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What is Functional Verification?

02/28/17 Marek Ciepłucha, Warsaw University of Technology

• Applying stimuli to the DUT and checking response

– DUT as an RTL model – simulation or emulation

– DUT as a (pseudo-)HLS model – pure software concern

• Testbench is a software program at the transaction level

– Only Monitors and Drivers are time-aware

Do we need simulators supporting verification process?

3



Functional Verification –
a different approach

Marek Ciepłucha, Warsaw University of Technology

• Assume we only simulate DUT

– Simulator not required to support HVLs

– Free simulators can be used (e.g. Icarus Verilog)

• Testbench is a standalone application

– API implementation needed to access simulator flow 
(e. g. VPI)

• Problem – VPI performance 
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Modern verification methodology

Marek Ciepłucha, Warsaw University of Technology

• Constrained Randomization

– Mechanisms that simplify applying random stimuli

• Functional Coverage

– Need to observe whether all expected scenarios 
executed

• Regression Testing – Coverage Closure

– A process that examines verification against a plan – 
meeting defined metrics
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Modern verification methodology

Marek Ciepłucha, Warsaw University of Technology

• High-level software verification - similar approach

• CRV an FC available as a part of HVLs syntax

• Regression Management – automated by EDA tools

• UVM – just a framework

– Well understood only by UVM users

– Resolves some typical use-case issues (like design 
patterns in software engineering)

– UVM ≠ QUALITY
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Constrained Random Verification

Marek Ciepłucha, Warsaw University of Technology

• Randomization of the data with given constraints:

– Requires a constraint solver to be implemented

• Part of the simulator – why here?

• System Verilog CRV syntax

– Random variables

– Constraints (soft 
constraints in SV2012)

– Weighted distributions

– Constraint = function?

constraint frame_sizes {
  size == NORMAL -> {
    length dist {
      [64  :  127 ] := 10,
      [128 :  511 ] := 10,
      [512 :  1500] := 10
    };
  }
  ...
}
source: http://www.asic-world.com/
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Metric-Driven Verification

Marek Ciepłucha, Warsaw University of Technology

• Metrics need to be defined for verification process:

– Test scenarios

– Code Coverage

– Functional Coverage

• SystemVerilog Functional Coverage syntax

– covergroup, coverpoint, cross

• bins: signals, variables, sequences

– Only countable features can be easily covered!
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Functional Coverage limitations

Marek Ciepłucha, Warsaw University of Technology

• Flat coverage structure

• Only naive bins matching

• Coverage data separated from the testbench data

• Example implementation issue: coverage driven test 
generation

source: C. Kuznik and W. Mueller: Aspect enhanced functional coverage driven verification in the SystemC HDVL

02/28/17 9



Motivation for work

Marek Ciepłucha, Warsaw University of Technology

• Functional Verification as a software engineering

• Slow evolution of HVLs (and then – simulators)

• Lack of the „agility” of the verification process

• Expensive digital simulation environments
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Cocotb

Marek Ciepłucha, Warsaw University of Technology

• Cocotb is a COroutine based COsimulation TestBench 
environment for verifying VHDL/Verilog RTL using Python

• Cocotb is completely free, open source (under the BSD 
License) and hosted on GitHub

• Cocotb requires a simulator to simulate the RTL

source: http://cocotb.readthedocs.io
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Cocotb

Marek Ciepłucha, Warsaw University of Technology

• Base testbench classes: Driver, Monitor, Scoreboard

• Easy interfacing to other languages

• Missing features: functional coverage, randomization 
mechanisms, regression management
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Python functions

Marek Ciepłucha, Warsaw University of Technology

• A function – first class citizen in Python (and many 
other modern languages)

– Assigned or passed as an argument

– Any object that is callable

– Defined anywhere 
(inside other functions)

– Lambda expressions

• Decorator design 
pattern

@decorator(x,y)
def my_func(f1, w, z):

  def inside_func(a,b):
 return a + b

  f2 = lambda a,b: a – b

  if (w < z):
 return f1(w, z)

  elif (w > z): 
 return inside_func(w,z)

  else: 
 return f2(w, z)my_func = decorator(my_func, x, y)
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New Constrained 
Randomization Mechanism

Marek Ciepłucha, Warsaw University of Technology

• A constraint – an arbitrary function

– Returns true/false – hard constraint

– Returns numeric value – distribution

• Can be used for soft constraints

• API:

– addRand(var), addConstraint(function)

