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Abstract—Modern verification projects often need to deal with a 
mixture of available off-the-shelf verification components. This 
presents several challenges. The components may be implemented in 
different languages (SystemVerilog, e, SystemC, C++) based on 
different methodologies (flavors of UVM, VMM, different C++ class 
libraries). The involved actors (integrators and verification IP 
developers) need to combine these components together with minimal 
changes. This paper presents use-cases that leverage an open multi-
language architecture addressing those challenges. The paper 
provides an overview of the solution and illustrates how it can be 
applied to one of the emerging use cases. 

Keywords— functional verification; verification intellectual 
property (VIP); verification reuse; unified verification methodology 
(UVM); multi-language; transaction-level modeling (TLM) ; 
backplane 

I.  INTRODUCTION 

Subsystem and system-level verification face many 
challenges on different scales: modeling and refinement at 
different levels of abstraction, verifying proper functionality 
and performance of complex systems, integration checking and 
so on. The need to deal with several implementation languages 
and diverse verification methodologies is only one of those 
challenges.  

This paper begins with a description of the relevant use 
cases requiring a multi-language solution. Following that, it 
presents the architected solution (UVM-ML OA) that enables 
efficient integration of multi-language verification IP (VIP) 
components. UVM ML OA helps to reduce or eliminate the 
time and effort that verification architects need to spend on 
dealing with multi-language integration related issues. This 
paper then describes a simplified hypothetical subsystem-level 
use case that illustrates the usage of the UVM-ML OA 
mechanisms for different tasks.  

A. VIP Reuse (Vertical and Horizontal) Use Case 
Time to market and development efficiency are important 

drivers for reuse in general. Applied to functional verification, 
vertical and horizontal reuse reduces duplication of efforts in 
developing testbenches and test scenarios at the IP and system 
on a chip (SoC) levels [1],[2].  

The need to reuse even one useful VIP, implemented in a 
different language, is a sufficient reason to necessitate a multi-

language environment. IP, subsystem and system-level 
testbenches which employ a re-use methodology, often bring 
together multiple verification IPs (VIP’s), one or more 
reference models, scoreboards and virtual sequences that may 
be written in different languages. In such a system, the 
configuration settings, data transactions, sequences, stimuli, 
and synchronization coordination may cross the language 
boundaries.  

Figure 1 illustrates the typical reuse of an IP level 
verification environment on a subsystem level.  

 

 

Fig. 1. Vertical reuse: IP level vericiation environment and its integration in 
the subsystem level. 



B. Transformation of a Design Under Test Through Multiple 
Abstraction Levels Use Case 

[3] and [4] describe the real-world use cases where the 
design under test (DUT) is modeled in different languages at 
different abstraction levels. 

As the DUT abstractions evolve, the testbench should 
evolve in parallel to incorporate the different levels of 
abstractions into it.  For example, as shown in Figure 2, a DUT 
can be initially represented by a high level SystemC functional 
model. This SystemC model enables development of the 
testbench ahead of an RTL model and can also be embedded 
into a scoreboard. 

 

 

Fig. 2. Testbench reuse with different design-under-test models. 

This naturally leads the testbench to evolve into multi-
language. Leveraging the standard transaction-level modeling 
(TLM) in the testbench aids in making it invariant to the 
abstractions and to the implementation languages of the DUT 
model. A testbench architected with these enabling facilities is 
able to support different abstractions or even concurrent mixed-
abstractions seamlessly. 

C. Hardware-Assisted Verification With an Accelerated VIP 
Use Case 
[5] and [6] present the use cases where the accelerated VIP  

helps reduce verification time. They make the premises that the 
testbench won't require significant reworking or present 
debugging challenges when switching between software-based 
simulation and hardware-based acceleration environments. 

This use-case can be viewed as a specialization of the 
previously referenced multiple abstractions DUT use-case. 

Figure 3 shows a synthesizable version of the DUT placed 
in an acceleration device (such as FPGA, or HW-accelerator).  
The bus functional model (BFM) and passive collector 
components of the testbench are also included in the 
synthesizable part of the design. A specialized software 
transaction layer (implemented, for example in C++) abstracts 
between the simulated and synthesized domains. 

 

Fig. 3. Accelerated verification IP. 

Both the software layer and synthesizable part of the 
testbench would benefit from leveraging standardized multi-
language TLM communication, phasing, and hierarchical 
configuration facilities which are portable to different domains. 

D. Software-Driven Functional Verification Use Case 

Software-driven verification has been gaining momentum 
over the past few years. [7] and [8] present different 
mechanisms for using the software to control test environment. 
[7] presents the usage of TLM2.0 virtual platforms and [8] 
describes how SW tests can control a VIP via the virtual 
register interfaces as shown on Figure 4.  

