
New and active ways
to bind to your design

by
Kaiming Ho

Fraunhofer IIS

Sponsored By:

 2 of 15

Overview:

•  Introduction and Motivation
• Key techniques and language constructs from

SystemVerilog
• Example use case

Sponsored By:

 3 of 15

Introduction

•  What does a ‘bind’ do?
–  Insert “your” code into

“others” code.
–  as if you actually modified

other designers code
•  Why?

–  Modifying others code not
allowed / undesirable

–  Keep DV code separate
from design code

•  Hope to reuse. DV
code

DUT

Sponsored By:

 4 of 15

Introduction

•  Could have kept code
separate at top level and
used hier. references

•  Susceptible to hierarchy
changes.

DUT

DV
code

xm
r XMR ?

Sponsored By:

 5 of 15

What to bind?

•  What kind of DV code?
–  assertions
–  coverage

•  Active code?
–  Transactors
–  Generators
–  Monitors

•  Once bound, how to
communicate with and
control?

DV
code

assertions coverage
monitors

passive

monitor generator

Testbench
 component

Sponsored By:

 6 of 15

SystemVerilog constructs that help

Need to understand the following constructs and
design patterns:

•  Abstract base classes.
virtual class <...>;

 pure virtual task ...

 pure virtual function ...

•  Packages
–  Encapsulate abstract base classes
–  Implement lookup table

•  up-module references
LRM §23.8.1 (upwards name referencing)

Sponsored By:

 7 of 15

All transactors have an API.
–  Translate your wishes into signal wiggles.

•  Define tasks/functions which make up API.
•  Implement as pure virtual class in package.

virtual class xactor_api;

 task drive_transaction(...);
 function T wait_for_transaction();

•  Implement transactor.
–  Map signal wiggles to API & vice versa.
–  Extend base class. Construct an object.
–  Register object.

Abstract base classes

pure virtual

pure virtual

Sponsored By:

 8 of 15

•  API in previous slide is
abstract base class
–  Need to extend and

implement
•  Construct object of

extended class.
•  Register into dropbox

Extend/Implement/Register

fill-in details

unique string

class my_xactor_api extends
 xactor_api;
 task drive_transaction(...);
 // blah blah
 endtask
 function T wait_for_transaction

();
 // blah blah
 endfunction
endclass

my_xactor_api _my_api = new;

initial bind_dropbox::register(
 $psprintf(“%m”),
 _my_api);

Sponsored By:

 9 of 15

BIND
•  TB binds xactor into DUT

RECOVER
•  A lookup table implemented in a package.

–  Globally visible. Singleton. (because it is in a package)
–  Associates “strings” with “API objects”

•  Transactors REGISTER their APIs into dropbox @ time 0.
•  TB components RECOVER API objects afterwards.

bind dut_module xactor bind1 (...);

xactor_api my_apis[$];
string hier_paths[$];
bind_dropbox::recover(“bind1”, hier_paths, my_apis);

Bind & Recover

xactor binds into
dut_module.

must match

Sponsored By:

 10 of 15

REGISTER
•  bound xactor registers API in dropbox.
•  %m is unique string -> used as key.

–  last part is bind instance name (e.g. bind1)
•  xactor could be multiply instantiated (if target module is)

–  multiple entries in dropbox.
–  last part for all are identical.

RECOVER
•  For each bind, TB component calls RECOVER

–  Use bind instance name as key.
•  dropbox returns

–  array of API objects matching key.
–  array of %m strings matching key.

•  TB uses %m strings to separate multiply instantiated case.

Bind dropbox details

Sponsored By:

 11 of 15

Real Life example

•  Initializing internal
RAMs in SoC.

– Contents of SPRAM
contain code/data
for CPU.

– Must be initialized
before reset.

•  Need backdoor (zero
time) methods

CPU
core

I-cache/I-tag
memories

D-cache/D-tag
memories

internal
data

scratchpad
(DSPRAM)

internal
instruction
scratchpad
(ISPRAM)

Sponsored By:

 12 of 15

•  Memory wrappers organized as follows:
module ispram_16kB(…);

reg[7:0] mem[0:16383];

// synopsys translate_off
function reg [7:0] read_byte(addr);

function void write_byte(addr, din);
// synopsys translate_on

endmodule

Real Life example

2D array for memory
(behavioural model)

helper functions

spram_mem
_accessor

bind ispram_16kB
 spram_mem_accessor
 bind1();

Sponsored By:

 13 of 15

•  spram_mem_accessor uses up-module reference.
module spram_accessor();

function reg [7:0] _read_byte(addr);

 return read_byte(addr);

endfunction

function void _write_byte(addr, din);

 write_byte(addr,din);

endfunction

class my_mem_accessor extends

 mem_accessor_base;

 ...

my_mem_accessor _api = new

initial bind_dropbox::register(...);

endmodule

Up-module reference

up-module ref.
into host module.

abstract base class

CREATE/
REGISTER

Sponsored By:

 14 of 15

Putting it all together

•  “xactor” to bind: spram_mem_accessor. API:
–  function reg [7:0] read_byte(input [31:0] addr);
–  function void write_byte(input [31:0] addr, [7:0] din);

•  bind target: SoC internal memories
–  bind ispram_16kB spram_mem_accessor bind1();
–  bind dspram_16kB spram_mem_accessor bind2();

•  WHY? Runtime backdoor access. Init uProc program.
–  compile ‘C’ program. gcc -> ELF file.
–  convert ELF to SREC. objcopy –O srec *.elf
–  parse SREC to obtain addr/data pairs to write.
–  map addr to appropriate memory. Use API to write

bytes.
•  API was recovered with bind_dropbox::recover.

Sponsored By:

 15 of 15

Conclusion

•  Presented binding transactors which can be actively
controlled at runtime.

•  Key concepts:
–  Abstract base classes
–  Packages
–  bind dropbox
–  upwards name referencing.

•  Example use-case
–  Loading ‘C’ programs into full-chip SoC simulations.
–  integrated hardware/software verification

Sponsored By:

 16 of 15

Thank you!

QUESTIONS?

