
New and Active Ways to Bind to Your Designs

Kaiming Ho
Fraunhofer IIS

Erlangen, Germany
kaiming.ho@iis.fraunhofer.de

Abstract—Verification engineers have long known of the
advantages of using the SystemVerilog bind construct to tie their
verification code to design code. Sets of assertions, wrapped in
modules or interfaces, can be bound to design modules in a
reusable, hierarchically independent manner. Similarly,
functional coverage monitors can be bound to the DUT without
having to modify the design RTL code. These and other current
use models for binds are passive. We use the term passive, since
once the code to be bound has been sent into the design
hierarchy, the testbench code loses all contact with it.

This paper introduces a new technique where binds are
active. The testbench code can actively manage and control, at
runtime, the code that was bound into the design. By combining
the use of packages as well as abstract base classes with the bind
construct, this paper details how active binding can be realized.
The solution uses basic SystemVerilog constructs defined in
IEEE 1800-2009 [3], and works on the simulators from all major
vendors. It is also independent of methodologies such as UVM,
OVM or VMM, allowing the testbench architect to deploy these
techniques regardless of the chosen methodology.

With active binding, new use models for using the bind
construct are available, which this paper will describe. Several
examples from recent projects will be provided as illustrations.

I. INTRODUCTION & MOTIVATION
The SystemVerilog bind construct was originally

envisioned to allow verification engineers to insert assertions
into design RTL in an unobtrusive way. Before its
introduction, such verification code was typically appended to
the end of the designer’s RTL module, protected by pre-
processor defines so they could be easily removed. Since the
verification code was not synthesizable, it was surrounded by
synthesis pragmas to avoid problems in synthesis. This
approach raised a number of methodological and
administrative challenges stemming from the fact that design
and verification teams ought to operate independently, with
their own databases. Design engineers don’t like anybody else
touching their code.

// Example showing direct inclusion of verification
// code in DUT
module design (...);
 // ...
 // synthesizable, RTL description of something
 // ...

// synopsys translate_off
`ifdef EMBED_VERIFICATION_CODE

 assert (blah_blah);
 internal_bus_mon u_mon(
 .clk(clk),
 .signal(signal)
);
`endif
// synopsys translate_on

endmodule
Listing 1

An alternative approach was to place assertions inside a
module that was instantiated in the verification environment,
and not in the DUT. Here, connections had to be made
between the module and signals buried within the DUT, as
shown in Figure 1 and Listing 2. Hierarchical path names to
the internal DUT signals need to be used, making the
connection process error-prone and dependent on the design
hierarchy, which often changes late in the design cycle, and
without advance notice.

u_dut
u_long

u_hier

u_path

testbench_top

monitor

signal

signal

clk

clkgen

clk

Figure 1
// Example showing hookup using hier. paths into DUT

module testbench_top;
 DUT u_dut(...);

 assert (u_dut.u_long.u_hier.u_path.blah_blah);

 internal_bus_mon u_mon(
 .clk(u_dut.u_long.u_hier.u_path.clk),
 .signal(u_dut.u_long.u_hier.u_path.signal)
);
endmodule
Listing 2

The bind construct elegantly solves both problems,
specifying code to be inserted into the target modules/instances
at elaboration time before simulation starts. The DUT is
unmodified and thus neither the designer nor the backend team
are affected. The SystemVerilog LRM [3] defines two variants
of the bind directive, shown below:

• a module-based form:
bind dut_module module_to_bind

 bind_inst(...);

• an instanced-based form:
bind dut_module:hier_path

 module_to_bind
 bind_inst(...);

The module-based form of the construct inserts into every
instance of the target module in the design, regardless of
hierarchical path, and thus is robust to hierarchy changes. The
instance-based form can target specific instances of a target
module, but requires that the hierarchical path to that instance
be specified. This dependence on hierarchical paths negates
much of the benefit of using binds. The rest of this paper will
only focus on the module-based form.