– post/pre_randomize(), randomize[_with]()

– SolveOrder (solve … before)
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Example: SV vs. Cocotb – 
randomization

Marek Ciepłucha, Warsaw University of Technology

class rand_frame;
  typedef enum {SMALL,MED,BIG} 

size_t;
  rand logic [15:0] length;
  rand logic [15:0] pld;
  rand size_t size;
  constraint frame_sizes {
    if (size == MED) {
      length >= 64;
      length < 2000;
    } else if (size == SMALL)  {
      length > 0;
      length < 64;
    } else if (size == BIG) {
      length >= 2000;
      length < 5000;
    }
    pld < length;
    pld % 2 == 0;
  }
endclass

class rand_frame(crv.Randomized):
  def __init__(self):
    crv.Randomized.__init__(self)

    self.length = 0
    self.pld = 0
    self.size = "SMALL"

    self.addRand("size",["SMALL", "MED", "BIG"])
    self.addRand("length", list(range(1, 5000)))
    self.addRand("pld", list(range(0, 4999)))
    def frame_sizes(length, size):
      if (size == "SMALL") length < 64
      elif (size == "MED") 64 <= length < 2000
      else length >= 2000   
      
    self.addConstraint(frame_sizes) 
    self.addConstraint(
      lambda length, pld : pld < length
    )
    self.addConstraint(lambda pld : pld %2 == 0)
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Example: Cocotb – 
advanced randomization

Marek Ciepłucha, Warsaw University of Technology

class TripleInt(Randomized)
  def __init__(self, x):
    Randomized.__init__(self)
    #this is a non-random value, determined at class instance creation
    self.x = x 
    self.y = 0
    self.z = 0
    addRand(y, list(range(1000))) #0 to 999
    addRand(z, list(range(1000))) #0 to 999
    #HARD CONSTRAINT
    addConstraint(lambda x, y, z : x + y + z == 1000) 
    #TRIANGULAR DISTRIBUTION   
    addConstraint(lambda z: 500 - abs(500 - z))    
    #MULTI-DIMENSIONAL DISTRIBUTION       
    addConstraint(lambda y, z : 100 + abs(y - z)) 
    #SOFT CONSTRAINT        
    addConstraint(lambda x, y : 0.01 if (y > x) else 1)  
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New Functional Coverage 
Mechanism

Marek Ciepłucha, Warsaw University of Technology

• A tree (trie) sctructure

• Coverage primitive – a function decorator

– Called each time 
at the function call

– User can define own 
coverage types

– SystemVerilog originated:

• CoverPoint

• CoverCross
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Example: SV vs. Cocotb – 
functional coverage 

Marek Ciepłucha, Warsaw University of Technology

covergroup transfer;
  direction : coverpoint dir {
    bins read       = {0};
    bins write      = {1};
  }
  length : coverpoint length {
    bins short      = {[1:10]};
    bins long       = {[10:100]};
  }
  type : coverpoint type {
    bins type_a     = {A};
    bins type_b     = {B};
  }
  tr_cross : cross 
    direction, length, type {
    ignore_bins ign = 
      binsof(type) intersect {A};
  }

@CoverPoint( "transfer.direction", 
  xf = lambda xfer : xfer.dir, bins = [0, 1]
  )
@CoverPoint( "transfer.length", 
  xf = lambda xfer.length, 
  bins = [(1,10), (10,100)],
  rel = lambda val, b: b(0) <= val <= b(1) 
  )
@CoverPoint( "transfer.type", 
  xf = lambda xfer.type, bins = [A, B]
  )
@CoverCross( "transfer.tr_cross", items = 
  ["transfer.direction", "transfer.length", 
   "transfer.type"],
  ign_bins = [(None, None, A)]
  )
def decorated_function(xfer):
  ...
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Example: Cocotb – 
advanced functional coverage

Marek Ciepłucha, Warsaw University of Technology

simple_bins = [] #bins generation for coverage.tuple: 
for i in range (1, 21): #for i = 1 to 20
  simple_bins.extend([(i, 'y'), (i, 'n')]) 

#transition function for coverage.transition
prev_value = 0; #previous value defined outside the function 
def transition_inta(inta, intb, string): #function definition
  transition = (prev_value, inta) #transition as a tuple of (int, int)
  prev_value = inta #update previous value
  return transition
      
