
© Accellera Systems Initiative

Success Factors of Formal Verification

Post-Silicon Bug: DDR3 controller 

Formal verification radar chart

Post-Silicon Bug: DDR3 controller 

Scenario: a sequence of write commands to the specific memory bank and row 
combinations would cause a DDR3 protocol violation related to pre-charge timing.

• Complexity of the design: picking the DUT at the right level of hierarchy reduced the design complexity for 
formal verification. Standard interfaces at the DUT also help constrain the design.

• Accessibility of formal experts: the project team did not have formal expertise. They contacted the tool 
vendor to set up a pilot project so that they can get help with the tool and formal knowledge.

• Control of formal engines: memories and unessential parts of the design had turned into black boxes. 
Preliminary formal runs were done to confirm that the formal engines have adequate control of the design.

• Qualify of the assertions: Assertions were written to capture the bug scenario and the sequence of events 
leading up to the bug. This is important. By using the sequence of assertions as sub-goals, we were able to 
deploy formal goal-posting to re-create the sequence of the events in formal. It helped guide the formal 
engines to target the bug scenario(s).

• Proximity of the initial states: it is essential to configure the design for proper operation. The serial nature of 
the design made it challenging to apply formal verification directly. We were fortunate in that the 
initialization sequence employed in the design had an “init_ok” signal, which asserted once the initialization 
of the design was complete. Also, by using the initial states from the sub-goals, it significantly improved the 
proximity of the initial states that lead to the bug scenario.

• Completeness of the constraints: assertion protocol library was used to constrain the AXI interfaces. 
Although the DUT has 5 AXI interfaces, initially, we disabled 4 of them to reduce complexity and to focus all 
transactions on one interface. Later, we enabled more interfaces to study the interactions between the 
different interfaces.

ping_yeung@mentor.com, jin_hou@mentor.com
Ping Yeung, Jin Hou, Siemens EDA

Silicon Bug Hunt with “Deep 
Sea Fishing” Formal 

Verification

[1] Ram Narayan, “The future of formal model checking is NOW!”, DVCon 2014.
[2] M Achutha KiranKumar, et al., “Making Formal Property Verification Mainstream: An Intel® Experience,” DVCon 
India 2017
[3] Mandar Munishwar, Vigyan Singhal, et al., “Architectural Formal Verification of System-Level Deadlocks”, DVCon 
2018.
[4] Richard Ho, et al., “Post-Silicon Debug Using Formal Verification Waypoints,” DVCon 2009
[5] Blaine Hsieh, et al., “Every Cloud - Post-Silicon Bug Spurs Formal Verification Adoption,” DVCon 2015
[6] Jin Hou, et al., “Handling Inconclusive Assertions in Formal Verification”, DVCon China 2018
[7] Mark Eslinger, Ping Yeung., “Formal Bug Hunting with “River Fishing” Techniques”, DVCon 2019
[8] Jeremy Levitt, et al., “It’s Been 24 Hours - Should I Kill My Formal Run?”, Workshop, DVCon 2019

Post-Silicon Bug: Memory Controller Post-Silicon Bug: Memory Controller

To success with formal verification, users need to wrestle with multiple success 
factors:
• The complexity of the design [3][8]
• The quality of the sub-goals and target assertions [6]
• The completeness of the interface constraints [5]
• The control and orchestration of the formal engines [8]
• The quality of the initial states for formal exploration [7]
• The formal expertise of the users [2]

The radar chart guides the deployment of formal verification to find deep silicon bugs
Phase 1: “Initial”
• gather all the information, and set up the formal verification environment.
Phase 2: “Improved”
• improve each of the success factors to define the scenarios close to the bug.
Phase 3: “Final”
• optimize the critical success factors to find the bug(s).

Intentionally left all the interfaces 
unconstrained to explore all the 

scenarios; later added incrementally 
to refine the counter-examples

Observation from silicon identified the 
functionalities of the memory 

controller and its sub-blocks. We 
eliminated sub-blocks that were not 

relevant.

By understanding the essential 
sequence of events that set up the 

design for failure, we had 
captured it as the initial state for 

formal verification.

Formal experts were available. 
They were involved early to guide 

the formal verification process.

A large number of assertions with 
different combinations and subsets of 

events were written to understand 
the pre-requisites for the bug. 

Usage of blackbox; Cutpoints added 
to improve controllability. Cutpoints 

were added to enable formal 
algorithms to control various 

configuration registers and counters. 

assertion protocol library 
was used to constrain the 

AXI interfaces. 

picking the DUT at the right 
level of hierarchy reduced 
the design complexity for 

formal verification. 

the initialization sequence 
had a signal, which asserted 

once the initialization was 
done.

contacted the tool vendor 
to set up a pilot project so 
that they can get help with 

the tool and formal 
knowledge.

Deploying formal goal-
posting to re-create the 

sequence of the events in 
formal.

memories and unessential 
parts of the design had 
turned into black boxes. 

Finding silicon bugs with Formal Verification is a potential challenging process
The “Deep Sea Fishing” radar identifies the success factors and guides users of the process
Successive refinement of the critical factors to “zero-in” on the critical bugs. 
The process is not just technical. It includes human factors and organization considerations as well.

Conclusions

Scenario: When the read/write transactions were re-ordered by control logic inside the 
memory controller, old data was read before the location had been updated. 

• Complexity of the design: The failing scenario was first observed in the lab during post-silicon testing. 
Based on the bug triage in the lab, the memory controller was identified as the source of the problem. We 
continued to eliminate sub-blocks that were not relevant.

• Accessibility of formal experts: it was fortunate to have formal experts in the team. They were involved early 
to guide the formal verification process.

• Control of formal engines: Memories and unessential parts of the design had turned into black boxes. 
Cutpoints were added to enable formal algorithms to control various configuration registers and counters. 
We had added cutpoints to some state machines as well.

• Quality of the assertions: This was the most important factor of this bug hunt. As simulation was able to hit 
only a small subset of events that lead to the bug, a large number of assertions with different combinations 
and subsets of events were written to understand the pre-requisites for the bug. Formal verification was 
able to hit 85 percent of the pre-requisites conditions. After some refinements, it was able to find the bug 
with a few well-timed transactions and external triggers. 

• Proximity of the initial states: Although the MTBF in silicon was at least 2 hours, we were able to understand 
the essential sequence of events that set up the design for failure. We had captured it as the initial state for 
formal verification. 

• Completeness of the constraints: Initially, we intentionally left all the interfaces unconstrained to explore all 
the scenarios and ensure formal verification could find the combinations of events that lead to the bug. After 
formal verification had found the silicon bug, interface constraints, setup, and configuration constraints 
were added into the formal runs to refine the counter-example. 


