
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Multimedia IP DMA verification platform
Suhyung Kim, Sangkyu Park, Myungwoo Seo, Sangjin Lee, Jiyeon Park
Samsung Electronics Co., Ltd. 1-1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18448, Korea

Abstract
DMA verification is usually done by senior verification engineer 
because even a single bus protocol violation could hang up the 
whole SoC. 

In this paper, we introduce a DMA verification platform for 
multimedia IP that could be easily used by verification beginners 
and could accumulate DMA verification knowledge how of 
experienced engineers without much effort.

Through this platform, even a novice verification engineer could 
develop a new DMA testbench in 30 minutes and we could verify 
several DMA instances at the same time with sufficient 
verification quality.

Introduction

When developing model of multimedia IP, DMA model can be 
also developed to compare the behavior of hardware exactly. In 
this case, the DMA model can be used as the DMA reference 
model in the DMA verification. However, if input or output form of 
DMA model does not match, modification is required to use the 
model as DMA reference model.

So we developed newly DMA reference model for DMA 
verification that supports all kinds of memory format for 
multimedia IP in Exynos mobile SoC through analyzing every 
multimedia IP’s DMA. This allows verification engineer using 
MDVP to reduce testbench development time by using a well 
verified DMA reference model.

The main outputs of DMA reference model in MDVP are valid 
address information and formatted data using given pixel data 
and DMA configurations such as base address, stride, pixel 
format and memory format.

Figure 2 and 3 show how the DMA reference model is used in 
WDMA and RDMA verification environment.

Input Data Generation

Conclusion

We investigated the specification about all OTF interfaces to 
create super-set DMA verification environment. Before 
implementing each UVC corresponding OTF interface, we 
defined common sequence item for UVC to facilitate the 
maintenance if it is necessary to modify or create UVC.

As a result, the configurable UVM testbench of MDVP has 54 
UVCs that correspond to 16 kinds of OTF interfaces. And it also 
provides common methods, that is used for all DMA verification 
such as input data generator / DMA reference model, UVC linking 
methods between DMA sequence and sequence item of UVC 
and UVM testbench skeleton.

Therefore even novice verification engineer who is not familiar 
with UVM can create new and stable DMA testbench based on 
MDVP quickly without much difficulty.

AXI interface

WDMARDMA

AXI interface

Processing
Engine

OTF

OTF

OTF

OTF

OTF

RDMA

AXI interface

Processing
Engine

OTF

OTF

OTF

OTF

OTF

AXI interface

WDMA
Processing

Engine

OTF

OTF

OTF

OTF

OTF

MDVP is UVM based verification platform specialized for 
multimedia IP DMA. MDVP consists of:

A) Input data generator with compressed data format
B) DMA reference model for multimedia IP DMA

- Total number of supported data format : 48
C) Reusable testbench that can be shared among different 

DMA instances 
D) Configurable UVM testbench according to the specification 

of the multimedia DMA for Exynos mobile SoC
- Total number of supported OTF interfaces : 16
- Total number of embedded UVCs : 54

For many years, DMA verification has been usually carried out by 
senior verification engineer because it could cause system hang 
if a bug escape related BUS exists. So one senior verification 
engineer had to verify up to 1 or 2 multimedia IP DMA 
simultaneously in SoC project.

But recently, Exynos mobile SoC has embedded various types of 
multimedia IP in order to provide differentiated multimedia 
function such as image fusion, TOF(time-of-flight) camera, 
HDR(High Dynamic Range) and etc. Since the most multimedia 
IPs have the form shown in figure 1, increasing the number of 
multimedia IPs leads to increasing the number of DMA to be 
verified.

Generally, the behavior of the multimedia IP DMA does not vary 
depending on the patterns of data to write or read. So random 
data is usually used for DMA verification. However, in case of 
DMA which has data compressor, random data pattern can cause 
limited behavior of DMA according to the compression algorithm. 
So in order to make various behavior of DMA which include data 
compressor, we have to use various natural image as well.

For creating various natural images to test, MDVP randomly 
selects one of about 10,000 natural image DB and then converts 
the selected image into an image with a desired format and 
resolution by ImageMagicK[1].

