
New Constrained Random and
Metric-Driven Verification

Methodology using Python

Functional Verification is Software Engineering

Marek Ciepłucha and Witold Pleskacz

Warsaw University of Technology
Institute of Micro- and Optoelectronics

Agenda

• Functional verification scope – a different view

• Functional Coverage and Constrained Randomization

• Cocotb – Python-based verification environment

• New Functional Coverage architecture proposal

• New Constrained Randomization architecture proposal

• Working examples

• Summary

Marek Ciepłucha, Warsaw University of Technology 2

This project was partially supported by Polish National
Centre for Research and Development under project

No. DOBR/0053/R/ID1/2013/03

02/28/17

What is Functional Verification?

02/28/17 Marek Ciepłucha, Warsaw University of Technology

• Applying stimuli to the DUT and checking response

– DUT as an RTL model – simulation or emulation

– DUT as a (pseudo-)HLS model – pure software concern

• Testbench is a software program at the transaction level

– Only Monitors and Drivers are time-aware

Do we need simulators supporting verification process?

3

Functional Verification –
a different approach

Marek Ciepłucha, Warsaw University of Technology

• Assume we only simulate DUT

– Simulator not required to support HVLs

– Free simulators can be used (e.g. Icarus Verilog)

• Testbench is a standalone application

– API implementation needed to access simulator flow
(e. g. VPI)

• Problem – VPI performance

02/28/17 4

Modern verification methodology

Marek Ciepłucha, Warsaw University of Technology

• Constrained Randomization

– Mechanisms that simplify applying random stimuli

• Functional Coverage

– Need to observe whether all expected scenarios
executed

• Regression Testing – Coverage Closure

– A process that examines verification against a plan –
meeting defined metrics

02/28/17 5

Modern verification methodology

Marek Ciepłucha, Warsaw University of Technology

• High-level software verification - similar approach

• CRV an FC available as a part of HVLs syntax

• Regression Management – automated by EDA tools

• UVM – just a framework

– Well understood only by UVM users

– Resolves some typical use-case issues (like design
patterns in software engineering)

– UVM ≠ QUALITY

02/28/17 6

Constrained Random Verification

Marek Ciepłucha, Warsaw University of Technology

• Randomization of the data with given constraints:

– Requires a constraint solver to be implemented

• Part of the simulator – why here?

• System Verilog CRV syntax

– Random variables

– Constraints (soft
constraints in SV2012)

– Weighted distributions

– Constraint = function?

constraint frame_sizes {
 size == NORMAL -> {
 length dist {
 [64 : 127] := 10,
 [128 : 511] := 10,
 [512 : 1500] := 10
 };
 }
 ...
}
source: http://www.asic-world.com/

02/28/17 7

Metric-Driven Verification

Marek Ciepłucha, Warsaw University of Technology

• Metrics need to be defined for verification process:

– Test scenarios

– Code Coverage

– Functional Coverage

• SystemVerilog Functional Coverage syntax

– covergroup, coverpoint, cross

• bins: signals, variables, sequences

– Only countable features can be easily covered!

02/28/17 8

Functional Coverage limitations

Marek Ciepłucha, Warsaw University of Technology

• Flat coverage structure

• Only naive bins matching

• Coverage data separated from the testbench data

• Example implementation issue: coverage driven test
generation

source: C. Kuznik and W. Mueller: Aspect enhanced functional coverage driven verification in the SystemC HDVL

02/28/17 9

Motivation for work

Marek Ciepłucha, Warsaw University of Technology

• Functional Verification as a software engineering

• Slow evolution of HVLs (and then – simulators)

• Lack of the „agility” of the verification process

• Expensive digital simulation environments

02/28/17 10

Cocotb

Marek Ciepłucha, Warsaw University of Technology

• Cocotb is a COroutine based COsimulation TestBench
environment for verifying VHDL/Verilog RTL using Python

• Cocotb is completely free, open source (under the BSD
License) and hosted on GitHub

• Cocotb requires a simulator to simulate the RTL

source: http://cocotb.readthedocs.io

02/28/17 11

Cocotb

Marek Ciepłucha, Warsaw University of Technology

• Base testbench classes: Driver, Monitor, Scoreboard

• Easy interfacing to other languages

• Missing features: functional coverage, randomization
mechanisms, regression management

02/28/17 12

Python functions

Marek Ciepłucha, Warsaw University of Technology

• A function – first class citizen in Python (and many
other modern languages)

– Assigned or passed as an argument

– Any object that is callable

– Defined anywhere
(inside other functions)

– Lambda expressions

• Decorator design
pattern

@decorator(x,y)
def my_func(f1, w, z):

 def inside_func(a,b):
 return a + b

 f2 = lambda a,b: a – b

 if (w < z):
 return f1(w, z)

 elif (w > z):
 return inside_func(w,z)

 else:
 return f2(w, z)my_func = decorator(my_func, x, y)