To avoid confusion, some terminology needs to be defined.
In every bind directive, there are three elements:

• the verification module (e.g., module_to_bind) that
is to be bound, and the resulting instance(s), which we
will refer to as ‘bound instance’, or ‘bound code’.
[parasite]

• the target module (e.g., dut_module) where the
‘bound instance’ is instantiated. This is called the ‘bind
target’. [host]

• the scope (typically the top level verification module)
containing the bind directive, also called the ‘bind
instantiation’. [where the host got sick]

In addition to binding assertions, several papers [1][4] in
previous years have discussed the possibility of binding
functional coverage objects into design code. We consider
both these use cases, the binding of assertions or coverage
objects, to be passive binding. Once bound into the DUT, the
verification environment has no ability to interact with the
bound code at run-time. The code operates autonomously,
observing the surroundings it has been bound into, collecting
information or triggering assertions as necessary.

More complex use cases are possible if it were possible for
the verification environment to communicate with the bound
code in a dynamic manner at run-time. This paper describes a
technique to achieve this communication, which we shall refer
to as active binding. Section II describes how the mechanism
works as well as the necessary preliminaries. a simple example
is described in Section III, while Section IV illustrates an
advanced example. The use case in this advanced example was
the motivating factor behind this work.

II. HOW ACTIVE BINDING WORKS
Consider a transactor, loosely defined as something that has

a signal level interface and a control API. Interaction with the
DUT is through its signal level interface, and the control API is
used by the testbench. A transactor, implemented as a module,
can be bound deep inside a DUT, with the bind instantiation
describing how the signal level interface is connected. With
active binding, the control API can be used by the testbench to
interact with the transactor.

task1
task2

function1
function2

TRANSACTOR

controls

si
gn

al
 in

te
rf

ac
e

control
API

Figure 2

A control API consisting of a set of task/function
prototypes can be specified as an abstract base class with pure
virtual methods. This base class is defined in a package,
making it globally visible, accessible from any part of the
testbench. Listing 3 illustrates this.

Inside the transactor, a concrete class derived from the
abstract base is defined, and implements each of the methods in
the API, as shown in Listing 4. Thus, the manner in which the
API relates to the signal interface is defined. A single instance
of the concrete class, also defined in the transactor, serves as an
object that other testbench components can use to interact with
the transactor.

package axi_xactor_api_pkg;
virtual class axi_xactor_api;
 pure virtual task
 SEND_TO_DUT(input axi_transaction t_in);
 pure virtual task
 WAIT_FOR_TRANSACTION(output axi_transaction
 t_out);
endclass
endpackage
Listing 3

 This elegant technique of connecting testbench to DUT has
been discussed in [2], [5] and [6]. By building on it with the
bind construct, the need for hierarchical references is
eliminated. At time 0, the transactor API object described
above is created and assigned into a symbol table implemented
in a package (bind_dropbox). Once the object is registered
into the symbol table, other testbench components recover it to
gain access to the transactor. Since a full testbench may
contain many bind directives, each of which potentially
yielding multiple objects, a unique identifying string is
required as the index into the table. The %m operator returns
the hierarchical path in which it is used and is thus unique and
ideal for this identifying string. It is important to note that the
instance name used in the bind directive is the last part of the
dotted name string returned by %m. The internal operation of
the bind_dropbox, described in Section V, takes advantage
of this fact.

module axi_xactor (
 <... signal interface ...>
);
import axi_xactor_api_pkg::axi_xactor_api;
event got_transaction;
axi_transaction saved_t;
always @(posedge clk)
 begin
 // ... monitor signal interface ...
 // ... save info in saved_t ...
 if (transaction_done)
 ->got_transaction;
 end

 // concrete implementation of axi_xactor_api
class my_axi_xactor_api extends axi_xactor_api;
 task SEND_TO_DUT(input axi_transaction t_in);
 if (!passive)
 // ... wiggle signal interface ...
 endtask

 task WAIT_FOR_TRANSACTION(output axi_transaction
 t_out);
 @(got_transaction) t_out = saved_t;
 endtask
endclass

 // one instance of concrete implementation,
 // automatically constructed at time 0 (before all
 // initial blocks)
my_axi_xactor_api _my_api = new;

 // register above instance in the dropbox
initial bind_dropbox::register(
 $psprintf("%m"), _my_api);

endmodule
Listing 4

Combining binds with a package based symbol table was
also described in [5]. Astute reads may observe that UVM
provides the same mechanism through its resources database.
The underlying SystemVerilog constructs used to implement
the UVM resources database is similar to our approach, which
is methodology neutral.

