
Next Gen System Design and Verification
for Transportation

David Aerne

Jacob Wiltgen

Richard Pugh

Smart Sensors

Infotainment

Connectivity

ADAS/Autonomous Drive

Electrification

No

Automation

Driver

Assistance

Partial

Automation

Conditional

Automation

High

Automation

Full

Automation

Level 0

No system

Level 1

“Feet-off”

Level 2

“Hands-off”

Level 3

“Eyes-off”

Level 4

“Brain-off”

Level 5

No driver

Changes in Automotive
Consumer demands are reshaping the industry

Impact on Tier1/Tier2 suppliers
To realize level 4/5, design and verification must evolve

V2V

Cloud

V2I

Radar Fusion
Center

Blind Spot
Detection

Driver
Monitoring

Remote Park
Park assist

Lane Departure
Lane Assist

Nigh Vision
Surround View Camera

Emergency Brake
Adaptive Cruise Control

Cross Traffic Assist

Intelligence moving to the edge

Systems level verification
Systems of Systems verification

High Level Synthesis Design
HW accelerated verification

V2P

5G 5G

Challenges facing Tier1/Tier2
To realize level 4/5, design and verification must evolve

• Explosion in design complexity and size to address automotive
market needs

• Continually changing algorithms and sensors

• Satisfying functional requirements and ensuring functional safety

• Volume of testing required to reach Level 5 autonomy
• Millions of tests and billions of road miles

• System and Systems of Systems testing

• V2X

• Sense-Compute-Actuate

Tutorial Overview
A workflow demonstrating the use of HLS and emulation in safety-critical application

Accelerated design
using HLS

Functional verification of
an HLS design in emulation

Seamless integration of the
safety workflow

Accelerating system
verification using emulation

1 2 3 4

void func (short a[N],

for (int i=0; i<N; i++) {

if (cond)

z+=a[i]*b[i];

else

RTL

Sense Compute Actuate

Using HLS to rapidly develop AI Algorithms

Computer Vision/AI Application Challenges
Automotive and other “real-time” application especially challenging

• Computationally very expensive
– Billions of operations/second

• High responsiveness required
– High-bandwidth and low-latency
– Real-time processing of data required

• ADAS solution required to be < 100W

• Continually evolving algorithms and sensors

• Each provider wants to add their “secret sauce”
ADAS and Driverless Cars

Convolutional Neural Networks:
Training vs Inference (Embedded AI)

• Compute intensive, very large datasets & memory,
CPU/GPU farms, floating point required

• Uses data from trained network, end system often has real-time

requirements, mapping to FPGA/ASIC and/or dedicated HW,

fixed point, power often a consideration

Today’s focus

Next-generation CV Designs Require Parallelism

• Convolutional Neural Networks use lots of 2-d convolutional filters

– Billions of multiply-accumulate operations per second

• Multiple convolutional layers

• Networks are constant evolving

– Data rates, number of layers, image size, etc..

16 2-d convolutional
filters

36x16 = 576 2-d
convolutional filters

Simple 2-layer CNN for Digit Recognition

Feature maps

Fully connected layer
uses matrix
multiplication

Numerous Hardware/Memory CNN Architectures

What are the Choices for Hardware Platform?
There is no clear winner today as this market is emerging

• CPU

– Not fast or efficient enough

• DSP

– Good at image processing but not enough performance for Deep AI

• GPU

– Good at training but too power hungry for long term inference solution

• FPGA

– Mostly meets performance/latency, not the lowest power,
eventually cost for volume a problem, RTL flow not practical

• ASIC

– Lowest power, meets performance/latency, lowest volume cost, high NRE and no field
modifications/upgrades, Algorithms still changing, RTL flow not practical

• Dedicated AI and CV processors or accelerators in IP and ASIC

– Popping up like weeds – high performance, locks customer in, many server target

• Some scalable combination of the above

F
le

x
ib

ility

P
o
w

e
r

High-Level Synthesis – Design at a Higher Level

• HLS generates high quality RTL from C++/SystemC level descriptions
– Micro-architecture exploration is accelerated

• Parallelism, Throughput, Latency, Area (loop unrolling and pipelining)
• Memories vs. Registers (resource allocation)
• Integrated Power estimation

– Library of IP components, e.g. math, DSP, video algorithms
– ASIC and FPGA target support

• Verify at a higher level of abstraction (HLS-ready C++ source)
– Perform Formal checks prior to synthesis
– Simulate 50-1000x faster
– Achieve Code and Functional coverage goals

• Post RTL generation verification and optimization
– SLEC HLS to formally prove C++ model and RTL equivalency
– Integrated Power Optimization

void func (short a[N],

for (int i=0; i<N; i++) {

if (cond)

z+=a[i]*b[i];

else

RTL

Why HLS is So Much More Productive than RTL

• HLS separates functionality from implementation with powerful tool
capabilities for controlling implementation

HLS Tool Implementation Control

Automatically
— Builds concurrent RTL from C++ Classes

— Adds Interfaces and Infers memories
— Constraints drive architecture
— Constraints drive parallelism – Unrolling
— Resource sharing for minimal area
— Schedules operations to close Timing
— Implements Power optimizations

Functionality
described in

C++ or
SystemC

+
PPA

optimized
RTL

YOLO Tiny* progressive refinement

• YOLO Tiny: Real-time object detection and classification CNN

• This YOLO Tiny demo is based on the Google TensorFlow open-source
machine learning technology based in Python

• The intent of the demo is to show techniques for progressive
refinement from high-level abstracted TensorFlow CNN layer models
written in Python down to HLS-synthesized RTL, i.e.,

Original TensorFlow code HLS ready C++ blocks Synthesized RTL blocks

* Courtesy of Joseph Redmon, https://pjreddie.com/darknet/YOLO

YOLO Tiny*
• Real-time object detection and classification

– Detects over 20 different objects

– Yet even this “small” CNN is computationally intensive

– Over 70 Billion MAC/s using over 25 million weights

• Made up of mostly 2-d convolution and pooling layers

* Courtesy of Joseph Redmon, https://pjreddie.com/darknet/yolo

YOLOTiny: Original Python/TensorFlow testbench

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

maxpool

maxpool

stage layer

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

input

tensor

x

output

tensor

o9

• 9 stage CNN with 9 conv2d layers the first 6 of which are separated by
maxpool layers which then feed densely connected conv2d layers