The main goal is to enable real world software scenarios to 
be executed on a DUT (IP or subsystem) in order to exercise it 
in the way it is intended to be used.  Conversely, an abstraction 
of a DUT can be provided to the associated software teams in 
order to enable early software development.  In both cases, a 
software environment (e.g. a virtual machine) is manifested in 
one language, and a simulation or acceleration environment is 
deployed in another. Regardless of the specific methodology, 
leveraging a seamless multi-language platform for 
interoperating between domains is necessary in order to enable 
rapid integration. 

 

Fig. 4. Software-driven functional verification 

II.  PREVIOUS WORK 

There is a long list of former and currently-available 
solutions enabling mixed-language communication. They can 



be grouped into 2 categories: multi-language co-simulation 
solutions and multi-language verification methodology 
solutions.  

The first category, which includes EDA vendor simulators 
and co-simulation backplanes, targets low-level integration of 
hardware-description languages (HDL) and simulation engines. 
This level is targeted primarily for design purposes and it deals 
with issues such as signal propagation, fine-grain 
synchronization of simulation engines, and so on. Another 
characteristic of the low-level communication is that it does not 
support an object-oriented programming paradigm. In 
particular, it does not address class-based communication 
between the languages. Based on these criteria, we can include 
in category the C-language programming interfaces, such as 
the standard SystemVerilog DPI, the Specman C interface, and 
similar C-based interfaces. 

The second category aims at enabling integration of high-
level verification methodologies, such as SystemC TLM, UVM 
SystemVerilog, UVM-e, OVM, and VMM, to name a few. The 
focus of this category is to align the main common 
methodological constructs, such as testbench phasing, 
configuration, transaction-level communication, and test 
selection. This category requires support of the class-based 
interfaces. This multi-language solution described in this paper 
falls under the second category. 

Products already available on the market provide partial 
solutions for this area. Each of these products however has 
some limitations. 

For example, Cadence Design developed a UVM multi-
language library that allows UVM SystemVerilog, e and 
SystemC to be interconnected via TLM ports. In addition to the 
multi-language communication, Cadence's solution includes a 
UVM-based SystemC class library, which can be connected to 
the other languages. This product is proprietary to Cadence and 
it does not allow the users to incorporate additional languages 
or methodologies. 

Synopsys VCS-TLI supports transaction-level 
communication between SystemVerilog and SystemC [9]. It is 
limited by being non-portable between the simulators and 
integrates only those two frameworks.  

Mentor Graphics' open-source UVM Connect (UVMC) 
library [10] allows connecting UVM SystemVerilog and 
SystemC via TLM ports. It also provides a procedural interface 
for accessing other UVM SystemVerilog facilities from 
SystemC. This library is portable and runs on different 
simulators. It was designed to only support point-to-point 
integration between the two languages, and requires that UVM 
SystemVerilog is put in charge of providing the methodology-
level services to SystemC.  As such, all the methodology 
facilities in the SystemC framework cannot be used 
independently and require presence of UVM SystemVerilog. 

The Accellera Multi-Language Work Group (MLWG) was 
publicly established in April 2013 [11]. It established the key 
requirements that a complete multi-language solution should be 
portable between simulators, should be extensible to additional 
languages and methodologies, should not depend on any 
specific methodology library, and should support a broad 

spectrum of high level services. None of the above-mentioned 
solutions currently address all of these requirements. 

III.  UVM-ML  OPEN ARCHITECTURE 

As discussed in the introduction, there is a broad and 
growing need for integration of the multi-language verification 
components in modern verification environments. The contents 
of the aforementioned papers (and many other papers 
published) reveal that a great variety of the languages and 
methodologies are used in practice: UVM SystemVerilog, 
SystemC, e, VMM, OVM, C++, Python and more. This 
indicates there is strong industry need for a generic solution 
that addresses this problem and results in saving the engineers 
from having to devise a proprietary solution in each project. 

This section describes the purpose and design of the open 
source package named UVM-ML Open Architecture (UVM-
ML OA), jointly developed by AMD and Cadence. It aims at 
enabling rapid integration and re-use of multi-language 
verification components. The term framework is used to denote 
an assembly of verification and modeling facilities 
implemented in a single language. Frameworks may be written 
in a specialized Hardware Verification Language (HVL) such 
as SystemVerilog, or e, a modeling language (such as 
SystemC), or a generic programming language (for example, 
C++). Examples of frameworks include UVM SystemVerilog, 
UVM e, ASI SystemC, VMM. Different frameworks can be 
deployed in the same language (for example, UVM and VMM 
are both in SystemVerilog). A new framework can be 
composed from a few simpler frameworks in the same 
language (for example, a combination of ASI SystemC with a 
UVM SystemC library). The term multi-language used 
throughout this paper is extended to include the diversity of 
frameworks being integrated, regardless of their target 
languages. 