@CoverPoint("coverage.transition", xf = transition_inta,  
  bins = [(1,2), (2,3), (3,4)])
@CoverPoint("coverage.primefactors", 
  xf = lambda inta, intb, string : inta, 
  rel = has_prime_factor, inj = True, bins = [2, 3, 5, 7, 11, 13, 17]) 
@CoverPoint("coverage.tuple", 
  xf = lambda inta, intb, string : (inta + intb, string), 
  bins = simple_bins)
def decorated_function(inta, intb, string):
  ... 
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Marek Ciepłucha, Warsaw University of Technology

• DUT: calculates mean value of bus_width inputs

• Verification requirement: check all possible data 
combinations on first and last input

• Random data order, radom data on other inputs

Working test example

DUT

...
bus_width
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Working test example

Marek Ciepłucha, Warsaw University of Technology

class StreamTransaction(Randomized):
    """
    randomized transaction
    """
    def __init__(self, bus_width, data_width):
        Randomized.__init__(self)
        self.bus_width = bus_width
        self.data_width = data_width
        self.data = ()
                
        list_data = range(0, 2**data_width)
                
        combs = list(itertools.product(list_data, repeat=bus_width))   
        
        self.addRand("data", combs) 
            
    def mean_value(self):
        return sum(self.data) // self.bus_width 
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Working test example

Marek Ciepłucha, Warsaw University of Technology

#functional coverage - check if all possible data values were
#sampled at first and last input
@cocotb.coverage.CoverPoint("top.data1", 
  xf = lambda transaction : transaction.data[0], 

  bins = range(0, 2**transaction.data_width)
)

@cocotb.coverage.CoverPoint("top.dataN", 
  xf = lambda transaction : transaction.data[transaction.bus_width-1],

  bins = range(0, 2**transaction.data_width)
)

def sample_coverage(transaction):
  """
  We need this sampling function inside the class function, as
  transaction object needs to exist (required for bins creation). 
  If not needed, just "send" could be decorated.
  """
  pass

            
sample_coverage(transaction) 
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Working test example

Marek Ciepłucha, Warsaw University of Technology

@cocotb.test()
def mean_mdv_test(dut):
    """ Test using functional coverage measurements and 
        Constrained-Random mechanisms. Generates random transactions    
        until coverage defined in Driver reaches 100% """

    dut_out = StreamBusMonitor(dut, "o", dut.clk)
    dut_in = StreamBusDriver(dut, "i", dut.clk)

    exp_out = []

    scoreboard = Scoreboard(dut)
    scoreboard.add_interface(dut_out, exp_out)

    data_width = int(dut.DATA_WIDTH.value)
    bus_width = int(dut.BUS_WIDTH.value)

    cocotb.fork(clock_gen(dut.clk, period=clock_period))
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Working test example

Marek Ciepłucha, Warsaw University of Technology

    dut.rst <= 1
    for i in range(bus_width):
        dut.i_data[i] = 0
    dut.i_valid <= 0

    yield RisingEdge(dut.clk)
    yield RisingEdge(dut.clk)
    dut.rst <= 0
    
    coverage1_hits = []
    coverageN_hits = []
    
    #define a constraint function, which prevents 
    #from picking already covered data
    def data_constraint(data):
        return (not data[0] in coverage1_hits) & 
               (not data[bus_width-1] in coverageN_hits)                
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Working test example

Marek Ciepłucha, Warsaw University of Technology

coverage = 0
xaction = StreamTransaction(bus_width, data_width)
while coverage < 100:        
    #randomize with constraint
    if not "top.data1" in coverage_db:
        xaction.randomize()
    else:
        coverage1_new_bins = coverage_db["top.data1"].new_hits          
        coverageN_new_bins = coverage_db["top.dataN"].new_hits
        coverage1_hits.extend(coverage1_new_bins)
        coverageN_hits.extend(coverageN_new_bins)
        xaction.randomize_with(data_constraint)
           
    yield dut_in.send(xaction)
    exp_out.append(xaction.mean_value())

    coverage = coverage_db["top"].coverage*100/
               coverage_db["top"].size

    dut._log.info("Current Coverage = %d %%", coverage)               
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Summary

Marek Ciepłucha, Warsaw University of Technology

• Verification is software engineering!

• SystemVerilog/UVM-based implementation is not 
efficient for complex programming tasks

• Cocotb may be an alternative for expensive simulators

– Less code

– Fast ramp-up

Cocotb with presented extensions is available online: 
https://github.com/mciepluc/cocotb
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Thank you!
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