The technique of using abstract base classes to connect to a
DUT was also discussed in [6]. There, SystemVerilog
interfaces, rather than Verilog modules, were used in the
context of a UVM-based testbench. The bind directives there
were instance-based and suffered from explicit hierarchical
paths, which our method does not.

Once the entry in the symbol table has been set by the
transactor, the testbench can retrieve the API object, allowing it
to actively interact with it. Since the module-based variant of
the bind directive instantiates the bound code into all instances
of the target module, there is potentially a one-to-many
relationship between bind directive and API objects. The
recovery mechanism returns an array of object/string pairs,
where the string defines the full hierarchical path to the object.
In the case of multiply instantiated target modules, the
testbench must determine which instance it wishes to interact
with.

module testbench;
import axi_xactor_api_pkg::axi_xactor_api;

 DUT u_dut(...);

bind cpu_with_axi axi_xactor bind1
 (... signal connections ...);
bind dma_with_axi axi_xactor bind2
 (... signal connections ...);
initial
 begin
 axi_xactor_api my_apis[$];
 string hier_paths[$];

 bind_dropbox::recover("bind1",
 hier_paths, my_apis);

 assert (hier_paths.size()==1) else $fatal;

 monitor_loop(my_apis[0], "CPU");
 end

initial
 begin
 axi_xactor_api my_apis[$];
 string hier_paths[$];

 bind_dropbox::recover("bind2",
 hier_paths, my_apis);

 fork
 monitor_loop(my_apis[0], "DMA0");
 monitor_loop(my_apis[1], "DMA1");
 join_none
 end

task monitor_loop(axi_xactor_api api, string ID);
 axi_transaction t;
 while(1)
 begin
 api.WAIT_FOR_TRANSACTION(t);
 $display ("detected AXI transaction at %s: %s",
 ID, t.to_string());
 end
endtask

endmodule
Listing 5

cpu_with_axi

bind1 bind2

axi_xactor

axi_fabric

dma_with_axi dma_with_axi

DUT

bind_dropbox

testbench
component

re
co
ve
r

register

reg
iste
r

re
gis
ter

Figure 3

A DUT with an internal AXI-based bus fabric is shown in
Figure 3. There is a CPU and two instances of a DMA, each
with an AXI interface. Listing 5 shows how an AXI transactor
can be bound into each of these for the purposes of monitoring
internal bus activity. The bind directive, bind1, goes into
CPU, while bind2 results in two instances of the transactor

being inserted. At the top level testbench, the handle to each of
the API objects is recovered and passed down to other
testbench code (e.g. monitor_loop), which uses it.

III. A SIMPLE EXAMPLE
The following example illustrates the concepts described in

the previous section. Figure 4 shows a DUT with a register
block, which is further sub-divided into configuration registers
and FIFO registers.

regblk_top

u_cfg u_fifo

a_signal

b_signal

wp

rp

empty

full

tb_register_probe
Figure 4

A testbench containing a register model (such as the UVM
register layer) may wish to track and check the DUT’s
registers. Some registers, such as FIFO registers, are not
predictable since they operate autonomously, and thus white-
box testing is required. In other words, internal probing of the
DUT is used to detect register state changes, which are then
reflected in the testbench’s class-based register model. A
solution to this problem is given in [7], but relies on the VPI
mechanism, as well as using hard-coded hierarchical paths.

Using binds to insert an observer module (shown as a cloud
in Figure 4), provides a better solution. Note that the bind need
not target the lowest leaf-level module. The port connections
in the bind instance may use downward paths, since all signals
visible at the targeted module are available for use. The bind
directive used is shown in Listing 6.

bind reg_top tb_register_probe bind_inst(
 .a_signal_from_cfg_regs(u_cfg.a_signal),
 .b_signal_from_cfg_regs(u_cfg.b_signal),
 .fifo_wp_from_fifo_regs(u_fifo.wp),
 .fifo_rp_from_fifo_regs(u_fifo.rp)
);
Listing 6

The object API of the observer module embedded in the
DUT, when recovered by the testbench, is the mechanism that
bridges the DUT to class-based verification components, such
as the UVM register layer.