UVM-ML Open Architecture is so named because it 
follows the primary concepts defined by the UVM 
methodology. The qualifier "Open Architecture" emphasizes 
the intended openness of the solution to enable integration of 
multiple frameworks, rather than limiting the solution to the 
fixed selection of languages.  

To further clarify the scope of the work, we need to 
emphasize that UVM-ML OA focuses on bridging the 
languages and frameworks on the methodology level, using the 
currently available language constructs. The authors did not 
attempt to address the mixed language challenges with 
invention of new specialized extensions, such as, for example, 
supporting passing objects directly by reference, or calling 
"foreign" class methods in few selected languages. 

The primary goal is to isolate the concerns of the VIP 
developer and integrator. The developer should not be 
concerned about whether the VIP will be used in a single-
language or a multi-language environment, so long as the 
developer is following the recommended UVM methodology 
practices. The integrator is expected to have exposure to the 
nature of the environment (single- or multi-language). By 
leveraging the multi-language aware facilities which enable the 
integrator, for example, to bind TLM ports across the language 
boundary or to instantiate a "foreign" framework VIP 



hierarchically, the integrator can assemble multi-language 
components and environments. 

The UVM-ML OA software distribution package [12], [13] 
comprises the backplane, reference frameworks and multi-
language (ML) adapters. All the open source components of 
the package are licensed under the Apache License. 

A. Backplane 

The core of the package is a backplane shared library. The 
backplane serves as a routing layer between two or more 
integrated frameworks and holds information about the overall 
topology, which is necessary for routing. This architecture 
enables collaboration between the frameworks while 
abstracting away from specific methodologies and languages. 

Figure 5 illustrates the UVM_ML topology where the 
framework clients are connected to the backplane server, 
located in the middle of the "star system". Any number of 
frameworks can be interconnected at the same time. 

 

Fig. 5. The backplane and the frameworks. 

Communication in the system generally falls into one of the 
following categories: 

• Providing information to the backplane global data 
repository (for example, the frameworks shall 
register themselves upon initialization)  

• Broadcasting messages from a service provider to 
the rest of the frameworks (for example, the 
phasing service is implemented in this way) 

• Broadcasting messages from any framework to the 
rest of the frameworks (for example, the 
distributed configuration and resources settings) 

• Point-to-point communication (for example, 
passing transactions via TLM) 

The content of the messages, flowing between the 
frameworks, is transparent to the backplane.  

The backplane, provided in the UVM-ML OA distribution, 
is general in nature, and does not need any intervention by 
users. For example, an end user integrating VIPs into a 
testbench (an ML integrator) can link in the available 
backplane library and supported frameworks as is and does not 
need to be aware of the backplane presence. 

B. Reference Frameworks 

The frameworks supported in the current release of the 
UVM-ML OA package include three UVM flavors: UVM 
SystemVerilog, UVM SystemC, and UVM e.  In particular, the 
package provides the patch source code for UVM 
SystemVerilog with ML enablers, and the source code for the 
UVM-SC library. 

A detailed description of the UVM-SC library is beyond the 
scope of this paper but we introduce it here briefly to raise 
awareness of the availability of this framework with the 
package and of its importance for successful integration of 
SystemC in a complex ML environment. 

UVM-SC is a standalone C++ class library which 
implements the standard UVM methodology as a framework 
on top of a standard Accellera Systems Initiative (ASI) 
SystemC version or a vendor-proprietary SystemC 
implementation. This framework enables usage of SystemC for 
high-level verification. The UVM-SC framework capitalizes on 
the native SystemC facilities, such as threading, SystemC 
phasing, TLM, events, barriers, and derives from the SystemC 
base classes as a foundation for the UVM classes.  
Additionally, UVM-SC builds upon SystemC by leveraging the 
power of the UVM methodology: standardized testbench 
components, configuration facilities, common phases, 
callbacks, resource pools, synchronization extensions, and 
factory overrides.  There are still a few outstanding facilities 
that should be added to UVM-SC as it matures. 

The UVM-SC library was architected from the ground up 
to be usable in both standalone framework mode (i.e. just 
UVM-SC) or in a multi-language environment, in conjunction 
with its adapter.  All of the facilities deployed in UVM-SC are 
scalable to a multi-language environment transparently. 

C. Multi-Language Adapters 

The previous figure shows the frameworks connected to the 
backplane via specialized ML adapters. The role of the adapter 
is to connect existing frameworks to the predefined backplane 
API.  The ML adapter provides an abstraction layer between its 
associated framework and the backplane in order to translate 
between the two in a seamless manner. Some frameworks may, 
potentially, connect to the backplane directly, without a special 
adapter, if they are designed to natively allow redirection of 
their facilities to an external backplane like server. 

