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Abstract—Verification engineers have long known of the 
advantages of using the SystemVerilog bind construct to tie their 
verification code to design code.  Sets of assertions, wrapped in 
modules or interfaces, can be bound to design modules in a 
reusable, hierarchically independent manner.  Similarly, 
functional coverage monitors can be bound to the DUT without 
having to modify the design RTL code.  These and other current 
use models for binds are passive.  We use the term passive, since 
once the code to be bound has been sent into the design 
hierarchy, the testbench code loses all contact with it. 

This paper introduces a new technique where binds are 
active.  The testbench code can actively manage and control, at 
runtime, the code that was bound into the design.  By combining 
the use of packages as well as abstract base classes with the bind 
construct, this paper details how active binding can be realized.  
The solution uses basic SystemVerilog constructs defined in 
IEEE 1800-2009 [3], and works on the simulators from all major 
vendors.  It is also independent of methodologies such as UVM, 
OVM or VMM, allowing the testbench architect to deploy these 
techniques regardless of the chosen methodology. 

With active binding, new use models for using the bind 
construct are available, which this paper will describe.  Several 
examples from recent projects will be provided as illustrations. 

I. INTRODUCTION & MOTIVATION 
The SystemVerilog bind construct was originally 

envisioned to allow verification engineers to insert assertions 
into design RTL in an unobtrusive way.  Before its 
introduction, such verification code was typically appended to 
the end of the designer’s RTL module, protected by pre-
processor defines so they could be easily removed.  Since the 
verification code was not synthesizable, it was surrounded by 
synthesis pragmas to avoid problems in synthesis.  This 
approach raised a number of methodological and 
administrative challenges stemming from the fact that design 
and verification teams ought to operate independently, with 
their own databases.  Design engineers don’t like anybody else 
touching their code. 

// Example showing direct inclusion of verification 
// code in DUT 
module design (...); 
  //               ... 
  // synthesizable, RTL description of something 
  //               ... 
 
// synopsys translate_off 
`ifdef EMBED_VERIFICATION_CODE 

    assert (blah_blah); 
    internal_bus_mon u_mon( 
      .clk(clk), 
      .signal(signal) 
    ); 
`endif 
// synopsys translate_on 
 
endmodule 
Listing 1 

An alternative approach was to place assertions inside a 
module that was instantiated in the verification environment, 
and not in the DUT.  Here, connections had to be made 
between the module and signals buried within the DUT, as 
shown in Figure 1 and Listing 2.  Hierarchical path names to 
the internal DUT signals need to be used, making the 
connection process error-prone and dependent on the design 
hierarchy, which often changes late in the design cycle, and 
without advance notice. 
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Figure 1 
// Example showing hookup using hier. paths into DUT 
 
module testbench_top; 
   DUT u_dut(...); 
 
   assert (u_dut.u_long.u_hier.u_path.blah_blah); 
 
   internal_bus_mon u_mon( 
      .clk(u_dut.u_long.u_hier.u_path.clk), 
      .signal(u_dut.u_long.u_hier.u_path.signal) 
   ); 
endmodule 
Listing 2 



The bind construct elegantly solves both problems, 
specifying code to be inserted into the target modules/instances 
at elaboration time before simulation starts.  The DUT is 
unmodified and thus neither the designer nor the backend team 
are affected.  The SystemVerilog LRM [3] defines two variants 
of the bind directive, shown below: 

• a module-based form: 
bind dut_module module_to_bind 

         bind_inst(...); 

• an instanced-based form: 
bind dut_module:hier_path 

         module_to_bind 
         bind_inst(...); 

The module-based form of the construct inserts into every 
instance of the target module in the design, regardless of 
hierarchical path, and thus is robust to hierarchy changes.  The 
instance-based form can target specific instances of a target 
module, but requires that the hierarchical path to that instance 
be specified.  This dependence on hierarchical paths negates 
much of the benefit of using binds.  The rest of this paper will 
only focus on the module-based form. 