• First conv2d layer is fed an input tensor ‘x’ which is the 2-dimensional
preprocessed_image from the top level python test.py testbench

• 9th stage provides recognized images in the output tensor ‘o9’ which
is fed back up to top the level test.py for post processing of the
output image, with classification and bounding box info included

• Each conv2d image is fed learned weights and biases for that stage
• Where preceded by a maxpool layer, it is fed by the output of that

layer, otherwise simply the output of the preceding conv2d layer

TensorFlow

testbench

Memory Architecture and Power Considerations

• Keeping data local is key to minimizing
power consumption

– Very important for ASIC

• Floating-point is costly

– Used in training of networks

– Not needed in inference engine

• Fixed-point doesn't need to be
power-of-two

*NVIDIA 2017

Memory Inference and 0-time Back-Door Memory Accesses

• Large C++ arrays automatically mapped to ASIC or FPGA memories

• Arrays on the design interface can be synthesized as memory interfaces

• Internal arrays synthesized to instantiated (black boxed) memories

Catapult Architectural Constraints View

Precise Modeling of Bit-accuracy
• HLS uses exact bit-widths to meet specification and

save power/area
– bit-widths are not always pow2 (4, 8, 16, 32, 64 bits)

• Rapid simulation of true hardware behavior

• RTL is correct by construction
– Precise consistency of representation and simulation results

between C++ algorithm and synthesized RTL

19

C++/SystemC using bit

accurate integer/fixed-point

Measure/Verify
Refine/Explore

Precision

Model

using floating-point

Bit-accurate RTL

Catapult Ultra Verify

The Algorithmic C fixed point
data types are declared as:

ac_fixed<W,I,S> x;

width #integer bits

2-D Convolution with Windowing IP

ac_window2d<uint8,3,1080,1920,1,AC_MIRROW_101> window;

ac_flags_gen<1080,1920> flags;

FRAME:do{

if(window.canRead())

data_in = input.read();

flags.generate(data_in.TUSER, data_in.TLAST,sof,eof,sol,eol);

window.slide_window(data_in,sof,eof,sol,eol);

if(window.isValid()){

KERNEL_Y:for(int i=0;i<3;i++){

KERNEL_X:for(int j=0;j<3;j++){

acc += window[i][j] * kernel[i][j];

data_out.write(acc);

}

}while(!window.eof)

Sliding window class

Framing signal generator class (sof,eof,sol,eol)

AXI4 streaming interface class read

Sliding window class controls data reads

Flag generator uses sof and eol from
AXI4 video stream

Sliding window indicates when valid
data available

Advance the window

Convolution using window data

Run until end-of-frame detected

Catapult and Veloce Solve the Verification
Bottleneck

• Quickly verify synthesizable HLS C++ and RTL in the Tensorflow environment
– Test the quantized HLS against the floating point model in tensorflow

• Reduce RTL verification from hours to minutes

AI Development

Platform

HLS Model in C++

Catapult HLS

Optimized RTL

Synthesized RTL model
module yolo_tiny(…)

XlAcChannelMaster

(driver+xactor)

XlAcChannelSlave

(driver+xactor)

Tensorflow Operator

API Wrapper

Driver “proxy”

C++ model

yolo_tiny.run(…)

Veloce

YOLOTiny: Selected layers of TensorFlow testbench broken out to
HLS-ready C++ implementation-targeted algorithms

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

maxpool

TensorFlow

testbench

stage layer

1

2

3

4

5

6

7

8

9

3

4

5

6

7

8

9

10

11

12

13

14

15

input

tensor

x

output

tensor

o9

conv2dHls 1

2

layer

maxpoolHls

stage

1

HLS C++

code block input

tensor

x

output

tensor

o9

TensorFlow

testbench

1-stage breakout

 Pre-processing of
data input,
weights, biases

 Assembling inputs
into AcChannel
stream to feed
synthesizable
algorithm

HLS C++

code block

Pre-processing

 Synthesizable
hardware
implementation-
targeted 9-stage
CNN algorithm

9-stage CNN

 Post-processing of
data output from
AcChannel stream

 Re-format to go
back to Tensorflow
testbench

Post-processing

9-stage breakout

• Here we break out 1
or more of the
original TensorFlow
layers to experiment
with implementation
synthesis

• We still run the new
C++ code prototypes
in the context of the
original TensorFlow
testbench

• We pre-verify the
synthesizable code
even before we
generate RTL

YOLOTiny: C++ implementations of CNNs replaced with
synthesized RTL blocks

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

maxpool

TensorFlow

testbench

stage layer

1

2

3

4

5

6

7

8

9

3

4

5

6

7

8

9

10

11

12

13

14

15

input

tensor

x

output

tensor

o9

stage

1

HLS C++

code block input

tensor

x

output

tensor

o9

TensorFlow

testbench

1-stage breakout

 Pre-processing of
data input,
weights, biases

 Assembling inputs
into AcChannel
stream to feed
synthesizable
algorithm

HLS C++

code block

Pre-processing

 C++ driver “proxy”
model

9-stage CNN

 Post-processing of
data output from
AcChannel stream

 Re-format to go
back to Tensorflow
testbench

Post-processing

9-stage breakout

 Here we replace each of the C++
algorithm breakouts shown
previously with actual RTL code
running on the emulator

 The C++ blocks themselves become
AcChannel drivers to AcChannel
BFMs running in the emulator

 All of this is still running in the
context of the original
python3/TensorFlow testbench

 Cross-process TLM based
XlAcChannelDrivers couple the
TensorFlow and HLS C++ remote
client process with the co-model
host process and the emulator

Catapult

synthesized

conv2dHls

RTL model
XlAcChannel*

(drivers+xactors)

Emulator

C++ driver

“proxy” model

Catapult

synthesized

9 stage

CNN

RTL model

Emulator

XlAcChannel*

(drivers+xactors)