Signals from multiple register sub-blocks may be
aggregated into a larger monitor module, simplifying the
interface between the DUT and the class-based world. The
bind target is chosen high enough in the hierarchy such that
aggregation is possible, but low enough to be resilient to
changes in hierarchy. As subsystems are built from IP blocks,
and SoCs are built from subsystems, these higher layers of
design hierarchy are more likely to change as opposed to
hierarchy within the IP block.

This example serves to illustrate a solution to the more
general problem of connecting legacy (or module-based)
transactors into a class-based (e.g. UVM) methodology. The
preferred use of virtual interfaces by UVM does not work well
here. The 2009 revision of the SystemVerilog LRM has closed
a loophole, no longer allowing interfaces that have external
hierarchical references to be made virtual. The use of abstract
classes in our example eliminates the use of virtual interfaces,
and the use of binds eliminates the need for hierarchical
references.

IV. AN ADVANCED EXAMPLE
The advanced example presented in this section

demonstrates how, when up-module references are added to
active binding, the testbench can intrusively manipulate
memories internal to the DUT. This is achieved without
explicit knowledge of where in the design hierarchy the
memory lies, and without the use of force statements.

Modern SoCs containing embedded CPUs have numerous
internal memories that are required by the CPU to operate.
Key among them are the memories used to hold the code and
data binaries which represent the program the CPU is to
execute. In a real system, these may be ROMs, or more
typically, RAMs which are loaded from external non-volatile
store before the CPU is released from reset. This is a time-
consuming operation that is not practical (and not interesting)
to simulate, and thus is often skipped and replaced with a
backdoor, zero-time initialization mechanism.

The internal memories may be modelled abstractly using
behavioural models, or more accurately using technology
specific simulation models. In both cases, a 2-dimensional
array representing the memory elements is at the heart of it,
surrounded by a signal interface, timing elements and timing
checks. We use a technology-neutral wrapper with
standardized signal names to facilitate easy switching of
technologies. This wrapper also supplies backdoor read/write
functions and implements the necessary, wrapper-specific
accesses to the 2-dimentional array.

CPU
core

external DDR
system memory

SPI boot
flash

I-cache/I-tag
memories

D-cache/D-tag
memories

internal
data

scratchpad
(DSPRAM)

internal
instruction
scratchpad
(ISPRAM) SoC

chip

Figure 5

The design described above is illustrated in Figure 5.
Blocks marked with a star are memories (with their wrappers)
and candidate bind targets.

The bind directive targets the memory wrapper module.
The bound transactor module being inserted differs slightly
from the standard one shown in Figure 2. While it keeps its
control API interface, no signal interface is required; i.e.: a
module with no ports.

The bound code interacts with its DUT through function
calls to the read/write functions in the wrapper, which does the
rest of the work. From the scope of the bound transactor, the
wrapper functions are accessible through up-module reference
(see section 23.8.1 of [3]). An elaboration-time error occurs if
the name resolution mechanism fails.

This up-module reference serves to replace the traditional
signal-level interface, and imposes the same strict elaboration-
time check. In other words, bound code that takes advantage
of up-module references assume that they will be instantiated
in a scope where the reference will eventually resolve. A
module which instantiates a sub-module, but uses incorrect
port names causes the same elaboration-time error, for the
same reason.

(1) module spram_mem_accessor();
(2) import mem_accessor_pkg::mem_accessor_base;
(3)
(4) function void _write_byte(input [31:0] a,
(5) input [7:0] b);
(6) write_byte(a,b); // up-module reference
(7) endfunction
(8) function reg [7:0] _read_byte(input [31:0] a);
(9) return read_byte(a); // up-module reference
(10) endfunction
(11)
(12) class my_mem_accessor extends
(13) mem_accessor_base;
(14) virtual function void write_byte
(15) (input [31:0] a, [7:0] b);
(16) _write_byte(a,b);
(17) endfunction
(18) virtual function reg [7:0] read_byte
(19) (input [31:0] a);
(20) return _read_byte(a);
(21) endfunction
(22) endclass
(23)
(24) my_mem_accessor _mem_a = new;
(25) initial bind_dropbox::register
(26) ($psprintf("%m"), _mem_a);
(27)
(28) endmodule

