
1

New Trends in RTL Verification: Bug

Localization, Scan-Chain-Based Methodology,

GA-Based Test Generation

Khaled Salah

Mentor Graphics

Cairo, Egypt

Khaled_mohamed@mentor.com

Abstract- In this paper, New Trends in RTL Verification is introduced, this includes: bug localization, Scan-Chain-Based

methodology, and GA-Based test generation. Manual bug localization in Hardware Description Language (HDL) designs is a

time-consuming process; therefore, there is an increased demand for automated techniques that can speed-up the bug localization

process. In this paper, a code coverage-based method is proposed to rank suspicious code according to its probability of

containing bugs which may result in significantly reducing the debugging time by starting with the first candidate bug location.

This method is different from formal methods for error localization such as assertion-based methods which are not suitable for

large designs as this method is a simulation-based technique and suitable for large designs. Results show that our method can

detect errors in large designs up to several thousand lines of RTL code in few minutes with high accuracy compared to time

consumed in hours using manual bug localization with success rate of 100%.An online RTL-level scan chain methodology is

proposed to reduce debugging time, effort and accelerate IP emulation. Run-time changes of the values of the signals of the IP

during execution-time can be done by the proposed scan-chain methodology. A utility tool was developed to help ease this

process. Our experiment shows that, the area overhead is neglected compared to the gained performance benefits. But, design

requires more compilation time. The main challenge in using constraint random testing (CRT) is that manual analysis for the

coverage report is needed to find the untested scenarios and modify the test cases to achieve 100% coverage. We need to replace

the manual effort by an automatic method or a tool that will be able to extract the coverage report, identify the untested

scenarios, add new constraints, and iterate this process until 100% coverage is attained. In other words, we need an automated

technique to automate the feedback from coverage report analysis to test generation process. In this paper, the implementation of

this automatic feedback loop is presented. The automatic feedback loop is based on artificial intelligence technique called genetic

algorithm (GA). This technique accelerates coverage-driven functional verification and achieves coverage closure rapidly by

covering uncovered scenarios in the coverage report.

 Keywords—Trends; Localization; Bug; Genetic Algorithm; Scan-Chain.

I. INTRODUCTION

 Functional verification is a required process to ensure that the design is in accordance with the specification. Due to the

increasing design complexity of SoC systems, the cost of functional verification has significantly increased. According to ITRS,

[1]-[2], verification process is now considered a bottleneck as it consumes up to 70% of the design cost. In order to keep the

production cost low, it is required to detect bugs as soon as possible. This work targets localization of functional errors. While

there a lot of verification methodologies for error detection in RTL design, there is fewer work for debugging the error which

includes localization and correction stages. Moreover, most of related works are concentrating on gate-level error localization,

[3]-[5], and are applied to small designs.

 Here, we are focusing on the RTL-level and large designs. Detecting and locating the source of erroneous behavior in large

and complex RTL design is challenging. In this paper, we present a novel approach for bug localization methodology to address

this challenge using information from regression suit results about failed and passed testcases and number of statements executed

by each test. The idea is inherited from software domain [6]-[8]. Moreover, we present a proof of concept for this idea using a

Verilog-based case studies.

 Simulation-based verification scheme of large sophisticated intellectual property (IPs) is considered a time consuming

process. Mainly, there are two famous methods to help accelerate simulation process and reduce verification time: hardware

acceleration, and hardware RTL emulation. The RTL hardware accelerator solutions are based on using application-specific

ASICs, each contains special-application processors and memories ‎[9]-‎[12]. The RTL hardware emulators are based on using

FPGAs, where the design is synthesized into a gate-level netlist. However, most hardware emulator does not provide easy

debugging capability at run-time. In this paper, a scan-chain scheme is proposed to reduce debugging time. The proposed

kmohamed
Stamp

2

method provides internal glue-block which automatically replaces any signal with a mux and extra input, so that at run time if we

enable this method we can replace any internal signal by a forced one to use it for debugging.

