

Next-generation Power Aware CDC Verification What have we learned?

Kurt Takara, Chris Kwok, Naman Jain, Ashish Hari **Mentor Graphics Corporation**

Power Control Logic

- Specified by Unified Power Format (UPF)
- Power intent not implemented in RTL
- Simulation verifies functional correctness
- Power logic may cause multi-clock issues

Low Power Design Challenges

- Ensure isolation and retention cells do not introduce new CDC paths
- Ensure isolation cells do not introduce combinational logic violations
- Synchronize VDC paths between DVFS voltage domains

CDC paths may occur at the destination retention cell's save and restore pins

Dynamic Frequency and Voltage Scaling (DVFS)

• Synchronous clocks in different voltage domains now asynchronous!

Voltage domain crossing (VDC) between synchronous reaisters

 In addition to level shifters, synchronizers are now needed at the receiver side of voltage domain **boundaries**

Retention-enabled synchronizer

Power Control Logic CDC Issues

 Isolation and retention cells may introduce metastability

Instantiation of isolation cells may introduce new CDC paths and CDC errors

 Isolation cells may reduce the reliability of CDC synchronizers

Instantiation of isolation cells may cause combinational logic violations

Power Aware CDC Verification

- Low-power clock and reset analysis early in the design flow (before synthesis)
- Identification of low-power CDC paths and synchronization structures
- Formal analysis and simulation for protocol assertions on low-power CDC paths
- Metastability delay modeling on lowpower CDC paths in simulation

Advanced Low Power CDC Verification

1. Static CDC verification

- Identify low power CDC paths and synchronization
- Low power CDC paths include isolation and retention cells
- 2. Dynamic CDC verification
 - Verify CDC protocol assertions with simulation and formal verification
 - Verify reconvergence with metastability delay models in simulation
- 3. Verify DVFS voltage domains
 - Model asynchronous clock behavior induced by DVFS voltage domains
 - Verify synchronization on voltage domain crossing (VDC) paths

Results

- **CPU Core Design**
- Single clock design
- No CDC paths
- Voltage domains induce 6 asynchronous clock domains
- 4893 VDC paths analyzed

	Clocks	Voltage Domains	Asynchonrous Clocks	Isolation Cells	Retention Registers	VDC Paths
CPU Core	1	6	6	438	134690	4893
Block 1	10	4	26	439	0	8404
Block 2	10	2	7	142	0	10610

VDC Analysis Requirements

- Identify asynchronous voltage domain clocks
- Verify VDC synchronization
- Verify VDC protocol assertions
- Verify VDC reconvergence using metastability delay models

Summary

- Advanced low power design introduces new CDC risks for SoCs
- Aggressive low power techniques such as **DVFS**, create new design and verification challenges
- Advanced CDC techniques enable the verification of low power designs
- Successive refinement in UPF 2.1 allows early verification of voltage domain crossing (VDC) paths

Unified Power Format (UPF)

IEEE standard 1801

- UPF adds isolation cells, retention cells, level shifters
- · Specifies power domains and power control logic
- Power intent extracted during synthesis Support required for all tools

UPF 2.1 – Successive Refinement

- Successive refinement introduced with **UPF 2.0 and UPF 2.1**
- Supports System-on-Chip (SoC) design and verification flows
- UPF evolves as it travels from IP design to SoC integration
- UPF updated with additional detail as it travels from front-end design (design and verification) to back-end design (physical implementation)
- **UPF** power distribution network is available earlier and allows voltage domain-related CDC verification

UPF Power Distribution Network

UPF 1.0 voltage domains require power distribution network

Specify Supply Ports create supply port VDD1 -domain PD1 create_supply_port VDD2 -domain PD2 create_supply_port VSS -domain PD1

Specify Supply Nets

create_supply_net VDD1 -domain PD1 create_supply_net VDD2 -domain PD2 create_supply_net VSS -domain PD1 create_supply_net VSS -domain PD2

Connect Supply Nets to Ports connect_supply_net VDD1 -ports VDD1 connect supply net VDD2 -ports VDD2 connect_supply_net VSS -ports VSS

Declare power and ground nets for power domains set_domain_supply_net PD1 -primary_power_net VDD1 \ -primary ground net VSS set_domain_supply_net PD2 -primary_power_net VDD2 \
-primary_ground_net VSS

UPF 2.0 voltage domains require only power supply sets

Specify Supply Set create_supply_set PRIMARY1 create_supply_set PRIMARY2

Declare primary power and ground nets for the power domains associate supply set PRIMARY1 -handle PD1 primary associate supply set PRIMARY2 -handle PD2.primary