02/28/17 13

New Constrained
Randomization Mechanism

Marek Ciepłucha, Warsaw University of Technology

• A constraint – an arbitrary function

– Returns true/false – hard constraint

– Returns numeric value – distribution

• Can be used for soft constraints

• API:

– addRand(var), addConstraint(function)

– post/pre_randomize(), randomize[_with]()

– SolveOrder (solve … before)

02/28/17 14

Example: SV vs. Cocotb –
randomization

Marek Ciepłucha, Warsaw University of Technology

class rand_frame;
 typedef enum {SMALL,MED,BIG}

size_t;
 rand logic [15:0] length;
 rand logic [15:0] pld;
 rand size_t size;
 constraint frame_sizes {
 if (size == MED) {
 length >= 64;
 length < 2000;
 } else if (size == SMALL) {
 length > 0;
 length < 64;
 } else if (size == BIG) {
 length >= 2000;
 length < 5000;
 }
 pld < length;
 pld % 2 == 0;
 }
endclass

class rand_frame(crv.Randomized):
 def __init__(self):
 crv.Randomized.__init__(self)

 self.length = 0
 self.pld = 0
 self.size = "SMALL"

 self.addRand("size",["SMALL", "MED", "BIG"])
 self.addRand("length", list(range(1, 5000)))
 self.addRand("pld", list(range(0, 4999)))
 def frame_sizes(length, size):
 if (size == "SMALL") length < 64
 elif (size == "MED") 64 <= length < 2000
 else length >= 2000

 self.addConstraint(frame_sizes)
 self.addConstraint(
 lambda length, pld : pld < length
)
 self.addConstraint(lambda pld : pld %2 == 0)

02/28/17 15

Example: Cocotb –
advanced randomization

Marek Ciepłucha, Warsaw University of Technology

class TripleInt(Randomized)
 def __init__(self, x):
 Randomized.__init__(self)
 #this is a non-random value, determined at class instance creation
 self.x = x
 self.y = 0
 self.z = 0
 addRand(y, list(range(1000))) #0 to 999
 addRand(z, list(range(1000))) #0 to 999
 #HARD CONSTRAINT
 addConstraint(lambda x, y, z : x + y + z == 1000)
 #TRIANGULAR DISTRIBUTION
 addConstraint(lambda z: 500 - abs(500 - z))
 #MULTI-DIMENSIONAL DISTRIBUTION
 addConstraint(lambda y, z : 100 + abs(y - z))
 #SOFT CONSTRAINT
 addConstraint(lambda x, y : 0.01 if (y > x) else 1)

02/28/17 16

New Functional Coverage
Mechanism

Marek Ciepłucha, Warsaw University of Technology

• A tree (trie) sctructure

• Coverage primitive – a function decorator

– Called each time
at the function call

– User can define own
coverage types

– SystemVerilog originated:

• CoverPoint

• CoverCross

02/28/17 17

Example: SV vs. Cocotb –
functional coverage

Marek Ciepłucha, Warsaw University of Technology

covergroup transfer;
 direction : coverpoint dir {
 bins read = {0};
 bins write = {1};
 }
 length : coverpoint length {
 bins short = {[1:10]};
 bins long = {[10:100]};
 }
 type : coverpoint type {
 bins type_a = {A};
 bins type_b = {B};
 }
 tr_cross : cross
 direction, length, type {
 ignore_bins ign =
 binsof(type) intersect {A};
 }

@CoverPoint("transfer.direction",
 xf = lambda xfer : xfer.dir, bins = [0, 1]
)
@CoverPoint("transfer.length",
 xf = lambda xfer.length,
 bins = [(1,10), (10,100)],
 rel = lambda val, b: b(0) <= val <= b(1)
)
@CoverPoint("transfer.type",
 xf = lambda xfer.type, bins = [A, B]
)
@CoverCross("transfer.tr_cross", items =
 ["transfer.direction", "transfer.length",
 "transfer.type"],
 ign_bins = [(None, None, A)]
)
def decorated_function(xfer):
 ...

02/28/17 18

Example: Cocotb –
advanced functional coverage

Marek Ciepłucha, Warsaw University of Technology

simple_bins = [] #bins generation for coverage.tuple:
for i in range (1, 21): #for i = 1 to 20
 simple_bins.extend([(i, 'y'), (i, 'n')])

#transition function for coverage.transition
prev_value = 0; #previous value defined outside the function
def transition_inta(inta, intb, string): #function definition
 transition = (prev_value, inta) #transition as a tuple of (int, int)
 prev_value = inta #update previous value
 return transition

@CoverPoint("coverage.transition", xf = transition_inta,
 bins = [(1,2), (2,3), (3,4)])
@CoverPoint("coverage.primefactors",
 xf = lambda inta, intb, string : inta,
 rel = has_prime_factor, inj = True, bins = [2, 3, 5, 7, 11, 13, 17])
@CoverPoint("coverage.tuple",
 xf = lambda inta, intb, string : (inta + intb, string),
 bins = simple_bins)
def decorated_function(inta, intb, string):
 ...