 The efficiency of the verification process is proportional to achieving the coverage goals in less simulation time. Many

different test data generation methods like random test data generator have been proposed in the literature ‎[13]-‎[15]. In this

wok, the verification process problems will be considered as an optimization problem and GA is proposed as a novel method for

test generation to help reaching 100% functional coverage in less time than conventional methods.

 The rest of this chapter is organized as follows. In Section II, bug localization scheme is presented. In Section III, scan-chain

based methodology is introduced. In Section IV, GA-based test generation scheme is presented. Conclusions are given in

Section V.

II. RTL BUG LOCALIZATION

 In this section, the proposed methodology for RTL bug localization is given in Section II. A. Results are discussed in Section

II.B.

A. Proposed Methodology

 Given a set of statements (S) for which an HDL design exhibits an incorrect behavior, the objective of design debugging is to

find the highly candidate statement that may be responsible for this incorrect behavior. The failing and passing testcases are used

to find the bug location. If a statement is executed by more than two failing testcases, so this statement is more likely to have the

bug. So, run the complete regression suite until the coverage is 100%, then extract the needed information about the passed and

failed testcases and obtain a list of design statements executed by each test. The proposed methodology is shown in Fig. 1. An

example to show how our proposed method works is shown in TABLE I, where we assume that our DUT has only one bug due

to only one incorrect statement and we have 10 test-cases to test its behavior.

 From TABLE I, the left columns shows how each RTL statement is executed by each testcase either it is failing or passing.

An entry 1 indicates that the statement is executed by the corresponding test case and an entry 0 means it is not executed. The

most right column shows the execution result with an entry 1 for a failed testcase and an entry 0 for a passing testcase. If a

statement is executed by a successful test case, its likelihood of containing a bug is reduced.

 The weighted probability is used to indicate that more successful executions imply less likely to contain the bug. So, the

suspiciousness of each statement = the number of failed tests that execute it / the number of successful tests. And we will choose

the maximum value to start with, i.e, the large rank. The proposed methodology for automated bug localization is shown in Fig.3.

B. Experimental Results

 Experimental results show that the proposed method can detect errors in large designs up to several thousand lines of RTL

code in few minutes with high accuracy compared to time consumed in hours using manual bug localization. Here, we only

localize the error not correcting it. Other experiments are done on more bugs to observe the effectiveness of our methodology.

We insert errors into some other parts of the code for the complex RTL design then we applied our methodology to locate the

error. TABLE II reveals some results, where it is clear that our methodology reduces the time needed to localize the bug

significantly. The effectiveness of this methodology varies for different designs, bugs, and testcases. Here, we assume that we

have a rich and correct testcases.

Rank generation for suspicious part of code

Extract information about pass/fail tests

 Extract information about execution of statements in

each test Calculate failed tests per statements

Calculate passed tests per statements

Calculate Suspicious per statement

Run Regression suite
Step1

Step2

Step3

Step4

Step5

Step6

Step7

DUT+TESTCASES

Error Localization

Fig. 1 The proposed methodology for automated bug localization.

kmohamed
Stamp

3

TABLE I

 A MOTIVATIONAL EXAMPLE TO DESCRIBE THE PROPOSED METHODOLOGY.

Test Suite STATEMENTS TEST

STATUS

(T)

S0 S1 S2 S3 S4 S5 S6 S6 S7 S8 S9 S10 S11 S12 S13 P(0)/F(1)

Test1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Test2 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0

Test3 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0

Test4 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0

Test5 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0

Test6 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

Test7 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

Test8 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0

Test9 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

Test10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Failed tests per statements 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1