Easily Test HW Models and RTL Quickly

• Swap any layer or the entire design

– HLS C++ executable or RTL running on Veloce is a python function call in tensorflow

catapult
conv2d

Sliding-
Window

Convolution/

Max Pooling

FIFO

Sliding-
Window

Convolution/

Max Pooling

…. FIFO

In-place
Convolution/

Max Pooling

Off-chip DRAM
AXI4 stream

Weights and results

Tensorflow Python File

Tensorflow
Operator

wrapper call

Veloce

Tensorflow C++

API Operator

Wrapper

Veloce Driver

Optimized RTL

HLS Model in C++

Memory Access Bottleneck Changes Between Layers

• Some CNN Layers have millions of coefficients

– Not possible to store everything locally for all layers

• Every layer is different

– Weight vs feature map storage

Layer

Input

Channels

Output

Channels

Feature Map

Size

Weight

Mem(bytes)

Feature

Mem(bytes)

Line

Buffer

Memory MAC/sec

Unroll Factor

Needed for 30

frames/sec

1 3 16 448 432 602112 4032 2,601,123,840.00 8.6704128

2 16 32 224 4608 802816 10752 6,936,330,240.00 23.1211008

3 32 64 112 18432 401408 10752 6,936,330,240.00 23.1211008

4 64 128 56 73728 200704 10752 6,936,330,240.00 23.1211008

5 128 256 28 294912 100352 10752 6,936,330,240.00 23.1211008

6 256 512 14 1179648 50176 10752 6,936,330,240.00 23.1211008

7 512 1024 7 4718592 25088 10752 6,936,330,240.00 23.1211008

8 1024 1024 7 9437184 50176 21504 13,872,660,480.00 46.2422016

9 1024 1024 7 9437184 50176 21504 13,872,660,480.00 46.2422016

Total 97200 275968 36288

Total Mem 409456

YOLO Tiny CNN

9M coefficients in
final 2 layers each

Store weights locally
for first 4 layers

Store feature maps
locally for last 5
layers

Quickly Explore CNN Architectures Using HLS
• HLS constraints allow architectural exploration

– Massive parallelism is possible (if fed efficiently)

– Evaluate PPA across multiple architectures

• Easily code multiple architectures in C++
– Sliding-window architecture processes fmap data in

raster order

– In-place architecture reads weights once

Sliding-
Window

Convolution /
Max Pooling

Sliding-
Window

Convolution/

Max Pooling

FIFO

Sliding-
Window

Convolution/

Max Pooling

…. FIFO

In-place
Convolution/

Max Pooling

Off-chip DRAM
AXI4 stream

Weights and results

FMAP_HEIGHT:for(int r=0;r<IN_HEIGHT;r++){

IN_CHAN:for(int ic=0;ic<IN_CHANNELS;ic++){

FMAP_WIDTH:for(int c=0;c<IN_WIDTH+1;c++){

< Read feature map data stream >

< Sliding window of feature map data >

OUT_CHAN:for(int oc=0;oc<OUT_CHANNELS;oc++){

< Read kernel weights from SRAM >

KERNEL_Y:for(int i=0;i<3;i++){

KERNEL_X:for(int j=0;j<3;j++){

acc += fmap_window[r+i][c+j] * kernel[i*3+j];

}

}

< Write out partial output channel sums >

} } }

YOLO Tiny

OUT_CHAN:for(int oc=0;oc<OUT_CHANNELS;oc++){

FMAP_HEIGHT:for(int r=0;r<IN_HEIGHT;r++){

FMAP_WIDTH:for(int c=0;c<IN_WIDTH+1;c++){

IN_CHAN:for(int ic=0;ic<IN_CHANNELS;ic++){

KERNEL_Y:for(int i=0;i<3;i++){

KERNEL_X:for(int j=0;j<3;j++){

acc+=fmap[ic][r-i/2][c-j/2]*kernel[ic][oc][i][j];

}

}

}

fmap_out[d][r][c] = acc;

} } }

Original Algorithm

Reordered Loops (Layers 1-4)

Hybrid Architecture for Minimizing RAM Access

• Dual-layer architecture

– Based of feature map and weight storage requirements

– DRAM traffic is minimized

• Sliding-window architecture processes fmap data in raster order

– Weights stored locally in ROM

– Windowed fmap data provides local reuse

• In-place architecture reads weights once

– Caches weights locally for reuse

Sliding-Window
Convolution /
Max Pooling

Sliding-Window
Convolution/

Max Pooling
FIFO

Sliding-Window
Convolution/

Max Pooling
…. FIFO

In-place
Convolution/

Max Pooling
FIFO Matrix Multiply

Off-chip DRAM
AXI4 stream

Weights and results

Multiple layers done
sequentially

Sliding Window Architecture (Layers 1-4)

• Reordering Loops Facilitates Loop Unrolling

• Use “sliding window” to store fmap data locally

• Small number of weights, store locally

FMAP_HEIGHT:for(int r=0;r<IN_HEIGHT;r++){

IN_CHAN:for(int ic=0;ic<IN_CHANNELS;ic++){

FMAP_WIDTH:for(int c=0;c<IN_WIDTH+1;c++){

< Read feature map data stream >

< Sliding window of feature map data >

< stationary data over output channels >

OUT_CHAN:for(int oc=0;oc<OUT_CHANNELS;oc++){

< Read kernel weights from SRAM >

KERNEL_Y:for(int i=0;i<3;i++){

KERNEL_X:for(int j=0;j<3;j++){

acc += fmap_window[i][j] * kernel[i*3+j];

}

}

< Write out partial output channel sums >

}

OUT_CHAN:for(int oc=0;oc<OUT_CHANNELS;oc++){

FMAP_HEIGHT:for(int r=0;r<IN_HEIGHT;r++){

FMAP_WIDTH:for(int c=0;c<IN_WIDTH+1;c++){

IN_CHAN:for(int ic=0;ic<IN_CHANNELS;ic++){

KERNEL_Y:for(int i=0;i<3;i++){

KERNEL_X:for(int j=0;j<3;j++){

acc+=fmap[ic][r-i/2][c-j/2]*kernel[ic][oc][i][j]

}

}

}

fmap_out[d][r][c] = acc;