To avoid confusion, some terminology needs to be defined.  
In every bind directive, there are three elements: 

• the verification module (e.g., module_to_bind) that 
is to be bound, and the resulting instance(s), which we 
will refer to as ‘bound instance’, or ‘bound code’. 
[parasite] 

• the target module (e.g., dut_module) where the 
‘bound instance’ is instantiated. This is called the ‘bind 
target’. [host] 

• the scope (typically the top level verification module) 
containing the bind directive, also called the ‘bind 
instantiation’. [where the host got sick] 

In addition to binding assertions, several papers [1][4] in 
previous years have discussed the possibility of binding 
functional coverage objects into design code.  We consider 
both these use cases, the binding of assertions or coverage 
objects, to be passive binding.  Once bound into the DUT, the 
verification environment has no ability to interact with the 
bound code at run-time.  The code operates autonomously, 
observing the surroundings it has been bound into, collecting 
information or triggering assertions as necessary. 

More complex use cases are possible if it were possible for 
the verification environment to communicate with the bound 
code in a dynamic manner at run-time.  This paper describes a 
technique to achieve this communication, which we shall refer 
to as active binding.  Section II describes how the mechanism 
works as well as the necessary preliminaries.  a simple example 
is described in Section III, while Section IV illustrates an 
advanced example.  The use case in this advanced example was 
the motivating factor behind this work. 

II. HOW ACTIVE BINDING WORKS 
Consider a transactor, loosely defined as something that has 

a signal level interface and a control API.  Interaction with the 
DUT is through its signal level interface, and the control API is 
used by the testbench.  A transactor, implemented as a module, 
can be bound deep inside a DUT, with the bind instantiation 
describing how the signal level interface is connected.  With 
active binding, the control API can be used by the testbench to 
interact with the transactor. 
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Figure 2 

A control API consisting of a set of task/function 
prototypes can be specified as an abstract base class with pure 
virtual methods.  This base class is defined in a package, 
making it globally visible, accessible from any part of the 
testbench.  Listing 3 illustrates this. 

Inside the transactor, a concrete class derived from the 
abstract base is defined, and implements each of the methods in 
the API, as shown in Listing 4.  Thus, the manner in which the 
API relates to the signal interface is defined.  A single instance 
of the concrete class, also defined in the transactor, serves as an 
object that other testbench components can use to interact with 
the transactor. 

package axi_xactor_api_pkg; 
virtual class axi_xactor_api; 
  pure virtual task 
       SEND_TO_DUT(input axi_transaction t_in); 
  pure virtual task 
       WAIT_FOR_TRANSACTION(output axi_transaction 
                                   t_out); 
endclass 
endpackage 
Listing 3 

 This elegant technique of connecting testbench to DUT has 
been discussed in [2], [5] and [6].  By building on it with the 
bind construct, the need for hierarchical references is 
eliminated.  At time 0, the transactor API object described 
above is created and assigned into a symbol table implemented 
in a package (bind_dropbox).  Once the object is registered 
into the symbol table, other testbench components recover it to 
gain access to the transactor.  Since a full testbench may 
contain many bind directives, each of which potentially 
yielding multiple objects, a unique identifying string is 
required as the index into the table.  The %m operator returns 
the hierarchical path in which it is used and is thus unique and 
ideal for this identifying string.  It is important to note that the 
instance name used in the bind directive is the last part of the 
dotted name string returned by %m.  The internal operation of 
the bind_dropbox, described in Section V, takes advantage 
of this fact. 



module axi_xactor ( 
    <... signal interface ...> 
); 
import axi_xactor_api_pkg::axi_xactor_api; 
event got_transaction; 
axi_transaction saved_t; 
always @(posedge clk) 
  begin 
   // ... monitor signal interface ... 
   // ... save info in saved_t ... 
   if (transaction_done) 
     ->got_transaction; 
  end 
 
  // concrete implementation of axi_xactor_api 
class my_axi_xactor_api extends axi_xactor_api; 
  task SEND_TO_DUT(input axi_transaction t_in); 
    if (!passive) 
       // ... wiggle signal interface ... 
  endtask 
 
  task WAIT_FOR_TRANSACTION(output axi_transaction 
                                   t_out); 
    @(got_transaction) t_out = saved_t; 
  endtask 
endclass 
 