Passed tests per statements 6 6 6 6 6 6 5 5 3 0 0 0 5 5 3

Suspicious per statement -2 -2 -2 -2 -2 -2 -1 -1 1 4 4 4 -4 -4 -2

Weighted Suspicious per

statement

0.67 0.67 0.67 0.67 0.67 0.67 0.8 0.8 1.33 Inf Inf Inf 0.2 0.2 0.33

TABLE II
BUG LOCALIZATION TIME USING THE PROPOSED METHODOLOGY VERSUS MANUAL DEBUG IN A COMPLEX DESIGN, WHICH CONTAINS

MORE THAN 5000 LINE OF RTL CODE

Bug ID Time

Wrong behavior

Correct behavior The proposed
methodology

(min)

Manual Debug
(Hours)

Bug 1 3 1 x1=x2+x3+x4+x5 x1=x2-x3+x4+x5

Bug 2 4 2 If (y1) If (~y1)

Bug 3 7 2 If (~y2) If (y2)

Bug 4 5 2 cnt=cnt+2; cnt=cnt+3;

Bug 5 2 1 if (~btst_card_en & ~strt_cmd_data_dly) if (~btst_card_en & strt_cmd_data_dly)

Bug 6 3 3 TST_DATA <= 8'h00; TST_DATA <= 8'h01;

Bug 7 10 2 MFSM_BUS <=MFSM_BUS_REG; MFSM_BUS <=MFSM_BUS_REG/2;

Bug 8 6 2 if (CMD6_ARG [31] ==1) if (CMD6_ARG [31] ==0)

Bug 9 7 1 current_state <= Data current_state <= Rcv;

Bug 10 4 3 MFSM_OUT_ENABLE <= 4'hf; MFSM_OUT_ENABLE <= 4'he;

Bug 11 2 1 If (OP_MODE ==2) If (OP_MODE ==1)

Bug 12 9 1 MFSM_STRT_DATA_P2S <= 1'b1; MFSM_STRT_DATA_P2S <= 1'b0;

Bug 13 4 2 bus_width_prev<= MFSM _WIDTH; bus_width_prev<= MFSM _WIDTH/2;

Bug 14 5 1 MFSM_BUS_WIDTH <= 4'h0; MFSM_BUS_WIDTH <= 4'h1;

Bug 15 2 1 MFSM_LEN <= 32'h0; MFSM_LEN <= 32'h200;

Bug 16 3 1 strt_cmd_data_dly <= 1'b0; strt_cmd_data_dly <= 1'b1;

Bug 17 2 2 If ((1'b1<<WRITE_BL_LEN)+ 1'b1)) If ((1'b1<<WRITE_BL_LEN)- 1'b1))

Bug 18 2 1 If ((blk_dis == 1'h1) If ((blk_dis == 1'h0)

Bug 19 5 1 crc_dis<=(cnt_crc==16-NC)? 1'h1:1'h1; crc_dis<=(cnt_crc==16-NC)? 1'h0:1'h1;

Bug 20 3 2 if (blk_no1 != blk_count) if (blk_no1 == blk_count)

Bug 21 2 1 W_OR_R <= 0 ; W_OR_R <= 1 ;

Bug 22 1 1 If (blk_len_cmd16 < blk_len) If (blk_len_cmd16 > blk_len)

Bug 23 3 2 cnt4 <= cnt4 + 1; cnt4 <= cnt4 - 1;

Bug 24 1 3 else if (~incr_rd_user_addr) else if (incr_rd_user_addr)

Bug 25 5 1 Else (WRITE_BLK_MISALIGN) Else (~ WRITE_BLK_MISALIGN)

Bug 26 1 1 erase_start_addr<(ERASE_SIZE)*512 erase_start_addr <(ERASE_SIZE+1)*512

Bug 27 2 2 data_cnt_cmd25<= 32'h0; data_cnt_cmd25<= 32'h1;

Bug 28 4 1 data_cnt_cmd25_en <= 1'b0; data_cnt_cmd25_en <= 1'b1;

Bug 29 1 2 TST_DATA <= 8'h00; TST_DATA <= 8'h80;