D. Services and Facilities 

The backplane currently supports the following ML 
facilities: 

• Initialization and registration of the unlimited 
number of frameworks 

• Synchronized phased pre-run, runtime, and post-
run execution 

• TLM communication 

• Hierarchical construction of a multi-language 
verification environment (a.k.a. unified hierarchy) 

• Build-time and run-time configuration 



• Resource sharing 

• Runtime synchronization between the master and 
slave frameworks 

Some of the deployed facilities require a centralized service 
provider. This is true for the currently available services, such 
as phasing, and for the some future facilities that are planned to 
be added (e.g. messaging, shutdown, and quantum time 
keeping). The UVM-ML OA backplane is flexible to allow any 
framework to register itself as a service provider for a specific 
service. The ML integrator has the option to choose the 
provider among multiple candidates although a default 
provider per service always exists. 

E. The Challenge of Enabling Multi-Language Facilities 

Many frameworks were not designed with the intention of 
participating in a multi-language environment.  Some of the 
desired multi-language facilities do not easily align between 
the various frameworks as they are currently written. There 
may be significant value in synchronizing frameworks better 
and enhancing them to be multi-language capable, but it will 
require working closely with the framework developers to 
extend their frameworks to be ML friendly. 

Ideally, the ML features should not require modifications to 
the existing frameworks however in reality some modifications 
are necessary. This creates the dilemma of choosing between 
sacrificing some important multi-language features or trying to 
add some hooks to enable the features.  The features that we 
could not support with the standard unmodified frameworks 
implementations were: 

• Propagation of  the phases (and especially, the 
"build" phase) between the frameworks, which is 
necessary to enable unified multi-language 
hierarchy of verification components 

• The ability to configure VIP build-time properties 
in the process of hierarchical construction (for 
example, number of agent instances, active or 
passive agent mode etc.) natively from verification 
code written in another framework. 

• Graceful termination of the test through 
synchronization of the post-run phases for the 
involved frameworks 

• Runtime checking of TLM connections, with the 
assumption that all the aligned frameworks finish 
their build phase before the first framework's 
connect phase begins. Runtime checking allows 
issuing connectivity error messages on the spot, 
with a proper source reference. Catching the error 
immediately allows for a better debugging 
experience, rather than deferring the checking 
until some future time. 

Let us take a closer look at phase propagation. Ideally, 
native test phases of different frameworks should be aligned to 
some common boundaries (see, for example, this requirement 
in [14]).  

SystemC and UVM SystemVerilog standards define similar 
phases, but they do not enable alignment between them 
because the standardized implementations were developed with 
a single-language use-case in mind and do not provide a public 
interface for controlling the phasing process from an external 
controller. 

A partial solution, applicable to SystemC, is enabled with 
introduction of the UVM-compatible SystemC class library 
(UVM-SC). A structural base class in UVM-SC 
(uvm_component, as in UVM SystemVerilog) is derived from 
the base class sc_module but defines UVM phase callbacks, in 
addition to the standard callbacks of sc_module. If the SystemC 
testbench developer uses uvm_component's rather than base 
sc_modules, then the SystemC adapter can traverse that 
hierarchical tree and invoke the UVM-compatible phase 
callbacks. UVM-SC ML adapter also supports connecting to 
SystemC TLM ports located in standard SystemC modules, and 
not only in uvm_component's. In this way it enables seamless 
ML TLM communication between the SystemC design and 
testbench domains. 

The main disadvantage of this partial solution is that it 
requires mandatory usage of UVM-SC classes for full phase 
synchronization. Although the native SystemC phases are 
supported for sc_module's, aligning the native phases 
transparently requires an enhancement to the SystemC 
framework.  

A more comprehensive alignment of the phases is achieved 
by applying some unobtrusive patches to the standard 
frameworks. The alignment can be coarse-grained or fine 
grained, depending on the framework or its adapter.  

The coarse-grained alignment scheme means that phase 
alignment only occurs at the boundary of a group of phases. 
For example, it is rather important that all involved frameworks 
complete their pre-run phases before execution of the runtime 
processes or threads, so a coarse-grained deployment would 
ensure all frameworks align at the end of the pre-run phases 
before proceeding to the runtime phases. Similarly, all the 
runtime phases should be finished before any framework starts 
execution of the post-run phases.  Alignment within a coarse-
grained group between frameworks would not be supported. 