}

}

}

Original Algorithm Reordered Loops

• “windowed” fmap data and kernel data stored in registers

• Multiple output channel data can be computed in parallel

Sliding Window Architecture

FMAP_HEIGHT:for(int r=0;r<IN_HEIGHT;r++){

IN_CHAN:for(int ic=0;ic<IN_CHANNELS;ic++){

FMAP_WIDTH:for(int c=0;c<IN_WIDTH+1;c++){

< Read feature map data stream >

< Sliding window of feature map data >

OUT_CHAN:for(int oc=0;oc<OUT_CHANNELS;oc++){

< Read kernel weights from SRAM >

KERNEL_Y:for(int i=0;i<3;i++){

KERNEL_X:for(int j=0;j<3;j++){

acc += fmap_window[r+i][c+j] * kernel[i*3+j];

}

}

< Write out partial output channel sums >

}

}

}

}

Loops can
be unrolled

36-parallel multipliers
per layer

In-place Architecture (Layers 5-9)

• Layers processed one after another

• Feature maps stored locally in SRAM

• Weights read from system memory

FMAP Ping-
pong

Memory

Multiply-
accumulate

Engine

FMAP

stream Accumulate
Memory

Max Pool
Engine

Kernel

I/F

FMAP

stream

Layer
Control

Reconfigurable memory with on-the-
fly address translation based on layer.
Memory is “PACK” bytes wide

Reordering Loops to Keep Feature Map Data Local
• Loops are organized so that weights are only read once

from system DRAM

• Weights are held stationary across feature maps

• Feature maps are computed in order and stored in
local SRAM

OUT_CHAN:for(int oc=0;oc<MAX_OUT_CHANNELS;oc++){

KERNEL_Y:for(int i=-1;i<2;i++){

KERNEL_X:for(int j=-1;j<2;j++){

FMAP_HEIGHT:for(int r=0;r<MAX_HEIGHT;r++){

FMAP_WIDTH:for(int c=0;c<MAX_WIDTH;c++){

IN_CHAN:for(int ic=0;ic!=MAX_IN_CHANNELS;ic+=PACK){

< FMAP ping-pong memory read PACK values >

< Read and cache weights once for reuse >

MAC:for(int p=0;p<PACK;p++)

acc += fmap_data[p] * kernel_data[p];

}

acc_mem[r][c] += acc;

} } } }

Loop can be
unrolled

256-parallel multipliers

Reordered Loops

Flush out issues via formal analysis of HLS design source

• Quickly and easily find coding
bugs and errors before synthesis
or simulation

• Certain C++ language behavior is
ambiguous for hardware

– Lead to mismatches between
C++ and RTL simulation

– Difficult to debug

• Combination of static “lint” and
formal based checks plus QoR
checks, e.g.

– Un-initialized memory read

– Out of bounds reads and writes

– Accumulator of native C type

Achieve Coverage Closure on HLS design source

• Bringing RTL coverage to HLS
– C++ and SystemC design source

• Match coverage concepts from RTL
– Statement, Branch, FEC and Toggle

– Functional Coverage including
covergroups, coverpoints, bins, crosses

• Synthesis Aware Coverage
– Function inlining/instances

– Loop unrolling

• Coverage Data saved within UCDB
– Test plan integration and merging

– Track progress towards goals

– Prevent Systematic Faults

Quickly Implement CNN Architectures Using HLS

• Easily code multiple architectures in C++
– Sliding-window architecture processes fmap data in raster

order

– In-place architecture reads weights once

• HLS constraints allow architectural exploration
– Massive parallelism is possible

– Evaluate power, performance, and area PPA across multiple
architectures and microarchitectures

Sliding-
Window

Convolution /
Max Pooling

Sliding-
Window

Convolution/

Max Pooling

FIFO

Sliding-
Window

Convolution/

Max Pooling

…. FIFO

In-place
Convolution/

Max Pooling

Off-chip DRAM
AXI4 stream

Weights and results

Loops can
be unrolled

256-parallel
multipliers

YOLO Tiny

OUT_CHAN:for(int oc=0;oc<MAX_OUT_CHANNELS;oc++){

KERNEL_Y:for(int i=-1;i<2;i++){

KERNEL_X:for(int j=-1;j<2;j++){

FMAP_HEIGHT:for(int r=0;r<MAX_HEIGHT;r++){

FMAP_WIDTH:for(int c=0;c<MAX_WIDTH;c++){

IN_CHAN:for(int ic=0;ic!=MAX_IN_CHANNELS;ic+=PACK){

< FMAP ping-pong memory read PACK values >

< Read and cache weights once for reuse >

MAC:for(int p=0;p<PACK;p++)

acc += fmap_data[p] * kernel_data[p];

}

acc_mem[r][c] += acc;

}

}

}

}

Reordered Loops (Layers 5-9)

Meet power requirements via automatic power
estimation and optimization

• Fast and accurate power estimation
• Integrated solution

• Power analysis and exploration

• Guidance on how to reduce power

• Best Power Optimization
• Gating of clocks, flops, memories and data

• Automatic flow
• SLEC for formal verification

• API Integration with emulation

Catapult HLS is the Only Solution for Rapid Algorithm to RTL

• Accelerate design time with higher level of abstraction
– 5x less code than RTL

– New features added in days not weeks

• Quickly evaluate power and performance of algorithms
– Rapidly explore multiple options for optimal PPA

• Enable late functional changes without impacting schedule
– Algorithms can be easily modified and regenerated

– New technology nodes are easy

void func (short a[N],

for (int i=0; i<N; i++) {

if (cond)

z+=a[i]*b[i];

else

RTL

Catapult Enables Re-Use between FPGA and ASIC

• Enable designers to bring algorithms into high-speed
HW/FPGA for fast Proof of Concept or demonstrator

• Key IP blocks reused from FPGA to ASIC to save months of
redevelopment
– Any ASIC library can be characterized to HLS

• Easy move between eFPGA and ASIC

• Same C code can be retargeted for different
market/application within days

High speed FPGA and ASIC

ASIC

HLS C-level Source

void func (short a[N],

for (int i=0; i<N; i++) {

if (cond)

z+=a[i]*b[i];

else

eFPGAFPGA

s

Summary

• Next generation CV/AI algorithms are massively complex

• Delivering optimized RTL with the best PPA on time is difficult
– Achieving the most optimal architecture is hard to do in hand-code RTL

– Going from CV/AI development platform to RTL is not well understood

– Verifying the RTL is time consuming
• Billions of computations

• Massively parallel hardware

• Catapult provides a complete methodology from high-level model to
PPA optimized and rapidly verified RTL