III. THE PROPOSED RTL-LEVEL SCAN-CHAIN METHODOLOGY

 RTL simulation provides system on chip (SoC) verification with full debugging capabilities, but its disadvantages are the low-

speed simulation for complicated RTL design. By using FPGA-based RTL emulation, we can have high-speed simulation. But, it

is not easy to debug it because it has poor-capabilities visibility. Other solutions provide full debug capabilities such as RTL

emulators, but the offline debugging method needs to recompile the whole design, which slows the verification process. In this

paper, we propose an online RTL-level scan-chain-based methodology is proposed for accelerating IP emulation debugging time

at Run-Time. This method provides internal glue-block which automatically replaces any signal with a mux and extra input, so

that at run time if we enable this method we can replace any internal signal value by a forced one. Our experiment shows that,

the area overhead is neglected compared to the gained performance benefits. The conventional emulation flow versus the

proposed scan-chain based emulation flow is shown in Fig. 2 and Fig. 3 respectively.

kmohamed
Stamp

4

 To illustrate the proposed method, we assume the example shown in Fig. 3 (a), where: out <= (A+B) * C; where C is

predetermined value that we want to change it at run-time, we compile the design and run emulation. If we want to change value

of C, we have to recompile the whole design. Sometimes, it takes very large time depending on the complexity of the design. So,

here we propose to use the online RTL-level scan-chain methodology to be able to change the value of C at run time without

recompiling the whole design which accelerates the emulation debugging time. We will create a utility tool that instantiates glue

logic‎and‎a‎mux‎with‎each‎“reg”‎definition‎in‎the‎RTL file, the glue logic is a null connection which puts the input into the output

as depicted in Fig. 3(b). So, the designer can change the value of the signal at run time. It will be automatically auto-generated

for all the registers defined in the design. Our experiment shows that, the area overhead is neglected compared to the gained

performance benefits.

 (a)

(a)

 (b)

Fig. 2 Proposed Emulation Flow (online flow), synthesizable testbench methodology, scan-chain methodology, a) detailed, (b)

simplified.

Design

+

 New

glue

logic

Waveform Tool

Debug

Emulation Traces Compile

PLI

Compile

Synthesize

Placement and Routing

SW/CPU

(TB)

HW Emulator

(TB+DUT+ELA)

Memory

Embedded logic

Analyzer DUT

(HDL)
Code

TestBench

(C+HDL)

Traces

Specify Traces

Design

Rerun test

Synthesize

Scan-Chain

Split

Observability

Controllability

kmohamed
Text Box

kmohamed
Stamp

5

Fig. 3 (a) Normal design example, (b) proposed scan-chain methodology for the design example in (a).

IV. GA-BASED PROPOSED METHODOLOGY

GA is the heuristic (experience-based) search and time-efficient learning and optimization techniques that mimic the process of

natural evolution based on Darwinian Paradigm. Thus genetic algorithms implement the optimization strategies by simulating

evolution of species through natural selection. Each cell of a living thing contains chromosomes (strings of DNA), each

chromosome contains a set of genes (blocks of DNA), and each gene determines some aspect of the organism (like eye color). In

other words, parameters of the solution (genes) are concatenated to form a string (chromosome). In a chromosome, each gene

controls a particular characteristic of the individual. The population evolves towards the optimal solution. Evolution based on

“survival‎of‎the‎fittest”.‎Genetic‎algorithms‎are‎well‎suited‎for‎hard‎problems‎where‎little‎is‎known‎about‎the‎underlying‎search

space. So, it is considered a robust search and optimization mechanism.

The genetic algorithm used in this work consists of the following steps or operations, ‎[13] -‎[19]:

1) Initialization and encoding:

 The GA starts with the creation of random strings, which represent each member in the population.