Fine-grained alignment of the phases means that each 
component's callbacks in the multi-language system are aligned 
per a common phase, regardless of the framework origin.  The 
fine-grained alignment of the phases is a preferable option, if 
the framework adapter can support it. Such alignment enables 
better synergy and makes the whole environment virtually 
behave as though it is implemented in one language.  This 
results in a more natural approach for integrating multi-
language VIP and eliminates any potential side effects that may 
be incurred with the coarse-grained scheme. 

In the UVM-ML OA package, we included patches for the 
ASI SystemC and UVM SystemVerilog frameworks enabling 
the fine-grained alignment of the ML phases. The patches add 
to those frameworks public methods that allow invocation of 
the phases individually from an external phase controller at the 
beginning of simulation.  These patches do not compromise 



backwards compatible behavior and are transparent to users of 
those frameworks. 

The following figure illustrates an example of how the 
finely aligned pre-run phases for 3 frameworks interoperate: a 
patched UVM SystemVerilog, a patched SystemC and e. 

 

Fig. 6. Time sequence for fine-grained phase aligned frameworks and its 
corresponding unified hierarchy. 

F. Support for ML Configuration and Resources 
UVM configuration is a method of sharing the 

configuration elements via the configuration database. The 
configuration element comprises a name, value and properties. 
One property is a context of an originating component.  

During the UVM build phase, the context automatically 
affects the priority property. This allows the highest ancestral 
parent component to override the values specified by other 
components on lower hierarchical levels. To emphasize this 
effect of the hierarchical position of the originating component, 
we refer to the build phase time configuration as hierarchical 
configuration. Configuration during the rest of the phases is 
referred as runtime configuration.  

Deploying a multi-language hierarchy requires introducing 
a multi-language aware configuration facility. 

 Resources differ from configuration in that the hierarchical 
context of the originating component is not stored and not 
used.  The remaining characteristics for resources and the 
configuration elements are common. This allows the ML 
adapters to maintain both configuration and resource elements 
in a unified manner. 

There are two potential storage models for the multi-
language configuration database: the centralized model and the 
distributed model. Both approaches have their advantages and 
disadvantages. Developers of the UVM-ML OA have chosen 
the distributed model based on performance and flexibility 
considerations. The distributed model enables better 
performance characteristics because reading the distributed 
database does not require crossing the language boundaries. 
The distributed model also allows different frameworks to 
maintain different (potentially, legacy driven) semantics of 
interpreting the configuration properties, thus achieving greater 
flexibility. 

The UVM-ML OA backplane API allows a framework to 
broadcast configuration and resource settings so that they can 
be stored in the corresponding databases of other connected 
frameworks. The actual implementation of the user-view and 
the broadcasting implementation are framework-specific. The 
reference framework adapters, that are currently included in the 
UVM-ML OA distribution, support configuration and resource 
value types that can be passed by copy (singular integral types, 
strings and serializable objects). 

IV.  AN ILLUSTRATIVE USE CASE 

This section describes an emerging use case (following the 
lines of the work presented in [8]), that we use to demonstrate 
the UVM-ML OA facilities in greater detail. More information 
about each construct explained below can be found in the open 
source package documentation [15],[16]. 

The selected use case represents a verification environment  
for a hypothetical communication subsystem. A top-level 
SystemVerilog DUT testbench module comm_subsystem_tb, 
instantiates an abstract module comm_subsystem_top and its 
two interfaces: host_if and comm_if as shown in Figure 7.  

 

Fig. 7. An abstract SystemVerilog design under test. 

The verification environment for this testbench is 
composed of three layers as shown in Figure 8. 

// SystemVerilog testbench and DUT 
 
import uvm_pkg::*; 
 
interface comm_if(input logic clk); 
  wire data [31:0]; 
  wire addr [31:0]; 
  string this_name = $sformatf("%m"); 
endinterface 
 
interface host_if(); 
  string this_name = $sformatf("%m"); … 
endinterface 
 
module comm_subsystem_top (comm_if cif, host_if 
hif); 
endmodule 
 
module comm_subsystem_tb; 
  logic clk = 0; 
  comm_if cif (clk); 
  host_if hif(); 
  comm_subsystem_top comm(.cif (cif), .hif(hif)); 
  … 
endmodule 



 

Fig. 8. ML verification environment for an abstract communication 
subsystem. 

The high-level SystemC verification harness layer enables 
integration with the application software domain. The harness 
layer is leveraging the UVM-SC framework and its primary 
task is to mediate between the control knobs, belonging to the 
software, and a SystemVerilog reusable VIP. Additionally, the 
SystemC layer includes a reference model. This reference 
model was originally used as a high-level abstract model of the 
DUT and is now connected to the scoreboard. While the actual 
software is not available in this example, the tests provided (see 
test1 on Figure 8) are also implemented in SystemC/C++, 
mimicking the software control knobs. The control knobs in the 
SystemC are modeled using a command API class. The "toy" 
command API in this use case represents a C structure, 
containing a command op and few arguments op1, op2 … In a 
more realistic example; this structure could be represented by a 
group of registers or a high-level programming library. 