• <Catapult_install>/shared/examples/ml/tinyYOLO_v2

Functional Safety workflow of a High Level
Synthesis Design

ISO 26262

Systematic Faults

What is Functional Safety?
Driving down risk of Electrical and Electronics malfunctioning due to failures

Random Faults Malicious Faults

• Incomplete Specs

• Misinterpreted Specs

• Bad RTL

• HW/SW Interface Problems

Challenges

• Process & requirements

• IC complexity

• Exhaustive & efficient

• EMI

• Electro-migration

• Permanent or transient

• Latent

Challenges

• Manual -> automation

• Scale with IC complexity

• Encryption Vulnerabilities

• Denial of Service

• Untrusted IC

• Hardware Trojan

Functional Safety in an HLS Workflow

System
Specification

Architectural
Design

Design Entry

Verification

Circuit Design

Physical Design

Physical Verification

Fabrication

Requirements
& Traceability

FMEDA

Safety
Mechanisms

Fault Injection

Safety
Planning

Compliance

IC
 D

e
v
e
lo

p
m

e
n

t

P
ro

c
e
s

s
O

p
e
ra

te
 C

o
rr

e
ct

ly

F
a
il

S
a
fe

ly

S
a
fe

ty
 D

e
v
e
lo

p
m

e
n

t

P
ro

c
e
s
s

Safety
Verification

Safety
Analysis

Design
For Safety

Lifecycle
Management

Mentor Safe IC Workflow

Systematic Faults Random HW Faults

First Time Right Safe IC Workflow

Design for Safety

Safety Mechanism

Insertion

Safety Mechanism

Verification

Safety Analysis

FIT Rate

Computation

Safety

Exploration

Fault List

Generation

DC

Estimation

Safety Verification

Fault List

Optimization

Fault

Simulation

Fault

Emulation

FMEDAFMEA

Calculation of FMEDA metrics and

providing early safety architectural

guidance

Creation of safe designs to

mitigate the effects random

hardware faults

Proving design safeness that

achieves target ASIL levels through

fault campaigns

Making YOLO Tiny Safe

• Tutorial Goals

– Evaluate the safeness of the YOLO Tiny
design (a.k.a Simple CNN design)

– Achieve ASIL B metric targets through
minimal design enhancement

– Proof the design achieves ASIL B targets
through a fault injection campaign

– Create FMEDA work product required
for certification

Sliding-
Window

Convolution
/ Max

Pooling

Sliding-
Window

Convolution/

Max Pooling

FIFO

Sliding-
Window

Convolution/

Max Pooling

….
FIFO

In-place
Convolution/

Max Pooling

Off-chip DRAM
AXI4 stream

Weights and results

YOLO Tiny

• Assumptions

– All logic in YOLO Tiny is safety critical

– All single point faults must be
protected by HW based safety
mechanisms (no BIST)

– ASIL B targets

FMEDA Work Product

• Evidence the design has sufficient protection from permanent and transient
random HW failures

Simplified FMEDA worksheet

Analysis (Estimated) Verification (Proven)

Required metrics per ISO26262

YOLO Tiny Architecture Overview

• First 4 stages are independent
• Stages 5 – 9 use shared logic and memory
• High degree of combinatorial logic due to Mult/Adds

YOLO Tiny

2D_Conv (Stg5to9)2D_Conv (Stg1)

maxpool (Stg1)

fifo (Stg1)

2D_Conv (Stg2)

maxpool (Stg2)

fifo (Stg2)

2D_Conv (Stg3)

maxpool (Stg3)

fifo (Stg3)

2D_Conv (Stg4)

maxpool (Stg3)

fifo (Stg4

First Time Right Safe IC Workflow

Design for Safety

Safety Mechanism

Insertion

Safety Mechanism

Verification

Safety Analysis

FIT Rate

Computation

Safety

Exploration

Fault List

Generation

DC

Estimation

Safety Verification

Fault List

Optimization

Fault

Simulation

Fault

Emulation

FMEDAFMEA

Calculation of FMEDA metrics and

providing early safety architectural

guidance

Creation of safe designs to

mitigate the effects random

hardware faults

Proving design safeness that

achieves target ASIL levels through

fault campaigns

FIT Computation

IEC 62380 FIT Model

Design Structural Analysis

Package Materials

Package Specification

Target technology

Mission Profile

YOLO Tiny FIT Computation

1.93 FIT (Perm)

8.09 FIT (Trans)

Simplified FMEDA worksheet

Y
O

L
O

 T
in

yStg1 Stg2 Stg3 Stg4 Stg5to9

• Perform FIT calculation on each sub-block/filter

• Sub-blocks rolled up to compute total YOLO Tiny FIT

Instance Perm % Trans %

2D_Conv_Stg2.inst0 9.06588 8.00971

2D_Conv_Stg2.inst1 64.2728 44.1694

2D_Conv_Stg2.inst2 26.4449 47.4349

Identifying the safety holes

• Gain understanding of underlying architecture and RTL that was created via

HLS synthesis

• Identify FIT contribution at the micro level to systematically guide safety

mechanism exploration 2D_Conv_Stg2

Large FIT contributors – Address first

Subset of contributors
FF2

FF1

instB

FF4

FF3

FF4 = Large FIT Contributor

Safety Exploration

• Estimate achievable diagnostic coverage using design analysis to

measure the effectiveness of proposed safety mechanisms

SM Estimated Diagnostic Coverage

DC Mechanism
Diagnostic Coverage Resource

Utilization
Description

Permanent Transient
Endpoint Parity 99 99 ↑ Parity added to Flip Flops
Endpoint/Cone Duplication 99 99 ↑↑ Logic Cone and EP Replication
Endpoint/Cone Triplication 99 99 ↑↑↑ Logic Cone and EP Replication
Endpoint ECC 99 99 ↑ ECC For Registers
Logic BIST 99 0 ↑ LBIST : RunTime
Memory ECC 99 99 ↑ Memory ECC with control coverage

Review FIT
Contribution Reports

Meets
Safety

Target?