  // one instance of concrete implementation, 
  // automatically constructed at time 0 (before all 
  // initial blocks) 
my_axi_xactor_api _my_api = new; 
 
  // register above instance in the dropbox 
initial bind_dropbox::register( 
                        $psprintf("%m"), _my_api); 
 
endmodule 
Listing 4 

Combining binds with a package based symbol table was 
also described in [5].  Astute reads may observe that UVM 
provides the same mechanism through its resources database.  
The underlying SystemVerilog constructs used to implement 
the UVM resources database is similar to our approach, which 
is methodology neutral. 

The technique of using abstract base classes to connect to a 
DUT was also discussed in [6].  There, SystemVerilog 
interfaces, rather than Verilog modules, were used in the 
context of a UVM-based testbench.  The bind directives there 
were instance-based and suffered from explicit hierarchical 
paths, which our method does not. 

Once the entry in the symbol table has been set by the 
transactor, the testbench can retrieve the API object, allowing it 
to actively interact with it.  Since the module-based variant of 
the bind directive instantiates the bound code into all instances 
of the target module, there is potentially a one-to-many 
relationship between bind directive and API objects.  The 
recovery mechanism returns an array of object/string pairs, 
where the string defines the full hierarchical path to the object.  
In the case of multiply instantiated target modules, the 
testbench must determine which instance it wishes to interact 
with. 

module testbench; 
import axi_xactor_api_pkg::axi_xactor_api; 
 
    DUT u_dut(...); 

 
bind cpu_with_axi axi_xactor bind1 
                     (... signal connections ...); 
bind dma_with_axi axi_xactor bind2 
                     (... signal connections ...); 
initial 
  begin 
  axi_xactor_api my_apis[$]; 
  string hier_paths[$]; 
   
  bind_dropbox::recover("bind1", 
                        hier_paths, my_apis); 
 
  assert (hier_paths.size()==1) else $fatal; 
 
  monitor_loop(my_apis[0], "CPU"); 
  end 
 
initial 
  begin 
  axi_xactor_api my_apis[$]; 
  string hier_paths[$]; 
   
  bind_dropbox::recover("bind2", 
                         hier_paths, my_apis); 
 
  fork 
    monitor_loop(my_apis[0], "DMA0"); 
    monitor_loop(my_apis[1], "DMA1"); 
  join_none 
  end 
 
task monitor_loop(axi_xactor_api api, string ID); 
  axi_transaction t; 
  while(1) 
    begin 
    api.WAIT_FOR_TRANSACTION(t); 
    $display ("detected AXI transaction at %s: %s", 
                     ID, t.to_string()); 
    end 
endtask 
 
endmodule 
Listing 5 
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Figure 3 

A DUT with an internal AXI-based bus fabric is shown in 
Figure 3.  There is a CPU and two instances of a DMA, each 
with an AXI interface.  Listing 5 shows how an AXI transactor 
can be bound into each of these for the purposes of monitoring 
internal bus activity.  The bind directive, bind1, goes into 
CPU, while bind2 results in two instances of the transactor 



being inserted.  At the top level testbench, the handle to each of 
the API objects is recovered and passed down to other 
testbench code (e.g. monitor_loop), which uses it. 

III. A SIMPLE EXAMPLE 
The following example illustrates the concepts described in 

the previous section.  Figure 4 shows a DUT with a register 
block, which is further sub-divided into configuration registers 
and FIFO registers. 
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A testbench containing a register model (such as the UVM 
register layer) may wish to track and check the DUT’s 
registers.  Some registers, such as FIFO registers, are not 
predictable since they operate autonomously, and thus white-
box testing is required.  In other words, internal probing of the 
DUT is used to detect register state changes, which are then 
reflected in the testbench’s class-based register model.  A 
solution to this problem is given in [7], but relies on the VPI 
mechanism, as well as using hard-coded hierarchical paths. 