Listing 7

Listing 7 shows a module which expects to be bound into a
target module which implements the write_byte() and
read_byte() functions. Note the similarity to Listing 4. It
is irrelevant what the name of this module is, provided these
two functions exist.

module ispram_16kB;

reg [7:0] mem[0:16383];

spram_mem_accessor

function write_byte()

function read_byte()

bind ispram_16kB
spram_mem_accessor
bind1();

reg [7:0] mem[0:16383];

spram_mem_accessor

function read_byte()

function write_byte()

module dspram_16kB;

bind dspram_16kB
spram_mem_accessor
bind2();

Figure 6

This is illustrated in Figure 6, which shows how the
spram_mem_accessor module successfully binds to both
ispram_16kB and dspram_32kB, since both implement
the write_byte() and read_byte() functions.

Lines 12-22 in Listing 7 define the concrete
implementation of the abstract base class, defining the
write_byte() and read_byte() functions required by
the base. An instance of this is created at time 0 on line 24.
Line 25 registers this into the bind dropbox, where the
testbench can recover it.

When the testbench uses the API object, calls to
write_byte() will map to the function on lines 14-17,
which will call a secondary function on lines 4-7. Note that the
name has been slightly changed, to avoid name clashing.
Continuing on, line 6 refers to the write_byte() function,
which does not resolve to anything in this module. The
enclosing scope (i.e., the bind target module) is searched,
where we expect the name to be found.

Note that the up-module references on lines 6 and 9 work
only because the identifier is a task/function. Direct access to
mem[] does not work since it is not a scope that the up-
module reference can resolve, and thus we rely on a wrapper
function to create such a scope. An alternative way of writing
these references, shown in Listing 8a, works without the
wrapper. The disadvantage here is that the name of the module
needs to be hard-coded, since it provides the encompassing
scope the name-resolution mechanism needs. The accessor
transactor module will need to be duplicated and the bind
directive (Listing 8b) must match each to the appropriate
target.

module spram_mem_accessor_ispram_16kB;

function void _write_byte(input [31:0] a,
 input [7:0] b);
 ispram_16kB.mem[a] = b; // up-module reference
endfunction

Listing 8a

bind ispram_16kB
 spram_mem_accessor_ispram_16kB bind1();
bind dspram_32kB
 spram_mem_accessor_dspram_32kB bind2();
Listing 8b

By using this mechanism, a chip-level testbench can pre-
initialize internal memories with the contents required for the
CPU to operate. Such a system was implemented in the
testbench for a recent SoC project. From a command-line
argument, the ELF program file can be specified from which S-
records are formed, translated into byte-wise memory writes,
decoded through an address map, and initialized into the
appropriate memory models. The state of the system after this
process closely matches that of a real system after a JTAG
debugger has loaded a program into a target. The processor is
then released from reset, happily running the loaded program,
oblivious to how it got into memory.

V. IMPLEMENTATION DETAILS OF BIND_DROPBOX
The register and recover mechanism key to active binding

are implemented in a SystemVerilog package, called
bind_dropbox. Some specific points to how the two
functions operate are described here.

In the bind_dropbox package is an associative array,
which serves as a lookup table. The table elements are objects
of a control API, and are indexed by string. The index strings
must be unique.