No

YesAnalyze and
Estimate DC

Propose
SMs

RTL
Enhancement

Exploration Results

• Exploration performed on sub blocks and rolled up to attain top level estimated

Diagnostic Coverage

Without
memory

protection

Low transient coverage due to
missing SMs on memories

With
memory

protection

Analysis

(Estimated)

Analysis

(Estimated)

First Time Right Safe IC Workflow

Design for Safety

Safety Mechanism

Insertion

Safety Mechanism

Verification

Safety Analysis

FIT Rate

Computation

Safety

Exploration

Fault List

Generation

DC

Estimation

Safety Analysis Safety Verification

Fault List

Optimization

Fault

Simulation

Fault

Emulation

FMEDAFMEA

Calculation of FMEDA metrics and

providing early safety architectural

guidance

Creation of safe designs to

mitigate the effects random

hardware faults

Proving design safeness that

achieves target ASIL levels through

fault campaigns

Safety Mechanism Overview

top

Checker
Output

inst_A

inst_A
dup

Alarm

Input

top

FSM

FSM
Protocol
Checker

State

Machine

Tap Points

Triple Modular Redundancy

Lockstep duplication FSM Monitor

Endpoint Triplication

top

Alarm

Output
Major

ity
Voter

• Wide variety of safety mechanism

approaches available

• PPA requirements + use model +

Safety target => the optimal safety

mechanism

Indicates transistor/logic coverage of Safety Mechanism

wrapper

Majority
Voter Output

inst_A

inst_A
dup1 Alarm
inst_A
dup2

Safety Enhancement of YOLO Tiny

• Automated safety mechanism insertion
performed on sub blocks

• Safety Exploration recommended a mix of
register parity and duplication to hit safety
target
– 2D filters were duplication heavy due to large

fan-in cones

EP
2

EP
1

EP
3

EP3 Duplication

Checker
Alarm

Transistors within endpoints and cone are

covered by safety mechanisms

Endpoint/Cone Duplication

Output

EP

EP

EP

D port Parity
Calculation

Q port Parity
Calculation

Checker
Alarm

Transistors in EP are covered

Endpoint Parity

Memory ECC to protect from transients

• Memory ECC to increase the transient fault diagnostic coverage

Memory
Model

Transistors inside memory model covered by safety mechanism.

WR_Port

{en, data, addr, etc}

RD_Port

{en, addr, etc}

RD_Port

{data}

wrapper

Memory
Model

WR_Port

{en, data, addr, etc}

RD_Port

{en, addr, etc}

RD_Port

{data} ECC Checker

ECC Gen

Alarm

RD_Port

{data}

First Time Right Safe IC Workflow

Design for Safety

Safety Mechanism

Insertion

Safety Mechanism

Verification

Safety Analysis

FIT Rate

Computation

Safety

Exploration

Fault List

Generation

DC

Estimation

Safety Verification

Fault List

Optimization

Fault

Simulation

Fault

Emulation

FMEDAFMEA

Calculation of FMEDA metrics and

providing early safety architectural

guidance

Creation of safe designs to

mitigate the effects random

hardware faults

Proving design safeness that

achieves target ASIL levels through

fault campaigns

Fault Campaign Overview

• Fault campaign consists of fault injection of permanent and transient faults

• Goal: Classify all faults after reducing scope of fault campaign through fault
optimization and collapsing

Emulation Waves

HLS Regression Waves

• Eliminate useless
Stimulus

• Filter out unnecessary
information

Stimulus Optimization

• Multi-platform (Sim, Emulation)
• Concurrent Fault Simulation
• Intelligent fault injection
• Stimulus Windowing

Fault Campaign Execution

• Fault classification into:
• Safe
• SPF/RF
• MPF,L
• MPF,DP
• Unresolved

Coalesce Results

• Fault list reduction
• Fault collapsing

Fault List Optimization

Fault List Optimization
1

Safety Critical Optimization

Observable Nodes
Safety- Critical
output

SM COI

I/O COI

Detectable Nodes
Safety-Critical
output

Safety Mech
Alarm

Stuck-at 0 on
inputs removed
from fault list

Stuck-at 0

2
SM Aware Optimization

3
Fault collapsing

Module DC % Fault Count (before) Fault Count (after) % Reduction

2D_Conv_Stg1 92% 130660 106750 19%

2D_Conv_Stg2 90% 69712 49427 30%

2D_Conv_Stg3 92% 67845 47115 31%

2D_Conv_Stg4 87% 68316 47504 31%

2D_Conv_Stg5_to_Stg9 92% 1130651 616150 45%

YOLO Tiny Optimization

Fault Classification

• The goal of a fault campaign is to classify all faults in the fault list

Detected

Out_1

D port Parity
Calculation

Compare
Q port Parity
Calculation

Undetected
SPF or RF

Out_1

D port Parity
Calculation

Compare
Q port Parity
Calculation

Unresolved

Out_1

D port Parity
Calculation

Compare
Q port Parity
Calculation

Out_1

D port Parity
Calculation

Compare

Fault in SM
causes check to
be inoperable

Q port Parity
Calculation

Multi-Point
Latent (MPF,L)

Stimulus Optimization

• Grade stimulus so only stimulus which has the potential for fault classification is
used

• Filter stimulus to increase efficiency of fault injection simulation

Regression Waves

Stimulus
Filtering

Stimulus Grading To fault campaign

Concurrent Fault Simulation

Fault 1 Sim

Fault 2 Sim

Fault N-2 Sim

Fault N-1 Sim

Fault N Sim

• Fault list can contain 10s of
thousands of faults

– Must execute faults in
parallel to close on fault list

• Each fault executed
concurrently in a single
simulation

• Deviation checked against
golden model

Fault Sims executed concurrently
Fault 1

Fault 2

Fault N

Intelligent Fault injection

• Find the right point to inject a fault

• Ensure there is propagation potential

• Identification of high cost fault nodes

Regression VCD

∆T = VCD Length

ac_accum_h_ac_fixed_..._true_FTYPE_DTYPE_208_208_16_32_run_inst.add_1274.n4

Potentially valid SA1 fault injection point

Fault Campaign Manager

• Parallelize window fault injection across
compute cores

• Distribute jobs across machine grid

Fault Campaign Manager

Concurrent
Fault

Simulation1

Datacenter Distribution

CPU Distribution

Concurrent
Fault

SimulationN

YOLO Tiny Fault Classification

Fault Node Fault Type InjectTime AlarmTim
e

Resolution Stimulus

ac_conv2d_coeff_store_DTYPE_FTYPE_FTYPE_DTYPE_208_208_16_32.inst2.ac
_accum_h_ac_fixed_45_21_true_AC_TRN_AC_WRAP_FTYPE_DTYPE_208_208_
16_32_run_inst.add_1274.n4