Using binds to insert an observer module (shown as a cloud 
in Figure 4), provides a better solution.  Note that the bind need 
not target the lowest leaf-level module.  The port connections 
in the bind instance may use downward paths, since all signals 
visible at the targeted module are available for use.  The bind 
directive used is shown in Listing 6. 

bind reg_top tb_register_probe bind_inst( 
  .a_signal_from_cfg_regs(u_cfg.a_signal), 
  .b_signal_from_cfg_regs(u_cfg.b_signal), 
  .fifo_wp_from_fifo_regs(u_fifo.wp), 
  .fifo_rp_from_fifo_regs(u_fifo.rp) 
); 
Listing 6 

The object API of the observer module embedded in the 
DUT, when recovered by the testbench, is the mechanism that 
bridges the DUT to class-based verification components, such 
as the UVM register layer. 

Signals from multiple register sub-blocks may be 
aggregated into a larger monitor module, simplifying the 
interface between the DUT and the class-based world.  The 
bind target is chosen high enough in the hierarchy such that 
aggregation is possible, but low enough to be resilient to 
changes in hierarchy.  As subsystems are built from IP blocks, 
and SoCs are built from subsystems, these higher layers of 
design hierarchy are more likely to change as opposed to 
hierarchy within the IP block. 

This example serves to illustrate a solution to the more 
general problem of connecting legacy (or module-based) 
transactors into a class-based (e.g. UVM) methodology.  The 
preferred use of virtual interfaces by UVM does not work well 
here.  The 2009 revision of the SystemVerilog LRM has closed 
a loophole, no longer allowing interfaces that have external 
hierarchical references to be made virtual.  The use of abstract 
classes in our example eliminates the use of virtual interfaces, 
and the use of binds eliminates the need for hierarchical 
references. 

IV. AN ADVANCED EXAMPLE 
The advanced example presented in this section 

demonstrates how, when up-module references are added to 
active binding, the testbench can intrusively manipulate 
memories internal to the DUT.  This is achieved without 
explicit knowledge of where in the design hierarchy the 
memory lies, and without the use of force statements. 

Modern SoCs containing embedded CPUs have numerous 
internal memories that are required by the CPU to operate.  
Key among them are the memories used to hold the code and 
data binaries which represent the program the CPU is to 
execute.  In a real system, these may be ROMs, or more 
typically, RAMs which are loaded from external non-volatile 
store before the CPU is released from reset.  This is a time-
consuming operation that is not practical (and not interesting) 
to simulate, and thus is often skipped and replaced with a 
backdoor, zero-time initialization mechanism. 

The internal memories may be modelled abstractly using 
behavioural models, or more accurately using technology 
specific simulation models.  In both cases, a 2-dimensional 
array representing the memory elements is at the heart of it, 
surrounded by a signal interface, timing elements and timing 
checks.  We use a technology-neutral wrapper with 
standardized signal names to facilitate easy switching of 
technologies.  This wrapper also supplies backdoor read/write 
functions and implements the necessary, wrapper-specific 
accesses to the 2-dimentional array. 
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The design described above is illustrated in Figure 5.  
Blocks marked with a star are memories (with their wrappers) 
and candidate bind targets. 

The bind directive targets the memory wrapper module.  
The bound transactor module being inserted differs slightly 
from the standard one shown in Figure 2.  While it keeps its 
control API interface, no signal interface is required; i.e.: a 
module with no ports. 

The bound code interacts with its DUT through function 
calls to the read/write functions in the wrapper, which does the 
rest of the work.  From the scope of the bound transactor, the 
wrapper functions are accessible through up-module reference 
(see section 23.8.1 of [3]).  An elaboration-time error occurs if 
the name resolution mechanism fails.  

This up-module reference serves to replace the traditional 
signal-level interface, and imposes the same strict elaboration-
time check.  In other words, bound code that takes advantage 
of up-module references assume that they will be instantiated 
in a scope where the reference will eventually resolve.  A 
module which instantiates a sub-module, but uses incorrect 
port names causes the same elaboration-time error, for the 
same reason. 