 

Fig. 9. SystemC verification harness layer. 

Figure 9 shows the definitions of the SystemC harness and 
test classes. Both classes are derived from the base structural 
class uvm_component, similar to its corresponding class in the 
standard UVM SystemVerilog library. The classes have the 
same phase callback methods (build_phase, connect_phase 
etc.). In this example, test1 activates the control API in the 
blocking run phase. 

Figure 10 demonstrates how the reusable SystemVerilog 
VIP is instantiated in the SystemC harness layer. It provides a 
more detailed view of the class sc_harness than shown on 
Figure 9. 

// SystemC high-level harness environment 
#include "tlm.h" 
#include "uvm.h"    // UVM-SC topmost header file 
#include "uvm_ml.h" // UVM-ML adapter header file 
using namespace uvm; 
using namespace uvm_ml; 
 
class command_api{// Mimicking SW control knobs 
public: 
  int      command;  int  op1;  int  op2; 
  sc_event command_event; 
  … 
  void set(int c, int i1, int i2) { 
    command = c;  op1 = i1; op2 = i2; 
    command_event.notify(); 
  } 
}; 
class sc_harness : public uvm_component { 
public: 
  command_api ca; // command API instantiated 
  sc_tb (sc_module_name nm):uvm_component(nm), … 
  { … } 
  void build_phase(uvm_phase *phase) {  … } 
  void connect_phase(uvm_phase *phase) { … } 
  void run_phase(uvm_phase *phase) { … } 
  UVM_COMPONENT_UTILS(sc_tb) 
}; 
class test1 : public uvm_component { // A test 
public: 
  sc_harness * sc_h; // SC harness component 
  sc_test1(sc_module_name nm): uvm_component(nm)  
          { sc_h = new sc_harness("sc_h"); } 
  void run_phase(uvm_phase *phase) { 
    wait(1, SC_NS); 
    sc_h->ca.set(RST_SEQ, (-1), (-1)); 
    wait(10, SC_NS); 
    sc_h_>ca.set(TRANS_SEQ, 10,(-1)); 
    … 
  } 
  UVM_COMPONENT_UTILS(sc_test1) 
}; 



 

Fig. 10. UVM-SC component instantiating a SystemVerilog UVM 
component. 

The sc_harness class in Figure 10 has few additional 
member fields (compared to those shown on Figure 9). The 
class member vip_env points to sc_harness's hierarchical child 
component. In the previous section we explained that UVM-
ML OA supports a unified logical hierarchy. In the given use 
case, env is a proxy of the SystemVerilog child component of 
the UVM-SC parent component.  

The hierarchical construction is performed in the build 
phase of sc_harness, as prescribed by the UVM methodology. 
Vip_env is assigned with return value of the SystemC ML 
adapter's method uvm_ml_create_component. This method 
accepts 4 arguments: the string identifier of the target 
framework (in our case, it is "SV"), the type name of the 
SystemVerilog component ("comm_vip_env"), instance name 
("env") and a pointer to the parent component (this). 

There is also a TLM analysis port aport that is used for 
communication between the parent and child components. It 
passes polymorphic transactions of the base class 
uvm_seq_control_base. This and the derived class definitions 
are not shown here due to the paper's constraints. The binding 
between the port and its counterpart implementation (export) is 
done by the ML adapter's method uvm_ml_connect that 
receives two string arguments. One of the benefits of the 
unified ML hierarchy is that it allows the integrator to use 
relative names for connection between the parent and child (see 
aexport_name on Figure 10).  In our use case, the integrator 
does not need to keep track of a shadow SystemVerilog 

hierarchy in SystemC, but only needs to use the child 
component's export field name "control_imp" (as used also in 
the single-language environment).  By using the hierarchical 
port names, the integrator eliminates any potential scalability 
issues because those names are guaranteed to be unique 
always. 

The ML adapter's function uvm_ml_connect() is invoked in 
the connect phase, synchronized to its corresponding phase in 
the other connected frameworks.  Synchronized phasing 
ensures that all the ports in all the frameworks are already 
instantiated prior to being connected. This also allows the 
backplane to issue a non-delayed error message if the integrator 
specifies incorrect or invalid port names. 