SA0 1040 1044 Detected vsim.vcd

ac_conv2d_coeff_store_DTYPE_FTYPE_FTYPE_DTYPE_208_208_16_32.inst2.ac
_accum_h_ac_fixed_45_21_true_AC_TRN_AC_WRAP_FTYPE_DTYPE_208_208_
16_32_run_inst.add_1274.n4

SA1 1080 1084 Detected vsim.vcd

…

ac_conv2d_coeff_store_DTYPE_FTYPE_FTYPE_DTYPE_208_208_16_32.inst2.ac
_accum_h_ac_fixed_45_21_true_AC_TRN_AC_WRAP_FTYPE_DTYPE_208_208_
16_32_run_inst.FMAP_OCHAN_outChan_5_2_lpi_3_dfm_2_0_1[0]

SA0 2010 2014 Detected vsim.vcd

ac_conv2d_coeff_store_DTYPE_FTYPE_FTYPE_DTYPE_208_208_16_32.inst2.ac
_accum_h_ac_fixed_45_21_true_AC_TRN_AC_WRAP_FTYPE_DTYPE_208_208_
16_32_run_inst.FMAP_OCHAN_outChan_5_2_lpi_3_dfm_2_0_1[0]

SA1 2040 2044 Detected vsim.vcd

2D_Conv_Stg2 Fault Classification

Certification Work Products

Simplified FMEDA worksheet

Analysis (Estimated) Verification (Proven)

DC not met => Insufficient stimulus

• Close the loop linking estimated metrics to proven metrics

Regression stimulus
Stimulus

Grading &
Filtering

Fault
Injection

Create better stimulus

Safety

Analysis

Design

for

Safety

Safety

Verification

Summary

• Demonstrated a functional safety workflow on a real HLS design

• If you want to learn more, here is how Mentor® tools mapped to this
workflow

• Annealer™
• RadioScope™
• Tessent® BIST

• SafetyScopeTM

• KaleidoScopeTM

• Questa® Formal
• Veloce® Fault App
• Tessent® DefectSim

• Siemens Polarion®
• Questa® Verification

Management

Understanding risks associated

with design faults through FMEDA

analysis

Mitigating potential failures through

the insertion of safety mechanisms

Managing the complete functional

safety lifecycle from planning to

compliance

Providing evidence for compliance

through multi-domain fault injection

z

Performance

Compliance

P
ro

d
u

c
ti

v
it

y

F
lo

wMentor®

Safe IC

Lifecycle Management

Safety Verification

Safety Analysis

Design for Safety

Break – 15 minutes

Emulation Hardware-in-the-Loop for
System-of-Systems Verification

Autonomous vehicle development relies on converging
technologies

Connectivity

Artificial intelligence

Cloud computing

Big dataSensors

Electrification

A broad portfolio of solutions is needed for autonomous
vehicle development

Ensuring digital continuity, multi-domain

traceability and functional safety of

autonomous systems

Electronic system of system challenges for AV verification and
validation

Sensing Decision-making

5G

> 0 I 0 0 0 1

1 1 0 0

V2XV2V …

GPS

Vehicle level
Environment & Traffic Vehicle performance & dynamics

System level

Acting

Integrated Circuit level

V2X level

Self-driving technology requires massive
verification cycles to reach safety for “Level 5”

0 1 2 3 54
No

Automation
Driver

assistance
Partial

automation
Conditional
automation

High
automation

Full
automation

Driver role

Vehicle

role
SAE
Level

“14.2 billion miles of testing is

needed”
Akio Toyoda, CEO of Toyota

Paris Auto Show 2016

“Design validation will be a major –

if not the largest – cost component”
Roland Berger

“Autonomous Driving” 2014

“While hardware innovations will

deliver - software will remain a

critical bottleneck”
McKinsey

“When will the robots hit the road?

Multiple variants of the same scenario are
part of the verification process

Real

Time

Massive

Performance

Chips, Electronics, Software, Controls, Sensors, Vehicles, Occupants…

These scenarios and the

multiple variants can be

tested real-time when

using

a high-performance

computing environment

Safety and Security key challenges are addressed early in
the design cycle by virtualizing the system

Increasing software and hardware complexity

Massive validation and verification cycles

Growing number and variety of sensors

Complex interactions between systems

Reinvent
the vehicle development
processes to address:

Increasing software and hardware complexity

Massive validation and verification cycles

Growing number and variety of sensors

Reconciling agility with better traceability

Hardware emulation is the ideal platform
for system of systems verification and validation

• Emulators typically run 1000’s times faster compared to a
SW simulator running on general purpose computer

– An emulator is a special purpose supercomputer for modeling
digital integrated circuits

• An emulator includes a HW system, OS SW and SW
applications

• Emulation technology enables new design and
verification methodologies from chips to systems

How a hardware emulator works…

• Virtual system for pre-silicon software verification

• Full visibility into hardware design for efficient debug

– Cannot have with FPGA prototype

• Fault injection, monitoring, results analysis for safety-critical applications

module ddr1_core (DOUT, DIN,

WA, RA, WE);

input [23 : 0] WA, RA;

input [7 : 0] DIN;

input WE;

output [7 : 0] DOUT;

reg [7 : 0] DOUT;

reg [7 : 0] mem [16777215

: 0];

always @ (posedge WE)

begin

mem[WA] = DIN;

Custom Hardware

Executes Tests at MHz Speed

HW/SW Debug

Test Scenarios (e.g.
Operating system,
Autonomous Driving
Sensor’s data)Automatic Compiler SW

IC Design

Representation (RTL)

(Verilog, VHDL …)