2) Evaluation (Fitness):

 The fitness used as a measure to reflect the degree of goodness of the individual, is calculated for each individual in the

population:

3) Selection

 In the selection process, individuals are chosen from the current population to enter a mating pool devoted to the creation of

new individuals for the next generation such that the chance of a given individual to be selected to mate is proportional to its

relative fitness. This means that best individuals receive more copies in subsequent generations so that their desirable traits may

be passed onto their offspring. This step ensures that the overall quality of the population increases from one generation to the

next.

4) Crossover :

 Crossover provides the means by which valuable information is shared among the population. It combines the features of two

parent individuals to form two children individuals that may have new patterns compared to those of their parents and plays a

central role in Gas. The crossover operator takes two chromosomes and interchanges part of their genetic information to produce

two new chromosomes.

5) Mutation:

Mutation is often introduced to guard against premature convergence. Generally, over a period of several generations, the gene

pool tends to become more and more homogeneous. The purpose of mutation is to introduce occasional perturbations to the

parameters to maintain genetic diversity within the population.

6) Replacement:

 After‎ generating‎ the‎ offspring’s‎ population‎ through‎ the‎ application‎ of‎ the‎ genetic‎ operators‎ to‎ the‎ parents‎ ‘population,‎ the‎

parents’‎population‎is‎totally‎replaced‎by‎the‎offspring’s‎population.‎This‎is‎known‎as‎no‎overlapping,‎generational,‎replacement.‎

This‎completes‎the‎“life‎cycle”‎of‎the‎population.

7) Termination

The GA is terminated when some convergence criterion is met. Possible convergence criteria are: the fitness of the best

individual so far found exceeds a threshold value; the maximum number of generations is reached.

 The proposed methodology to generate testcases using GA is as follows: generate stimulus based on the feedback from

previously generated stimulus to cover areas which were not explored by previously applied tests. During each stimulus cycle,

+

c

A

B

OUT

GLUE

LOGIC

Enable_Scan

MUX C_RUNTIME

A

B
+

c

OUT

(a)
(b)

kmohamed
Stamp

6

coverage results are collected and sent as an input to the genetic algorithm and used as a guideline for next stimulus. The next

stimulus will be more effective compared to randomly-generated one (Fig. 4). The fitness function here is chosen to maximize

the functional coverage percentage, where:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 (1)

Simulation results show that:

1) Coverage holes can be hit automatically with less effort and less time (Fig. 5).

2) Computational resources should be low.

The results for some designs are reported in TABLE III, where it is clear that using GA, we can reach 100% coverage in less

time will less number of stimulus.

Fig. 4 The proposed GA methodology to speedup coverage closure. Using genetic algorithms, there is no test redundancy.

Start simulation

Coverage 100 %

Analyze Coverage holes

Generate Stimulus

manually

Generate Stimulus

randomly

Generate GA-based

Guided random

stimulus

End

N

Option1 Option2 Option3

kmohamed
Stamp

7

Fig. 5 The GA performance.

TABLE III

GA-BASED TEST GENERATION RESULTS TO GET 100% COVERAGE

Method Random testing Our GA Approach

Design # Scenarios
(100 % coverage)

Stimulus Run time (s) # Stimulus Run time (s)

#1 4 120 3 100 2

#2 16 200 4 150 2.6

#3 6 130 3.2 90 1

#4 12 180 3.5 110 1.3

#5 8 190 3.7 120 1.5

#6 10 195 3.8 124 2.1

#7 6 130 3 120 2.2

#8 18 210 4 155 2.6

#9 8 180 3.7 96 1.6

#10 14 190 3.5 114 1.5

#11 10 170 3.2 111 1.7

#12 12 215 3.2 144 2.4

V. CONCLUSIONS

 Bug localization is a process of identifying the specific locations or regions of source code that is buggy and

needs to be modified to repair the defect. Bug localization can significantly reduce human effort and design cost. In

this paper, a novel automated coverage-based functional bug localization method for complex HDL designs is

proposed which significantly reduces debugging time. The proposed bug localization methodology takes

information from regression suite as an input and produces a ranked list of suspicious part of code. Our methodology

is a promising solution to reduce required time to localize bugs significantly.