( 1) module spram_mem_accessor(); 
( 2) import mem_accessor_pkg::mem_accessor_base; 
( 3) 
( 4) function void _write_byte(input [31:0] a, 
( 5)                           input  [7:0] b); 
( 6)   write_byte(a,b);       // up-module reference 
( 7) endfunction 
( 8) function reg [7:0] _read_byte(input [31:0] a); 
( 9)   return read_byte(a);   // up-module reference 
(10) endfunction 
(11) 
(12) class my_mem_accessor extends 
(13)                         mem_accessor_base; 
(14)   virtual function void write_byte 
(15)                      (input [31:0] a, [7:0] b); 
(16)     _write_byte(a,b); 
(17)   endfunction 
(18)   virtual function reg [7:0] read_byte 
(19)                      (input [31:0] a); 
(20)     return _read_byte(a); 
(21)   endfunction 
(22) endclass 
(23) 
(24) my_mem_accessor _mem_a = new; 
(25) initial bind_dropbox::register 
(26)                     ($psprintf("%m"), _mem_a); 
(27) 
(28) endmodule 

Listing 7 

Listing 7 shows a module which expects to be bound into a 
target module which implements the write_byte() and 
read_byte() functions.  Note the similarity to Listing 4.  It 
is irrelevant what the name of this module is, provided these 
two functions exist. 

module ispram_16kB;

reg [7:0] mem[0:16383];

spram_mem_accessor

function write_byte()

function read_byte()

bind ispram_16kB
spram_mem_accessor
bind1();

reg [7:0] mem[0:16383];

spram_mem_accessor

function read_byte()

function write_byte()

module dspram_16kB;

bind dspram_16kB
spram_mem_accessor
bind2();  

Figure 6 

This is illustrated in Figure 6, which shows how the 
spram_mem_accessor module successfully binds to both 
ispram_16kB and dspram_32kB, since both implement 
the write_byte() and read_byte() functions. 

Lines 12-22 in Listing 7 define the concrete 
implementation of the abstract base class, defining the 
write_byte() and read_byte() functions required by 
the base.  An instance of this is created at time 0 on line 24.  
Line 25 registers this into the bind dropbox, where the 
testbench can recover it. 

When the testbench uses the API object, calls to 
write_byte() will map to the function on lines 14-17, 
which will call a secondary function on lines 4-7.  Note that the 
name has been slightly changed, to avoid name clashing.  
Continuing on, line 6 refers to the write_byte() function, 
which does not resolve to anything in this module.  The 
enclosing scope (i.e., the bind target module) is searched, 
where we expect the name to be found. 

Note that the up-module references on lines 6 and 9 work 
only because the identifier is a task/function.  Direct access to 
mem[] does not work since it is not a scope that the up-
module reference can resolve, and thus we rely on a wrapper 
function to create such a scope.  An alternative way of writing 
these references, shown in Listing 8a, works without the 
wrapper.  The disadvantage here is that the name of the module 
needs to be hard-coded, since it provides the encompassing 
scope the name-resolution mechanism needs.  The accessor 
transactor module will need to be duplicated and the bind 
directive (Listing 8b) must match each to the appropriate 
target. 

module spram_mem_accessor_ispram_16kB; 
 
function void _write_byte(input [31:0] a, 
                          input [7:0] b); 
  ispram_16kB.mem[a] = b;     // up-module reference 
endfunction 
              . . .          . . . 

Listing 8a 

bind ispram_16kB 
        spram_mem_accessor_ispram_16kB bind1(); 
bind dspram_32kB 
        spram_mem_accessor_dspram_32kB bind2(); 
Listing 8b 



By using this mechanism, a chip-level testbench can pre-
initialize internal memories with the contents required for the 
CPU to operate.  Such a system was implemented in the 
testbench for a recent SoC project.  From a command-line 
argument, the ELF program file can be specified from which S-
records are formed, translated into byte-wise memory writes, 
decoded through an address map, and initialized into the 
appropriate memory models.  The state of the system after this 
process closely matches that of a real system after a JTAG 
debugger has loaded a program into a target.  The processor is 
then released from reset, happily running the loaded program, 
oblivious to how it got into memory. 