Because of these things, it was difficult to complete the DMA 
verification on time even if the verification engineer, who had 
previously verified DMA, worked very hard. So we have thought 
about 1) how to get the DMA testbench in a short time to reduce 
development time, 2) how to get enough verification quality even 
if novice verification engineer do the job. 

As a result, we created super set DMA verification environment 
call as multimedia IP DMA verification platform (MDVP). 

Figure 1: Typical architecture of multimedia IP with DMA

What is MDVP

DMA reference model

[1]: ImageMagick 6.7.2-7 [Computer software]. (2017). Retrieved from http://www.imagemagick.org.

Figure 2: Example of using DMA reference model in RDMA

RDMA OTFDMA Reference
model

Preloaded DataExternal
memory

ScoreboardConfiguration
(base address, stride, format)

Pixel data

WDMA

Written DataExternal
memory

OTFDMA Reference
model

Configuration

Pixel data
Scoreboard

Figure 3: Example of using DMA reference model in WDMA

Reusable testbench

Most of the multimedia IP DMA have a similar structure and the 
majority of testbench can be reused by using DUT wrapper that 
instantiates DMA to be verified as shown Figure 4.

DUT Wrapper

Clk/Reset

APB IF

A
X

I I
F

Virtual
OTF IF

Reusable Testbench

Clock & Reset
Generator

APB BFM

Valid bus transaction checker

AXI slave memory model

DMA RTL Configurable
UVM Testbench

Need to add code newlyCan reuse without modification

Valid bus transaction checker
In case of WDMA verification, we defined the role of scoreboard 
as checking whether there is expected value in the expected 
address after finishing DMA operation. 
In order to detect unintended bus request, we use valid bus 
transaction checker with valid address information of DMA 
reference model.

AXI slave memory model
Reducing regression TAT(Turn Around Time) is also important to 
reduce verification time. So MDVP uses the in-house AXI slave 
memory model, that is used to verify multimedia IP for more than 
10 years, instead of the commercial model provided by the EDA 
vendor. The in-house model is x2 faster than commercial model. 
In case of using commercial model, license shortage may cause 
long regression TAT, but it does not occur when using in-house 
model.

Figure 4: Reusable testbench of MDVP

Without MDVP With first 
MDVP

With latest 
MDVP

Line counts that need to be newly 
developed per each DMA to be 
verified

N/A Average 1,298 
lines

Average 556 
lines

Required time to make an initial 
testbench 1~2 days Average 1 day Average 30 

minutes
The number of DMA that verification 
engineer can handle simultaneously

Senior: 2~3
Junior : 1~2 Average 4 Average 5

Table 1: The effect of applying MDVP

MDVP has been developed to get a multimedia IP DMA which 
has sufficient verification quality with small manpower within the 
project schedule. Since its first release, MDVP has been 
successfully used for multimedia IP DMA verification of 6 SoC 
projects so far. 

Configurable UVM testbench

And we created common test scenarios used for each DMA 
verification while performing several projects with MDVP. So we 
embedded 13 predefined test scenarios to MDVP so that amount 
of developing code can be reduce for test scenario.

Figure 5: Configurable UVM testbench of MDVP

dma_IP
base test

raster-scan 
interface

handshake
interface

tile
interface

direct_addr
interface

UVC Library

dma
base test

zero latency 
test

rand latency 
test base vsequence

if (zero_lat) zero_latency_test();
if (rand_lat) rand_latency_test();

Test scenarios

dma
vsequence

dma_IP
sequence

base 
sequence item

raster-scan
tile

: Override base vsequence for each scenario

: Override default UVC for each OTF interfacedma base test (dma_IP base test)

Test scenario

zero vseq
zero_lat == 1;

rand vseq
rand_lat == 1;

: Override default sequence for each OTF interfacedma vsequence (dma_IP sequence)

Can reuse without modification Need to add code newly

: Execute test scenariobase vsequence

: Carry random configuration through sequencer to each OTF UVCbase sequence item


	Slide Number 1