Veloce Automotive Solution — four pillars

Security

Functional

Safety

Automotive

Digital Twin

Veloce VIP

VTL transactors

System of Systems

Functional safety – failure analysis & higher reliability

1. Safety Analysis
Understanding the failure modes

resulting from random HW faults to
guide insertion of safety

mechanisms

2. Design for Safety
Mitigating potential failures through
the insertion of safety mechanisms

that detect or correct failures

3. Fault Injection
Multi-domain fault injection

providing evidence to achieve
compliance

Run Fault Campaigns

 Perform mission-critical safety circuit verification

 Analyze effectiveness of safety mechanisms in the

design

 Mimic the effects of transient and hard faults on the

design

 Targeting safety critical industries (automotive,

aerospace, military)

Veloce Fault App

Value: Optimize and accelerate Fault campaigns

Digital twin technology

Faster TTM

Greater Efficiency

Collaboration

Real-time Insights

Reduce development times and increase quality while

shortening time to market by shifting left

More efficient and reliable software by providing high-

speed virtual platforms long before silicon

Supports geographically dispersed teams

collaborating on pre-silicon development and pre- and

post-silicon debug

Track progress to requirements and schedule through

incremental metrics for safety, security, power,

performance and benchmarks pre-silicon

A complete autonomous vehicle verification and validation
environment at system level

Sense Compute Actuate

Siemens Mentor
Hardware Verification Platform

Drivetrain

BrakingSteering

Siemens
AMESim

Siemens

Tass’ PreScan

AMESim

Virtual testing of autonomous driving functions
accelerates time to safety goals

• Prescan (TASS International)

– World modeling and scenario
building
• Road sections, bridges, etc.

• Trees, buildings, traffic signs

• Cars, trucks, pedestrians

• Weather conditions

– Sensor model library
• Camera

• Radar

• Lidar

• Ultrasonic

• Infrared

• V2X

• GPS

Adaptive Cruise Control

Lane Keeping Assist

High Performance Solution: PreScan with Veloce emulation

Processing
System-on-

Chip

Analog

Safety

Digital

Security

Machine
Learning

Software

Test

SENSE COMPUTE VALUE

 Verification of ADAS chips in the context
of many different traffic scenarios

 Full design visibility for comprehensive
debug of SW and HW and SW/HW
interactions

PreScan generates virtual driving

scenarios and sensor data

Veloce verifies the most

complex chip designs

LMS Amesim
Platform for multi-domain system simulation

• Unique capabilities to create real-time ready models preserving physical relevance

Highlighted algebraic loops
Performance analyzer - Frequency

analysis of the chassis model

Comprehensive verification to shift left the
development cycle

Sense

Sensors
Traffic
Data

System
Algorithms

F
M

I, T
L
M

, D
P

I In
te

rfa
c
e

s FMU
MODELS

FMI

FMI

Mechanical and

dynamic simulation

5000+ Models

Custom Models

AMESim
Compute: Veloce Strato

Image
Processing

Powertrain
Controller

Sensor
Fusion

Safety &
Security

Controller

Actuate

Transmission

Engine

Braking

Steering

 Integrated heterogeneous system of systems framework to simulate and
verify multiple ECUs

Verification of System of Systems
with Multiple ECUs using Digital Twin
Virtual Environment

Engine Control ECU

MPC5607B

Transmission Controller
ECU (Digital)

Calculate
RPM/Speed

2

3

Vista Platform

Dashboard ECU - CANoe1

Brake System
(FMU)

4

ADAS Control ECU
5

Simcenter Prescan
sensors & scenario

Simcenter Amesim

Dashboard ECU
• Modeled using Vector CANoe

• Packet Exerciser & Monitor:

• Get Different driving inputs

• Display speed/RPM

Engine Control ECU
• PowerPC Virtual Platform (Mentor Vista)

• AUTOSAR Stack + Application:
• Reads Input Combination from Dashboard & gives

Command/Pedal/Brake Angle to Transmission Controller ECU

Transmission Controller ECU
• Hardware Model (Mentor Veloce Strato)

• RISC-V + Memory Subsystem + CAN Controller Application: Reads

Pedal Angle from Engine Controller ECU and Calculates RPM/Speed

Brake System
• Simcenter Amesim Co-simulation Slave FMU

ADAS Control ECU
• Mentor Veloce HYCON

• Read camera stream, detect object and supply object distance

• Simcenter Prescan

• Perform evasive maneuver using distance information

Auto Network

1

2

3

4

5

DEMO : Advanced Emergency Braking System

Summary: Veloce Transforms Automotive Design
Secure rapid achievement of safety requirements

• Addresses complexity, size, and accurate timing needs of
automotive electronic systems
– Full visibility and debug for automotive designs

• Removes Risk associated with Safety Critical Systems

– Functional verification for systematic failure analysis

– Safety verification for random failure analysis

– Fault tolerance and coverage

– ISO 26262 compliance

• Digital Twin Functionality

– Full ECU verification to shift left the development cycle

– Delivering on time-to-market

Conclusion

Mentor® HLS, Emulation and FuSa Workflow

Catapult® HLS

SafetyScope®
Safety Analysis

RadioScope™
RegDup/RegPar

Annealer™
Memory ECC

Questa® Sim FV

KaleidoScope™
Fault Campaign

Polarion® Requirements

Functional Requirements

C++ -> RTL (HLS Synthesis)

Functional Tests/Coverage

Functional Testing after

RTL Enhancement

Fault Campaign Metrics

Safe RTL

Catapult® FVCatapult® HLV Veloce® FV

FIT and DC estimation

SM Exploration

System
Specification

Architectural
Design

HLS Design Entry

C Based Verification
Emulation

Circuit Design

Physical Design

Physical Verification

Fabrication

Requirements
& Traceability

FMEDA

Safety
Mechanisms

Fault Injection

Safety
Planning

Compliance

IC
 D

e
v
e
lo

p
m

e
n

t

P
ro

c
e
s

s
O

p
e
ra

te
 C

o
rr

e
ct

ly

F
a
il

S
a
fe

ly

S
a
fe

ty
 D

e
v
e
lo

p
m

e
n

t

P
ro

c
e
s
s

Safety Requirements

Siemens and Mentor provide comprehensive
transportation solutions!

Vista™

FuSa solutions

Simcenter Portfolio

Tass PreScan™Vehicle level

System level

Integrated Circuit level

V2X level

AMESim™

Catapult® Veloce®

Sensing

Decision-Making

Acting

Environment &

Traffic

Vehicle Performance &

Dynamics

Questions?