UVM recommends using SystemVerilog virtual interfaces 
for signal-level access between a verification component (e.g. a 
driver or a monitor) and the DUT. In our use case, the DUT has 
two interfaces: host_if and comm_if. In a single-language 
environment, the integrator can pass the virtual interface from 
the DUT to the verification component, using the configuration 
mechanism. In a multi-language environment, passing the 
interfaces by pointer is not possible but also not required. 
Access from a hardware verification language (HVL) to a 
hardware description language (HDL) is usually implemented 
via a standard API, for example SystemVerilog VPI or DPI. 
Those API's operate with the hierarchical names (of signals, 
functions etc.) in the string format. Consequently, in the ML 
environment, the UVM-ML integrator needs to pass a 
hierarchical name of the DUT interface as a string. 

Figures 11 and 12 illustrate how the UVM ML 
configuration mechanism can be used for passing the interface 
names between frameworks. Figure 11 shows the DUT 
testbench (the same module comm_subsystem_tb as in Figure 
7), writing the interface names in the configuration database. 

 

// SystemC high-level harness class - zoomed in 
#include "tlm.h" 
#include "uvm.h"    // UVM-SC topmost header file 
#include "uvm_ml.h" // UVM-ML adapter header file 
using namespace uvm; 
using namespace uvm_ml; 
… 
typedef class build_config_c;// config object 
class sc_harness : public uvm_component { 
public: 
  command_api      ca; 
  uvm_component *  vip_env; 
  build_config_c * env_config; // Config object 
 
  tlm_analysis_port<uvm_seq_control_base> aport; 
 
  sc_harness(sc_module_name nm):uvm_component(nm) 
             ,aport("aport"), vip_env(0) 
  { env_config =  new   
      build_config_c("SV","comm_vip_env",ACTIVE); 
    uvm_ml_register(&aport); 
  } 
  void build_phase(uvm_phase *phase) {  
    vip_env = uvm_ml_create_component ( 
              env_config->frmw_name,  
              env_config->type_name, "env",  
              this); 
  } 
  void connect_phase(uvm_phase *phase) { 
    string aexport_name =  
      vip_env->name()+string(".")+"control_imp"; 
    uvm_ml_connect (aport.name(), aexport_name); 
  } 
}; 



 

Fig. 11. Passing SystemVerilog DUT interface names in the configuration 
database. 

As previously mentioned in Section III, the SystemVerilog 
ML adapter broadcasts the UVM configuration settings to the 
rest of the participating frameworks. Figure 12 shows how the 
e UVC should be extended to retrieve and use the 
communication interface name. 

 

Fig. 12. e UVC retrieving SystemVerilog interface name. 

In Figure 12, the UVM e unit comm_uvc_env_t retrieves the 
hierarchical interface name using the constraint keep 
uvm_config_get(). This name is propagated to the e interface 
unit comm_dut_intf (using an hdl_path attribute). In this way, 
all the e ports are automatically associated with the 
corresponding SystemVerilog interface signal names (because 
the hdl_path attributes of units and ports are implicitly 
concatenated). 

In UVM, settings from hierarchically higher levels made at 
build time have higher precedence. This feature allows a 
component on a higher level to override a default configuration 
specified in a lower-level component. Figure 13 illustrates how 
the SystemVerilog comm._vip_env sets a default configuration 
for the e communication UVC agent (UVM_PASSIVE) and 
how the SystemC testbench harness component provides the 
actual configuration (UVM_ACTIVE) for the agents. 

 

Fig. 13. Hierarchical configuration during the build phase. 

// e agent configuration: 
<' 
unit comm_uvc_agent like uvm_agent { 
  keep soft uvm_config_get(active_passive); … 
}; 
'> 
… 
// SystemVerilog VIP env instantiating the e UVC 
// and setting the default configuration for the 
// e agent to be passive: 
import uvm_pkg::*; 
import uvm_ml::*; 
class comm_vip_env extends uvm_env; 
  … 
  `uvm_component_utils(comm_vip_env) 
  uvm_component comm_uvc_env;   
  function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
    uvm_config_db#(int)::set(this,  
      "comm_uvc_env.agent", "active_passive",  
      uvm_active_passive_enum'(UVM_PASSIVE));  
    comm_uvc_env = uvm_ml_create_component("e", 
          "comm_uvc_env_t","comm_uvc_env",this);  
  endfunction 
   … 
endclass 
… 
// SystemC harness env (see Fig. 10) configures 
// the comm UVC agent to be active and thus  
// overrides the default 
#include "uvm_ml.h" 
using namespace uvm_ml; 
class sc_harness : public uvm_component { 
public: 
  void build_phase(uvm_phase *phase) {       
    set_config_int("vip_env.*.agent",    
      "active_passive",  
      uvm_active_passive_enum(UVM_ACTIVE)); 
    vip_env = uvm_ml_create_component( 
              env_config->frmw_name,  
              env_config->type_name, "env",this); 
  } 
  … 
}; 