V. IMPLEMENTATION DETAILS OF BIND_DROPBOX 
The register and recover mechanism key to active binding 

are implemented in a SystemVerilog package, called 
bind_dropbox.  Some specific points to how the two 
functions operate are described here. 

In the bind_dropbox package is an associative array, 
which serves as a lookup table.  The table elements are objects 
of a control API, and are indexed by string.  The index strings 
must be unique. 

Each instance that results from a bind directive needs to 
call the register function in the dropbox, providing a 
unique string as well as the control API object.  The %m 
mechanism is used in the call to bind_dropbox:: 
register, automatically providing a unique string.  Since 
this string is a hierarchical path, it is in the form of a dotted 
name.  The last component of the dotted name is the instance 
name of the bind directive. Listing 9 shows the code for the 
associative array and the register function. 

package bind_dropbox; 
import mem_accessor_pkg::*; 
typedef struct { 
  string hier_path; 
  mem_accessor_base api_obj; 
} dropbox_t; 
typedef dropbox_t dropbox_t_list[$]; 
 
// define an assoc. array for the dropbox 
dropbox_t_list lookup[string]; 
 
function void register(string hier_path, 
                       mem_accessor_base obj); 
  dropbox_t a; 
  string l[$]; 
    // split the hier_path (a dotted name) 
    // into its parts. 
  string_pkg::string_split(hier_path, l, “.”); 
    // glue all but the last one back together. 
    // This is basically basename(hier_path); 
  a.hier_path = string_pkg::string_join 
                       (l[0:$-1], “.”); 
  a.api_obj = obj; 
 
    // insert entry into list, using the last part 
    // as an index.  There may be multiple entries 
    // per index. 
  lookup[l[$]].push_back(a); 
endfunction 
 
endpackage 

Listing 9 

A verification testbench using active binding will contain 
one or more bind directives.  The instance name of each of 
these directives must be unique, since this used to recover the 
control API object.  Bind directives are elaboration time 
constructs and thus take effect before time 0.  Registration into 
the dropbox happens in an initial block, at time 0.  At run-time, 
presumably in an initialization phase, the objects need to be 
recovered, using the unique bind instance names.  The 
implementation for recover is shown in Listing 10. 

function void recover(input string ref_string, 
                  output string hier_paths[$], 
                  output mem_accessor_base objs[$]); 
  dropbox_t_list list; 
  hier_paths = {}; objs = {}; 
  if (!lookup.exists(ref_string)) return; 
 
  list = lookup[ref_string]; 
  foreach(list[i]) 
    begin 
    hier_paths.push_back(list[i].hier_path); 
    objs.push_back(list[i].api_obj); 
    end 
endfunction 

Listing 10 

This method uses module-based binding, specifying the 
modules to be targeted and not hierarchical paths to individual 
instances.  Therefore, each bind directive may result in 
multiple instantiations.  For a given call to recover, multiple 
matches may be returned, which the verification testbench 
needs to be aware of.  The list of unique hierarchical paths 
returned aids the testbench in determining which instantiation 
is interesting. 

Not all control APIs are identical — transactors of different 
types have different control mechanisms.  The example above 
shows a lookup table with elements of identical type 
(mem_accessor_base), for use in the environment 
described in Section IV.  As written, all bind directives must 
bind things that have the same control API, a very limiting 
restriction.  For the bind dropbox to support heterogeneous 
APIs, an umbrella base class from which all APIs are derived 
must be defined.  It contains no objects or methods, serving 
only the purpose of parenting the various differing control 
APIs.  This extra level means that $cast must be used to 
regain the proper type of the objects after they have been 
recovered from the dropbox. 

 

CONCLUSION 
By combining the technique of using abstract base classes 

for transactors with the bind construct, this paper has shown 
how these transactors can be instantiated inside a DUT without 
hierarchical references, and controlled dynamically at runtime.  
The technique described here is methodology neutral. 

We have deployed this technique in the full-chip 
verification environment for a recent SoC.  Active binding was 
used to place transactors inside the SoC’s internal memories, 
which the testbench subsequently uses to backdoor initialize 
with program code to be executed by the embedded CPU. 
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