02/28/17 19

Marek Ciepłucha, Warsaw University of Technology

• DUT: calculates mean value of bus_width inputs

• Verification requirement: check all possible data
combinations on first and last input

• Random data order, radom data on other inputs

Working test example

DUT

...
bus_width

02/28/17 20

Working test example

Marek Ciepłucha, Warsaw University of Technology

class StreamTransaction(Randomized):
 """
 randomized transaction
 """
 def __init__(self, bus_width, data_width):
 Randomized.__init__(self)
 self.bus_width = bus_width
 self.data_width = data_width
 self.data = ()

 list_data = range(0, 2**data_width)

 combs = list(itertools.product(list_data, repeat=bus_width))

 self.addRand("data", combs)

 def mean_value(self):
 return sum(self.data) // self.bus_width

02/28/17 21

Working test example

Marek Ciepłucha, Warsaw University of Technology

#functional coverage - check if all possible data values were
#sampled at first and last input
@cocotb.coverage.CoverPoint("top.data1",
 xf = lambda transaction : transaction.data[0],

 bins = range(0, 2**transaction.data_width)
)

@cocotb.coverage.CoverPoint("top.dataN",
 xf = lambda transaction : transaction.data[transaction.bus_width-1],

 bins = range(0, 2**transaction.data_width)
)

def sample_coverage(transaction):
 """
 We need this sampling function inside the class function, as
 transaction object needs to exist (required for bins creation).
 If not needed, just "send" could be decorated.
 """
 pass

sample_coverage(transaction)

02/28/17 22

Working test example

Marek Ciepłucha, Warsaw University of Technology

@cocotb.test()
def mean_mdv_test(dut):
 """ Test using functional coverage measurements and
 Constrained-Random mechanisms. Generates random transactions
 until coverage defined in Driver reaches 100% """

 dut_out = StreamBusMonitor(dut, "o", dut.clk)
 dut_in = StreamBusDriver(dut, "i", dut.clk)

 exp_out = []

 scoreboard = Scoreboard(dut)
 scoreboard.add_interface(dut_out, exp_out)

 data_width = int(dut.DATA_WIDTH.value)
 bus_width = int(dut.BUS_WIDTH.value)

 cocotb.fork(clock_gen(dut.clk, period=clock_period))

02/28/17 23

Working test example

Marek Ciepłucha, Warsaw University of Technology

 dut.rst <= 1
 for i in range(bus_width):
 dut.i_data[i] = 0
 dut.i_valid <= 0

 yield RisingEdge(dut.clk)
 yield RisingEdge(dut.clk)
 dut.rst <= 0

 coverage1_hits = []
 coverageN_hits = []

 #define a constraint function, which prevents
 #from picking already covered data
 def data_constraint(data):
 return (not data[0] in coverage1_hits) &
 (not data[bus_width-1] in coverageN_hits)

02/28/17 24

Working test example

Marek Ciepłucha, Warsaw University of Technology

coverage = 0
xaction = StreamTransaction(bus_width, data_width)
while coverage < 100:
 #randomize with constraint
 if not "top.data1" in coverage_db:
 xaction.randomize()
 else:
 coverage1_new_bins = coverage_db["top.data1"].new_hits
 coverageN_new_bins = coverage_db["top.dataN"].new_hits
 coverage1_hits.extend(coverage1_new_bins)
 coverageN_hits.extend(coverageN_new_bins)
 xaction.randomize_with(data_constraint)

 yield dut_in.send(xaction)
 exp_out.append(xaction.mean_value())

 coverage = coverage_db["top"].coverage*100/
 coverage_db["top"].size

 dut._log.info("Current Coverage = %d %%", coverage)

02/28/17 25

Summary

Marek Ciepłucha, Warsaw University of Technology

• Verification is software engineering!

• SystemVerilog/UVM-based implementation is not
efficient for complex programming tasks

• Cocotb may be an alternative for expensive simulators

– Less code

– Fast ramp-up

Cocotb with presented extensions is available online:
https://github.com/mciepluc/cocotb

02/28/17 26

Thank you!

New Constrained Random and
Metric-Driven Verification

Methodology using Python

Functional Verification is Software Engineering

Marek Ciepłucha and Witold Pleskacz

Warsaw University of Technology
Institute of Micro- and Optoelectronics

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28