// SystemVerilog testbench and DUT 
 
import uvm_pkg::*; 
 
interface comm_if(input logic clk); 
  …; string this_name = $sformatf("%m"); 
endinterface 
 
interface host_if(); 
  …; string this_name = $sformatf("%m"); 
endinterface 
 
module comm_subsystem_tb; 
  logic clk = 0; 
  comm_if cif (clk); 
  host_if hif(); 
  comm_subsystem_top comm(.cif (cif), .hif(hif)); 
  initial begin 
    uvm_config_db#(string)::set(null,  
                   "uvm_test_top.*",   
                   "comm_intf_name",   
                   cif.this_name); 
    uvm_config_db#(string)::set(null,  

      "uvm_test_top.*",   
      "host_intf_name",   

                   hif.this_name); 
 
  end 
endmodule 

// e env retrieving DUT interface name 
unit comm_dut_intf { 
  clk_p: in event_port is instance; 
    keep clk_p.hdl_path() == "clk"; 
  data_p: inout simple_port of int is instance; 
    keep data_p.hdl_path() == "data"; … 
}; 
unit comm_uvc_env_t { 
  dut_intf: comm_dut_intf is instance; 
     
  comm_intf_name: string; 
    keep uvm_config_get (comm_intf_name); 
  keep dut_intf.hdl_path() == comm_intf_name; 
  keep agent.driver.signal_map == dut_intf; 
}; 
 
// e sequence using ports of comm_dut_intf 
extend tx_sequence { 
  num_t: int; 
  body () @driver.signal_map.clk_p$ is only { 
    for j from 1 to num_t {  
      wait @driver.signal_map.clk_p$;  
      driver.signal_map.data_p$ = j; … }; 
    }; 
}; 
 



V. FUTURE DIRECTIONS 

UVM-ML OA, as developed by AMD and Cadence, was 
intentionally developed to serve the verification community as 
a basis for standardization. It is provided as open source under 
the Apache 2.0 license, and is currently posted on Accellera 
website [12]. 

The work presented in this paper was done with awareness 
and attention to the establishment of the Accellera Multi-
Language Working Group (MLWG). The working group 
provided a broad set of user community requirements for the 
emerging ML standardized solution, and we strive to keep 
UVM-ML OA aligned with these requirements. 

There are various additional frameworks or enhancements 
to frameworks that companies or organizations have expressed 
interest in. We are open to explore collaboration with other 
framework developers to enable broader integration. 

 As previously mentioned, UVM-ML OA currently 
includes ML enabling reference patches for the standard 
frameworks (UVM SystemVerilog and ASI SystemC). If 
UVM-ML OA is adopted as the basis for standardization by the 
Accellera ML WG, then we intend to work with the 
corresponding owning Accellera working groups to incorporate 
the ML specific requirements and address them in the future 
releases of their corresponding frameworks, thus eliminating 
any provided patches. 

UVM-ML OA will continue to be developed.  Currently it 
supports a rich set of facilities that enable the UVM 
methodology for ML, however there are still some important 
features missing and they should be added in the near future.  
This includes the following ML capabilities: 

• Coordinated test framework completion and 
shutdown 

• ML messaging service 

• Error reporting and handling 

• Time quantum service 

• Basic UVM synchronization facilities (events, 
objections, barriers) working for ML 

• Sequence coordination between frameworks 

• Expanded set of supported transaction types in the 
TLM communication 

• Enhanced debugging capabilities and tracing 

• Expanded methodology guidelines and examples 
addressing the high-level verification tasks 

SUMMARY  

This paper describes the challenge of integration and reuse 
of verification components based on different methodologies 
and languages when combined together into a single 
environment.   Some key relevant use cases described in this 
paper include VIP reuse, multi-abstraction substitution, 
hardware assisted verification, and software driven verification. 

These use cases were presented to illustrate the broad spectrum 
of applications that face this common challenge. 

The paper presents an overview of a novel solution called 
UVM-ML OA.  UVM-ML OA represents a step forward in 
technology and a generic approach to enabling multiple 
frameworks to interoperate within the same environment. The 
benefits of this architecture were described as well.  UVM-ML 
OA is capable of addressing all of the use-cases presented and 
beyond, without any underlying assumptions about the number 
or types of frameworks that are integrated.  An in-depth 
illustrative use-case example was then provided to demonstrate 
the capability and flexibility of the UVM-ML OA solution. 

The UVM-ML OA solution will continue to evolve and 
align with emerging industry needs.   It contains a rich set of 
facilities and will be further enhanced to broaden its 
capabilities. 

We believe that UVM-ML OA will be extremely beneficial 
for users facing practical multi-framework interoperability 
challenges and will provide them with an efficient and well 
architected solution. We also hope that it can become a basis 
for the emerging standardization in this area.  
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