_beat_count[tag]; i++) begin

 addr = (i + ra[tag]) & 24'hffffff;

 beats[i] = mem.read(addr);

 end

 rd[tag] = beats;

 beats.delete();

 RD_internal(tag);

 end

 end

Figure 18 - Slave Interface - RA Channel and RD Channel

XI. THE TEST TOP

The test top instantiates 6 channels. Two channels for the input and two channels for the output and two channels for

the intermediate connections between the fabrics. (See Figure 2). It instantiates two master interfaces, each

connected to the input channels. It instantiates the two fabrics, each connected to the proper channels. Finally, it

instantiates the two slaves and the two monitors and the actual memory.

module top;

 channel i0(clk);

 channel i1(clk);

 channel m0(clk);

 channel m1(clk);

 channel o0(clk);

 channel o1(clk);

 master_interface initiator0(i0);

 master_interface initiator1(i1);

 fabric #(fabric_tag_t) fA(clk, i0, i1, m0, m1);

 fabric #(fabric2_tag_t) fB(clk, m0, m1, o0, o1);

 slave_interface target0(o0);

 slave_interface target1(o1);

 monitor_interface moni0(i0);

 monitor_interface moni1(i1);

 mem_interface mem();

 initial begin

 uvm_config_db#(virtual master_interface)::set(null, "", "m0", initiator0);

 uvm_config_db#(virtual master_interface)::set(null, "", "m1", initiator1);

 uvm_config_db#(virtual monitor_interface)::set(null, "", "monitor0", moni0);

 uvm_config_db#(virtual monitor_interface)::set(null, "", "monitor1", moni1);

 target0.mem = mem; // Each target gets a handle to the memory

 target1.mem = mem;

 run_test("test1");

 end

endmodule

Figure 19 - t.sv - The Top

XII. THE SIMPLE MEMORY

The simple memory (mem_interface) has two functions: read and write. They provide an easy way to encapsulate

the memory access. Each read and write is echoed to standard out, and if a location is read which has never been

written, an error is generated and simulation stops immediately. The memory uses an associative array – it is a

sparse array implementation.

import types_pkg::*;

interface mem_interface();

 data_t mem[bit[31:0]]; // Associative Array

 function data_t read(int unsigned addr);

 data_t beat;

 if (!mem.exists(addr)) begin

 $display("@%t: %m READ mem[%d] NON-EXISTENT Address", $time, addr);

 $finish(2);

 end

 beat = mem[addr];

 $display("@%t: %m READ mem[%d] => %x", $time, addr, beat);

 return beat;

 endfunction

 function void write(int unsigned addr, data_t beat);

 $display("@%t: %m WRITE mem[%d] <= %x", $time, addr, beat);

 mem[addr] = beat;

 endfunction

endinterface

Figure 20 - mem_if.sv

XIII. CONCLUSION

This paper has described the implementation of a simple AXI-like skeleton fabric that was used to test the early

development of a UVM testbench. It used high level SystemVerilog features such as threads, dynamic arrays,

associative arrays, queues and simple classes to manage the complexity of implementing a real fabric.

The current system is flexible and could be used as a test vehicle for new quality of service algorithms, or other

address map schemes to control transfer flow. The code implementing the fabric is less than 1000 lines of code, and

was written during a 5 day period, with another 5 days to debug by one person, as a part-time exercise. The model is

easy to read and easy to extend with new functionality or capabilities. It is not a model that is suited for current

synthesis tools, but rather is a model used to get complex functionality implemented early in the design phase;

enabling early testing and verification.

In this example, the DUT modeled was a fabric, but the power of SystemVerilog would allow any model to be

written. SystemVerilog is a powerful, general purpose programming language.

XIV. REFERENCES

[1] SystemVerlog LRM, http://standards.ieee.org/getieee/1800/download/1800-2012.pdf

http://standards.ieee.org/getieee/1800/download/1800-2012.pdf

[2] SystemVerilog UVM 1.1d, http://accellera.org/images/downloads/standards/uvm/uvm-1.1d.tar.gz
[3] Sparse Arrays, https://en.wikipedia.org/wiki/Sparse_array
[4] ARM AMBA AXI, “AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite ACE and ACE-Lite”,

https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR500-DA-10008-r2p1-00rel0/AR500-DA-10008-r2p1-00rel0.tgz

XV. APPENDIX: TRANSFERS ON THE TWO INITIATORS

This screenshot is of the two masters (initiators). There are four streams shown. Each stream represents an

independent communication channel. For example the first stream is the initiator 1 write channel. Then the initiator

1 read channel, initiator 2 write channel and initiator 2 read channel. Even with this limited set of channels and a

limited simulation run time, it is easy to see that there are large quantities of data to check and analyze, even for this

simple circuit.

XVI. APPENDIX: TYPES.SVH

 Miscellaneous types used throughout the testbench and DUT.

 typedef bit [31:0] tag_t; // Maximum size

 typedef bit [31:0] addr_t;

 typedef bit [127:0] data_t;

 typedef bit [7:0] byte_t;

 typedef int delay_t;

 typedef enum bit [1:0] {WRITE, READ, NOTUSED} rw_t;

 typedef byte_t array_of_bytes_t[]; // Dynamic Array

 typedef data_t beats_t[int]; // Associative Array

 typedef delay_t beats_delay_t[int]; // Associative Array

 typedef delay_t rbeats_delay_t[]; // Dynamic Array

Figure 21 - Initiator 1 and 2 Write and Read Channels

http://accellera.org/images/downloads/standards/uvm/uvm-1.1d.tar.gz
https://en.wikipedia.org/wiki/Sparse_array
https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR500-DA-10008-r2p1-00rel0/AR500-DA-10008-r2p1-00rel0.tgz

