
A Methodology to Verify Functionality,
Security, and Trust for RISC-V Cores

TUSINSCHI Nicolae | CHEN Wei Wei | ANDERSON Tom
OneSpin Solutions

RISC-V Fundamentals
• “I” base integer instruction set
• “M” extension for integer

multiplication/division
• “A” extension for atomic read-modify-

write memory accesses
• “F” extension for single-precision (32-

bit) floating point
• 32 registers (32-bit, 64-bit, 128-bit)
• 3 privilege levels
• 4096 CSRs
• Interrupts and exceptions

• Open-source ISA
• Support a wide variety of applications
• Many possible configurations
• Custom extensions – Domain Specific

Architectures
• Number of members is increasing

continuously
• Ecosystem maturing quickly –

toolchain, simulators, verification, …
• Not-for-profit commercial-grade

cores – OpenHW Group

Instruction Set Architecture

The Rise of RISC-V

RTL Verification Challenges
• It’s great …

• Systematic detection of corner-cases
bugs

• The only technology that can provide
exhaustive verification
• Proof of bug absence
• Simulation/emulation explore a fraction of

the state space

• … but
• Requires expertise to write good quality

assertions
• Difficult to assess quality of assertions,

detect gaps
• Complexity issues—inconclusive proofs

• Checking compliance with ISA is a
significant task …

• … ensuring functional correctness is
a very complex task

• Pipelined implementation optimized
for power, performance, area

• Many pipeline-based corner cases are
impossible to foresee

• Corner-cases related to interrupts,
exceptions, privileged modes

• Risk of security vulnerabilities and
hardware Trojans

Formal Verification

RTL Verification with Formal

RISC-V Verification Methodology

Inputs
Core’s RTL
RISC-V ISA (Spec)
Design implementation decisions (e.g.,
number of pipeline stages)

Outputs
Trusted executable spec
Proof that RTL is equivalent to executable
spec

OneSpin’s Processor Integrity Solution

• Automatic extraction of
design info

• Built-in, proven RISC-V
ISA formalization in
SVAs

• Optimized for
exhaustive, unbounded
proofs

• Proof that SVAs
achieve 100% coverage
– no gaps

• Integrated debug
features

Operational Assertions and
Formalizing ISA

• SVAs use library of
Operational Assertions

• Strict coding style to
express the expected
behaviour of each
instruction • Capture effects of instruction and

exceptions on the architectural
state

• Decoupled from micro-
architectural details

Operation

suppose

prove

t##
0

t##
1

start
state

outputs

inputs

end
state

Effect

Cause

GapFreeVerification

• Systematic process to
cover 100% of
functionality

• Formal proof that no gaps
are left

Outcome:
• Proof that ISA’s executable model

(SVAs) and RTL are equivalent
– For any input trace the two

models produce the same output
trace

• Any undocumented or deliberately
hidden function is detected

Operational SVA

RISC-V Core

=

Results – RI5CY (CV32E40P)

• 4 stages, 32-bit
• Core now curated by

OpenHW Group
• Target is commercial-

grade quality
• Solution applied to bring

core’s quality to the level
of most advanced IP
providers

Results – RI5CY (CV32E40P)

• github.com/openhwgroup/cv32e40p/issues
• #157: Exception Handling Violation - dcsr
• #159: Exception Raising Violation - Fetch/Store/Load Access
• #169: Exception Raising Violation - Illegal Instruction - dynamic rounding mode
• #170: Exception Raising Violation - Illegal Instruction - FS field
• #174: F extension - Dynamic Rounding Mode Violation
• #175: F extension - Wrong Result Calculation
• #182: Trap Return Handling Violation - mstatus’ MIE
• #185: Debug Mode Violation - Exceptions Update CSRs
• #438: Illegal Instruction Exception not Raised - URET
• #439: Illegal Instruction Exception Raised Incorrectly - C.EBREAK
• #440: Illegal Instruction Exception Raised Incorrectly - CSRs
• #441: Illegal Instruction Exception Raised Incorrectly – MRET
• #442: Illegal Instruction Exception Raised Incorrectly – FENCE
• #443: Incorrect DCSR value read/ written
• #509: Core executes wrong instruction

Results – RocketCore

• 5 stages, 64-bit
• Chisel
• Mostly in-order
• Long latency

instruction DIV
completes out of
order

Results – RocketCore

• github.com/chipsalliance/rocket-chip/issues
• #1752: DIV result not written back to register file
• #1757: JAL and JALR jump instructions store different return PC – instruction fetch unit

responsible to prevent this issue
• #1861: replay of illegal opcode instruction or instruction with fetch exception
• #1868: undocumented non-standard instruction (opcode 32'h30500073) detected -

CEASE
• #1868: presence of non-standard instruction (opcode 32'h30500073) not declared in misa

register
• #1949: access to non-existent CSR does not raise illegal instruction exception – open
• #2022: DRET instruction outside of Debug mode does not cause illegal exception
• #2043: DRET instruction illegal exception tied to M mode status

Summary

• RISC-V pre-silicon functional verification is challenging
• Complex implementations – pipeline, performance optimizations
• Many configurations and custom extensions possible
• Many cores – open-source, in-house, third-party

• Formal verification using automated solution allows the user to:
– Prove that the core complies with RISC-V ISA
– Detect all corner-case bugs, including in custom extensions
– Identify security weaknesses, vulnerabilities, and hardware Trojans
– Applicable during core’s RTL development and IP integration into a SoC

OneSpin: Assuring IC Integrity

OneSpin provides certified
IC Integrity

Verification Solutions
to develop

functionally correct,
safe, secure, and trusted

integrated circuits