Each instance that results from a bind directive needs to
call the register function in the dropbox, providing a
unique string as well as the control API object. The %m
mechanism is used in the call to bind_dropbox::
register, automatically providing a unique string. Since
this string is a hierarchical path, it is in the form of a dotted
name. The last component of the dotted name is the instance
name of the bind directive. Listing 9 shows the code for the
associative array and the register function.

package bind_dropbox;
import mem_accessor_pkg::*;
typedef struct {
 string hier_path;
 mem_accessor_base api_obj;
} dropbox_t;
typedef dropbox_t dropbox_t_list[$];

// define an assoc. array for the dropbox
dropbox_t_list lookup[string];

function void register(string hier_path,
 mem_accessor_base obj);
 dropbox_t a;
 string l[$];
 // split the hier_path (a dotted name)
 // into its parts.
 string_pkg::string_split(hier_path, l, “.”);
 // glue all but the last one back together.
 // This is basically basename(hier_path);
 a.hier_path = string_pkg::string_join
 (l[0:$-1], “.”);
 a.api_obj = obj;

 // insert entry into list, using the last part
 // as an index. There may be multiple entries
 // per index.
 lookup[l[$]].push_back(a);
endfunction

endpackage

Listing 9

A verification testbench using active binding will contain
one or more bind directives. The instance name of each of
these directives must be unique, since this used to recover the
control API object. Bind directives are elaboration time
constructs and thus take effect before time 0. Registration into
the dropbox happens in an initial block, at time 0. At run-time,
presumably in an initialization phase, the objects need to be
recovered, using the unique bind instance names. The
implementation for recover is shown in Listing 10.

function void recover(input string ref_string,
 output string hier_paths[$],
 output mem_accessor_base objs[$]);
 dropbox_t_list list;
 hier_paths = {}; objs = {};
 if (!lookup.exists(ref_string)) return;

 list = lookup[ref_string];
 foreach(list[i])
 begin
 hier_paths.push_back(list[i].hier_path);
 objs.push_back(list[i].api_obj);
 end
endfunction

Listing 10

This method uses module-based binding, specifying the
modules to be targeted and not hierarchical paths to individual
instances. Therefore, each bind directive may result in
multiple instantiations. For a given call to recover, multiple
matches may be returned, which the verification testbench
needs to be aware of. The list of unique hierarchical paths
returned aids the testbench in determining which instantiation
is interesting.

Not all control APIs are identical — transactors of different
types have different control mechanisms. The example above
shows a lookup table with elements of identical type
(mem_accessor_base), for use in the environment
described in Section IV. As written, all bind directives must
bind things that have the same control API, a very limiting
restriction. For the bind dropbox to support heterogeneous
APIs, an umbrella base class from which all APIs are derived
must be defined. It contains no objects or methods, serving
only the purpose of parenting the various differing control
APIs. This extra level means that $cast must be used to
regain the proper type of the objects after they have been
recovered from the dropbox.

CONCLUSION
By combining the technique of using abstract base classes

for transactors with the bind construct, this paper has shown
how these transactors can be instantiated inside a DUT without
hierarchical references, and controlled dynamically at runtime.
The technique described here is methodology neutral.

We have deployed this technique in the full-chip
verification environment for a recent SoC. Active binding was
used to place transactors inside the SoC’s internal memories,
which the testbench subsequently uses to backdoor initialize
with program code to be executed by the embedded CPU.

ACKNOWLEDGMENT
The author wishes to thank J. Bromley and S. Bresticker for

their invaluable comments during the development of this
paper.

REFERENCES
[1] B. Bailey and P. Marriott, “Functional coverage using SystemVerilog,”

Design & Verification Conference, Feb. 2006, San Jose, CA.
[2] J. Bromley and D. Rich, “Abstract BFMs Outshine Virtual Interfaces for

Advanced SystemVerilog Testbenches,” Design & Verification
Conference, Feb. 2008, San Jose, CA.

[3] IEEE, “Standard for SystemVerilog — Unified Hardware Design,
Specification, and Verification Language,” IEEE Std. 1800-2009.

[4] M. Baird, “Coverage Driven Verification of an Unmodified DUT within
an OVM Testbench,” Design & Verification Conference, Feb. 2010, San
Jose, CA.

[5] K. Ho, “Using SystemVerilog Packages in Real Verification Projects,”
Design & Verification Conference, Feb. 2010, San Jose, CA.

[6] D. Rich, “The Missing Link: The Testbench to DUT Connection,”
Design & Verification Conference, Feb. 2011, San Jose, CA.

[7] J. Bromley, “I Spy with My VPI: Monitoring Signals by Name, for the
UVM Register Package and More,” SNUG 2012, Munich, Germany.