 Moreover, an online RTL-level scan-chain methodology is proposed to reduce debugging time and effort for

emulation. Run-time modifications of the values of any of the internal signals of the DUT during execution can be

easily performed through the proposed online scan-chain methodology. A utility tool was developed to help ease this

process. Our experiment shows that, the area overhead is neglected compared to the gained performance benefits.

But, IP design requires more compilation time.

Coverage 100%

Manual

Time

GA

Random

kmohamed
Text Box
Number of generations =200, population size =50, type of crossover =Multi-point

kmohamed
Text Box
The methodology collects the coverage data and analyze them, then it assigns a fitness value to each solution.

kmohamed
Stamp

8

 The main challenge in using constraint random testing (CRT) is that manual analysis for the coverage report is

needed to find the untested scenarios and modify the test cases to achieve 100% coverage. We need to replace the

manual effort by an automatic method or a tool that will be able to extract the coverage report, identify the untested

scenarios, add new constraints, and iterate this process until 100% coverage is attained. In other words, we need an

automated technique to automate the feedback from coverage report analysis to test generation process. In this

chapter, the implementation of this automatic feedback loop is presented. The automatic feedback loop is based on

artificial intelligence technique called genetic algorithm (GA). This technique accelerates coverage-driven

functional verification and achieves coverage closure rapidly by covering uncovered scenarios in the coverage report

(coverage holes).

 REFERENCES

[1] http://www.itrs.net/.

[2] K.‎Constantinides,‎O.‎Mutlu,‎ and‎T.‎M.‎Austin,‎ “Online‎ design‎ bug‎ detection:‎RTL‎ analysis,‎ flexible‎mechanisms,‎ and‎ evaluation,”‎ in‎

International Symposium on Microarchitecture (MICRO), 2008, pp. 282–293.

[3] S.‎B.‎Park‎and‎S.‎Mitra,‎‘‘IFRA:‎Post-silicon‎bug‎localization‎in‎processors,’’‎in‎Proc.‎HLDVT,‎2009,‎pp.‎154–159.
[4] K.‎Chang,‎I.‎Wagner,‎V.‎Bertacco,‎I.‎Markov‎“Automatic‎Error‎Diagnosis‎and‎Correction‎for‎RTL‎Designs”‎HLVDT, 2007.

[5] S.‎Mirzaeian,‎F.‎Zheng,‎K.‎Cheng‎“RTL‎Error‎Diagnosis‎Using‎a‎Word-Level SAT-Solver”‎ITC,‎2008.

[6] W.‎E.‎Wong,‎V.‎Debroy,‎and‎B.‎Choi,‎‘‘A‎family‎of‎code‎coverage-based heuristics for‎effective‎fault‎localization,’’‎J.‎Syst.‎Software,‎vol.‎
83, no. 2, pp. 188–208, 2010.

[7] W.E.‎Wong,‎T.‎Wei,‎“‎A‎Crosstab-based‎statistical‎method‎for‎effective‎fault‎localization”‎Proceedings‎of‎the‎First‎International‎Conference‎
on Software Testing, Verification and Validation (ICST), Lillehammer, Norway, April 2008, pp. 42–51.

[8] J.‎A.‎Jones‎and‎M.‎J.‎Harrold‎“Empirical‎evaluation‎of‎the‎Tarantula‎automatic‎fault-localization‎technique”,‎Proc.‎Int.‎Conf.‎on‎Automated‎

Software Engineering, pp. 273-283, 2005.
[9] J.‎Rau,‎C.‎Chien,‎and‎J.‎Ma,‎“Reconfigurable‎Multiple‎Scan-Chains‎for‎Reducing‎Test‎Application‎Time‎of‎SOCs”,‎ISCAS‎2005.

[10] I. Mavroidis and I. Papaefstathiou, "Accelerating emulation and providing full chip observability and controllability", Design & Test of

Computers, IEEE, Dec. 2009.
[11] I.‎Mavroidis,‎I.‎Papaefstathiou,‎“Efficient‎Testbench‎Code‎Synthesis‎for‎a‎Hardware‎Emulator‎System”,‎DATE‎2007,‎Nice,‎France.

[12] S.‎Banerjee,‎T.‎Gupta‎ “Efficient‎Online‎RTL‎Debugging‎Methodology‎ for‎Logic‎Emulation‎Systems”‎25th International Conference on

VLSI Design, 2012.
[13] Yingpan Wu, Lixin Yu, Wei Zhuang and Jianyong Wang, "A Coverage-Driven Constraint Random-Based Functional Verification Method

of Pipeline Unit," Computer and Information Science, ACIS International Conference, pp. 1049-1054, 2009.

[14] Benjamin.M,‎Geist.‎D,‎Hartman.‎A,‎Wolfsthal.Y‎and‎Mas.‎G,Smeets.R.”‎A‎study‎in‎coverage-driven‎test‎generation‎“Design‎Automation‎
Conference, 1999. Proceedings. 36th Issue pp. 970 – 975, 1999.

[15] Fine.‎ S‎ and‎ Ziv.‎ A.”‎ Coverage‎ Directed‎ Test‎ Generation‎ for‎ Functional‎ Verification‎ using‎ Bayesian‎ Networks”‎ Design‎ Automation‎

Conference, 2003. Proceedings Issue Date: 2-6 June pp. 286 – 291.
[16] Zaer S Abo-Hammour, Othman MK Alsmadi, and Adnan M. Al-Smadi‎“Frequency-Based Model Order Reduction via Genetic Algorithm

Approach”‎7th‎International‎Workshop‎on‎Systems,‎Signal‎Processing‎and‎their‎Applications‎(WOSSPA),‎2011.

[17] Z. S. Abo-Hammour, O. M. Alsmadi, and A. M. Al-Smadi‎“Frequency-Based Model Order Reduction via Genetic‎Algorithm‎Approach”‎
7th International Workshop on Systems, Signal Processing and their Applications (WOSSPA), 2011.

[18] I. Yun, L. A. Carastro, R. Poddar, M. A. Brooke, G. S. May, K-Sook‎Hyun,‎ and‎K.‎ E.‎ Pyun‎ “Extraction‎ of‎ Passive‎Device‎Model‎

Parameters‎Using‎Genetic‎Algorithms”‎ETRI Journal, Volume 22, Number 1, March 2000.
[19] K.‎Thirugnanam,‎E.‎Reena,‎M.‎Singh,‎P.‎‎Kumar‎“Mathematical‎Modeling‎of‎Li-Ion Battery Using Genetic Algorithm Approach for V2G

Applications”‎IEEE‎Transactions‎On‎Energy‎Conversion,‎VOL.‎29,‎NO.‎2,‎JUNE‎2014.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4392771
kmohamed
Stamp

	Untitled
	Untitled

	Test Suite:
	STATEMENTS:
	11:
	13:
	12:
	067:
	067_2:
	067_3:
	067_4:
	067_5:
	067_6:
	08:
	08_2:
	133:
	Inf:
	Inf_2:
	Inf_3:
	02:
	02_2:
	1033:
	Bug ID:
	Manual Debug Hours:
	Wrong behavior:
	Correct behavior:
	Synthesize:
	Placement and Routing:
	Emulation:
	Waveform Tool:
	Debug:
	 c:
	MUX:
	GLUE LOGIC:
	Generate GAbased Guided random stimulus:
	Design:
	 Stimulus:
	Run time s:
	 Stimulus_2:
	Run time s_2:

