
Multi-Language Verification:
Solutions for Real World Problems

Bryan Sniderman
Advanced Micro Devices, Inc.

Verification Methodology
Toronto, Canada

bryan.sniderman@amd.com

Vitaly Yankelevich
Cadence Design

Advanced Verification Solutions Division
Rosh Ha'Ain, Israel
vitaly@cadence.com

Abstract—Modern verification projects often need to deal with a
mixture of available off-the-shelf verification components. This
presents several challenges. The components may be implemented in
different languages (SystemVerilog, e, SystemC, C++) based on
different methodologies (flavors of UVM, VMM, different C++ class
libraries). The involved actors (integrators and verification IP
developers) need to combine these components together with minimal
changes. This paper presents use-cases that leverage an open multi-
language architecture addressing those challenges. The paper
provides an overview of the solution and illustrates how it can be
applied to one of the emerging use cases.

Keywords— functional verification; verification intellectual
property (VIP); verification reuse; unified verification methodology
(UVM); multi-language; transaction-level modeling (TLM) ;
backplane

I. INTRODUCTION

Subsystem and system-level verification face many
challenges on different scales: modeling and refinement at
different levels of abstraction, verifying proper functionality
and performance of complex systems, integration checking and
so on. The need to deal with several implementation languages
and diverse verification methodologies is only one of those
challenges.

This paper begins with a description of the relevant use
cases requiring a multi-language solution. Following that, it
presents the architected solution (UVM-ML OA) that enables
efficient integration of multi-language verification IP (VIP)
components. UVM ML OA helps to reduce or eliminate the
time and effort that verification architects need to spend on
dealing with multi-language integration related issues. This
paper then describes a simplified hypothetical subsystem-level
use case that illustrates the usage of the UVM-ML OA
mechanisms for different tasks.

A. VIP Reuse (Vertical and Horizontal) Use Case
Time to market and development efficiency are important

drivers for reuse in general. Applied to functional verification,
vertical and horizontal reuse reduces duplication of efforts in
developing testbenches and test scenarios at the IP and system
on a chip (SoC) levels [1],[2].

The need to reuse even one useful VIP, implemented in a
different language, is a sufficient reason to necessitate a multi-

language environment. IP, subsystem and system-level
testbenches which employ a re-use methodology, often bring
together multiple verification IPs (VIP’s), one or more
reference models, scoreboards and virtual sequences that may
be written in different languages. In such a system, the
configuration settings, data transactions, sequences, stimuli,
and synchronization coordination may cross the language
boundaries.

Figure 1 illustrates the typical reuse of an IP level
verification environment on a subsystem level.

Fig. 1. Vertical reuse: IP level vericiation environment and its integration in
the subsystem level.

B. Transformation of a Design Under Test Through Multiple
Abstraction Levels Use Case

[3] and [4] describe the real-world use cases where the
design under test (DUT) is modeled in different languages at
different abstraction levels.

As the DUT abstractions evolve, the testbench should
evolve in parallel to incorporate the different levels of
abstractions into it. For example, as shown in Figure 2, a DUT
can be initially represented by a high level SystemC functional
model. This SystemC model enables development of the
testbench ahead of an RTL model and can also be embedded
into a scoreboard.

Fig. 2. Testbench reuse with different design-under-test models.

This naturally leads the testbench to evolve into multi-
language. Leveraging the standard transaction-level modeling
(TLM) in the testbench aids in making it invariant to the
abstractions and to the implementation languages of the DUT
model. A testbench architected with these enabling facilities is
able to support different abstractions or even concurrent mixed-
abstractions seamlessly.

C. Hardware-Assisted Verification With an Accelerated VIP
Use Case
[5] and [6] present the use cases where the accelerated VIP

helps reduce verification time. They make the premises that the
testbench won't require significant reworking or present
debugging challenges when switching between software-based
simulation and hardware-based acceleration environments.

This use-case can be viewed as a specialization of the
previously referenced multiple abstractions DUT use-case.

Figure 3 shows a synthesizable version of the DUT placed
in an acceleration device (such as FPGA, or HW-accelerator).
The bus functional model (BFM) and passive collector
components of the testbench are also included in the
synthesizable part of the design. A specialized software
transaction layer (implemented, for example in C++) abstracts
between the simulated and synthesized domains.

Fig. 3. Accelerated verification IP.

Both the software layer and synthesizable part of the
testbench would benefit from leveraging standardized multi-
language TLM communication, phasing, and hierarchical
configuration facilities which are portable to different domains.

D. Software-Driven Functional Verification Use Case

Software-driven verification has been gaining momentum
over the past few years. [7] and [8] present different
mechanisms for using the software to control test environment.
[7] presents the usage of TLM2.0 virtual platforms and [8]
describes how SW tests can control a VIP via the virtual
register interfaces as shown on Figure 4.

The main goal is to enable real world software scenarios to
be executed on a DUT (IP or subsystem) in order to exercise it
in the way it is intended to be used. Conversely, an abstraction
of a DUT can be provided to the associated software teams in
order to enable early software development. In both cases, a
software environment (e.g. a virtual machine) is manifested in
one language, and a simulation or acceleration environment is
deployed in another. Regardless of the specific methodology,
leveraging a seamless multi-language platform for
interoperating between domains is necessary in order to enable
rapid integration.

Fig. 4. Software-driven functional verification

II. PREVIOUS WORK

There is a long list of former and currently-available
solutions enabling mixed-language communication. They can

be grouped into 2 categories: multi-language co-simulation
solutions and multi-language verification methodology
solutions.

The first category, which includes EDA vendor simulators
and co-simulation backplanes, targets low-level integration of
hardware-description languages (HDL) and simulation engines.
This level is targeted primarily for design purposes and it deals
with issues such as signal propagation, fine-grain
synchronization of simulation engines, and so on. Another
characteristic of the low-level communication is that it does not
support an object-oriented programming paradigm. In
particular, it does not address class-based communication
between the languages. Based on these criteria, we can include
in category the C-language programming interfaces, such as
the standard SystemVerilog DPI, the Specman C interface, and
similar C-based interfaces.

The second category aims at enabling integration of high-
level verification methodologies, such as SystemC TLM, UVM
SystemVerilog, UVM-e, OVM, and VMM, to name a few. The
focus of this category is to align the main common
methodological constructs, such as testbench phasing,
configuration, transaction-level communication, and test
selection. This category requires support of the class-based
interfaces. This multi-language solution described in this paper
falls under the second category.

Products already available on the market provide partial
solutions for this area. Each of these products however has
some limitations.

For example, Cadence Design developed a UVM multi-
language library that allows UVM SystemVerilog, e and
SystemC to be interconnected via TLM ports. In addition to the
multi-language communication, Cadence's solution includes a
UVM-based SystemC class library, which can be connected to
the other languages. This product is proprietary to Cadence and
it does not allow the users to incorporate additional languages
or methodologies.

Synopsys VCS-TLI supports transaction-level
communication between SystemVerilog and SystemC [9]. It is
limited by being non-portable between the simulators and
integrates only those two frameworks.

Mentor Graphics' open-source UVM Connect (UVMC)
library [10] allows connecting UVM SystemVerilog and
SystemC via TLM ports. It also provides a procedural interface
for accessing other UVM SystemVerilog facilities from
SystemC. This library is portable and runs on different
simulators. It was designed to only support point-to-point
integration between the two languages, and requires that UVM
SystemVerilog is put in charge of providing the methodology-
level services to SystemC. As such, all the methodology
facilities in the SystemC framework cannot be used
independently and require presence of UVM SystemVerilog.

The Accellera Multi-Language Work Group (MLWG) was
publicly established in April 2013 [11]. It established the key
requirements that a complete multi-language solution should be
portable between simulators, should be extensible to additional
languages and methodologies, should not depend on any
specific methodology library, and should support a broad

spectrum of high level services. None of the above-mentioned
solutions currently address all of these requirements.

III. UVM-ML OPEN ARCHITECTURE

As discussed in the introduction, there is a broad and
growing need for integration of the multi-language verification
components in modern verification environments. The contents
of the aforementioned papers (and many other papers
published) reveal that a great variety of the languages and
methodologies are used in practice: UVM SystemVerilog,
SystemC, e, VMM, OVM, C++, Python and more. This
indicates there is strong industry need for a generic solution
that addresses this problem and results in saving the engineers
from having to devise a proprietary solution in each project.

This section describes the purpose and design of the open
source package named UVM-ML Open Architecture (UVM-
ML OA), jointly developed by AMD and Cadence. It aims at
enabling rapid integration and re-use of multi-language
verification components. The term framework is used to denote
an assembly of verification and modeling facilities
implemented in a single language. Frameworks may be written
in a specialized Hardware Verification Language (HVL) such
as SystemVerilog, or e, a modeling language (such as
SystemC), or a generic programming language (for example,
C++). Examples of frameworks include UVM SystemVerilog,
UVM e, ASI SystemC, VMM. Different frameworks can be
deployed in the same language (for example, UVM and VMM
are both in SystemVerilog). A new framework can be
composed from a few simpler frameworks in the same
language (for example, a combination of ASI SystemC with a
UVM SystemC library). The term multi-language used
throughout this paper is extended to include the diversity of
frameworks being integrated, regardless of their target
languages.

UVM-ML Open Architecture is so named because it
follows the primary concepts defined by the UVM
methodology. The qualifier "Open Architecture" emphasizes
the intended openness of the solution to enable integration of
multiple frameworks, rather than limiting the solution to the
fixed selection of languages.

To further clarify the scope of the work, we need to
emphasize that UVM-ML OA focuses on bridging the
languages and frameworks on the methodology level, using the
currently available language constructs. The authors did not
attempt to address the mixed language challenges with
invention of new specialized extensions, such as, for example,
supporting passing objects directly by reference, or calling
"foreign" class methods in few selected languages.

The primary goal is to isolate the concerns of the VIP
developer and integrator. The developer should not be
concerned about whether the VIP will be used in a single-
language or a multi-language environment, so long as the
developer is following the recommended UVM methodology
practices. The integrator is expected to have exposure to the
nature of the environment (single- or multi-language). By
leveraging the multi-language aware facilities which enable the
integrator, for example, to bind TLM ports across the language
boundary or to instantiate a "foreign" framework VIP

hierarchically, the integrator can assemble multi-language
components and environments.

The UVM-ML OA software distribution package [12], [13]
comprises the backplane, reference frameworks and multi-
language (ML) adapters. All the open source components of
the package are licensed under the Apache License.

A. Backplane

The core of the package is a backplane shared library. The
backplane serves as a routing layer between two or more
integrated frameworks and holds information about the overall
topology, which is necessary for routing. This architecture
enables collaboration between the frameworks while
abstracting away from specific methodologies and languages.

Figure 5 illustrates the UVM_ML topology where the
framework clients are connected to the backplane server,
located in the middle of the "star system". Any number of
frameworks can be interconnected at the same time.

Fig. 5. The backplane and the frameworks.

Communication in the system generally falls into one of the
following categories:

• Providing information to the backplane global data
repository (for example, the frameworks shall
register themselves upon initialization)

• Broadcasting messages from a service provider to
the rest of the frameworks (for example, the
phasing service is implemented in this way)

• Broadcasting messages from any framework to the
rest of the frameworks (for example, the
distributed configuration and resources settings)

• Point-to-point communication (for example,
passing transactions via TLM)

The content of the messages, flowing between the
frameworks, is transparent to the backplane.

The backplane, provided in the UVM-ML OA distribution,
is general in nature, and does not need any intervention by
users. For example, an end user integrating VIPs into a
testbench (an ML integrator) can link in the available
backplane library and supported frameworks as is and does not
need to be aware of the backplane presence.

B. Reference Frameworks

The frameworks supported in the current release of the
UVM-ML OA package include three UVM flavors: UVM
SystemVerilog, UVM SystemC, and UVM e. In particular, the
package provides the patch source code for UVM
SystemVerilog with ML enablers, and the source code for the
UVM-SC library.

A detailed description of the UVM-SC library is beyond the
scope of this paper but we introduce it here briefly to raise
awareness of the availability of this framework with the
package and of its importance for successful integration of
SystemC in a complex ML environment.

UVM-SC is a standalone C++ class library which
implements the standard UVM methodology as a framework
on top of a standard Accellera Systems Initiative (ASI)
SystemC version or a vendor-proprietary SystemC
implementation. This framework enables usage of SystemC for
high-level verification. The UVM-SC framework capitalizes on
the native SystemC facilities, such as threading, SystemC
phasing, TLM, events, barriers, and derives from the SystemC
base classes as a foundation for the UVM classes.
Additionally, UVM-SC builds upon SystemC by leveraging the
power of the UVM methodology: standardized testbench
components, configuration facilities, common phases,
callbacks, resource pools, synchronization extensions, and
factory overrides. There are still a few outstanding facilities
that should be added to UVM-SC as it matures.

The UVM-SC library was architected from the ground up
to be usable in both standalone framework mode (i.e. just
UVM-SC) or in a multi-language environment, in conjunction
with its adapter. All of the facilities deployed in UVM-SC are
scalable to a multi-language environment transparently.

C. Multi-Language Adapters

The previous figure shows the frameworks connected to the
backplane via specialized ML adapters. The role of the adapter
is to connect existing frameworks to the predefined backplane
API. The ML adapter provides an abstraction layer between its
associated framework and the backplane in order to translate
between the two in a seamless manner. Some frameworks may,
potentially, connect to the backplane directly, without a special
adapter, if they are designed to natively allow redirection of
their facilities to an external backplane like server.

D. Services and Facilities

The backplane currently supports the following ML
facilities:

• Initialization and registration of the unlimited
number of frameworks

• Synchronized phased pre-run, runtime, and post-
run execution

• TLM communication

• Hierarchical construction of a multi-language
verification environment (a.k.a. unified hierarchy)

• Build-time and run-time configuration

• Resource sharing

• Runtime synchronization between the master and
slave frameworks

Some of the deployed facilities require a centralized service
provider. This is true for the currently available services, such
as phasing, and for the some future facilities that are planned to
be added (e.g. messaging, shutdown, and quantum time
keeping). The UVM-ML OA backplane is flexible to allow any
framework to register itself as a service provider for a specific
service. The ML integrator has the option to choose the
provider among multiple candidates although a default
provider per service always exists.

E. The Challenge of Enabling Multi-Language Facilities

Many frameworks were not designed with the intention of
participating in a multi-language environment. Some of the
desired multi-language facilities do not easily align between
the various frameworks as they are currently written. There
may be significant value in synchronizing frameworks better
and enhancing them to be multi-language capable, but it will
require working closely with the framework developers to
extend their frameworks to be ML friendly.

Ideally, the ML features should not require modifications to
the existing frameworks however in reality some modifications
are necessary. This creates the dilemma of choosing between
sacrificing some important multi-language features or trying to
add some hooks to enable the features. The features that we
could not support with the standard unmodified frameworks
implementations were:

• Propagation of the phases (and especially, the
"build" phase) between the frameworks, which is
necessary to enable unified multi-language
hierarchy of verification components

• The ability to configure VIP build-time properties
in the process of hierarchical construction (for
example, number of agent instances, active or
passive agent mode etc.) natively from verification
code written in another framework.

• Graceful termination of the test through
synchronization of the post-run phases for the
involved frameworks

• Runtime checking of TLM connections, with the
assumption that all the aligned frameworks finish
their build phase before the first framework's
connect phase begins. Runtime checking allows
issuing connectivity error messages on the spot,
with a proper source reference. Catching the error
immediately allows for a better debugging
experience, rather than deferring the checking
until some future time.

Let us take a closer look at phase propagation. Ideally,
native test phases of different frameworks should be aligned to
some common boundaries (see, for example, this requirement
in [14]).

SystemC and UVM SystemVerilog standards define similar
phases, but they do not enable alignment between them
because the standardized implementations were developed with
a single-language use-case in mind and do not provide a public
interface for controlling the phasing process from an external
controller.

A partial solution, applicable to SystemC, is enabled with
introduction of the UVM-compatible SystemC class library
(UVM-SC). A structural base class in UVM-SC
(uvm_component, as in UVM SystemVerilog) is derived from
the base class sc_module but defines UVM phase callbacks, in
addition to the standard callbacks of sc_module. If the SystemC
testbench developer uses uvm_component's rather than base
sc_modules, then the SystemC adapter can traverse that
hierarchical tree and invoke the UVM-compatible phase
callbacks. UVM-SC ML adapter also supports connecting to
SystemC TLM ports located in standard SystemC modules, and
not only in uvm_component's. In this way it enables seamless
ML TLM communication between the SystemC design and
testbench domains.

The main disadvantage of this partial solution is that it
requires mandatory usage of UVM-SC classes for full phase
synchronization. Although the native SystemC phases are
supported for sc_module's, aligning the native phases
transparently requires an enhancement to the SystemC
framework.

A more comprehensive alignment of the phases is achieved
by applying some unobtrusive patches to the standard
frameworks. The alignment can be coarse-grained or fine
grained, depending on the framework or its adapter.

The coarse-grained alignment scheme means that phase
alignment only occurs at the boundary of a group of phases.
For example, it is rather important that all involved frameworks
complete their pre-run phases before execution of the runtime
processes or threads, so a coarse-grained deployment would
ensure all frameworks align at the end of the pre-run phases
before proceeding to the runtime phases. Similarly, all the
runtime phases should be finished before any framework starts
execution of the post-run phases. Alignment within a coarse-
grained group between frameworks would not be supported.

Fine-grained alignment of the phases means that each
component's callbacks in the multi-language system are aligned
per a common phase, regardless of the framework origin. The
fine-grained alignment of the phases is a preferable option, if
the framework adapter can support it. Such alignment enables
better synergy and makes the whole environment virtually
behave as though it is implemented in one language. This
results in a more natural approach for integrating multi-
language VIP and eliminates any potential side effects that may
be incurred with the coarse-grained scheme.

In the UVM-ML OA package, we included patches for the
ASI SystemC and UVM SystemVerilog frameworks enabling
the fine-grained alignment of the ML phases. The patches add
to those frameworks public methods that allow invocation of
the phases individually from an external phase controller at the
beginning of simulation. These patches do not compromise

backwards compatible behavior and are transparent to users of
those frameworks.

The following figure illustrates an example of how the
finely aligned pre-run phases for 3 frameworks interoperate: a
patched UVM SystemVerilog, a patched SystemC and e.

Fig. 6. Time sequence for fine-grained phase aligned frameworks and its
corresponding unified hierarchy.

F. Support for ML Configuration and Resources
UVM configuration is a method of sharing the

configuration elements via the configuration database. The
configuration element comprises a name, value and properties.
One property is a context of an originating component.

During the UVM build phase, the context automatically
affects the priority property. This allows the highest ancestral
parent component to override the values specified by other
components on lower hierarchical levels. To emphasize this
effect of the hierarchical position of the originating component,
we refer to the build phase time configuration as hierarchical
configuration. Configuration during the rest of the phases is
referred as runtime configuration.

Deploying a multi-language hierarchy requires introducing
a multi-language aware configuration facility.

 Resources differ from configuration in that the hierarchical
context of the originating component is not stored and not
used. The remaining characteristics for resources and the
configuration elements are common. This allows the ML
adapters to maintain both configuration and resource elements
in a unified manner.

There are two potential storage models for the multi-
language configuration database: the centralized model and the
distributed model. Both approaches have their advantages and
disadvantages. Developers of the UVM-ML OA have chosen
the distributed model based on performance and flexibility
considerations. The distributed model enables better
performance characteristics because reading the distributed
database does not require crossing the language boundaries.
The distributed model also allows different frameworks to
maintain different (potentially, legacy driven) semantics of
interpreting the configuration properties, thus achieving greater
flexibility.

The UVM-ML OA backplane API allows a framework to
broadcast configuration and resource settings so that they can
be stored in the corresponding databases of other connected
frameworks. The actual implementation of the user-view and
the broadcasting implementation are framework-specific. The
reference framework adapters, that are currently included in the
UVM-ML OA distribution, support configuration and resource
value types that can be passed by copy (singular integral types,
strings and serializable objects).

IV. AN ILLUSTRATIVE USE CASE

This section describes an emerging use case (following the
lines of the work presented in [8]), that we use to demonstrate
the UVM-ML OA facilities in greater detail. More information
about each construct explained below can be found in the open
source package documentation [15],[16].

The selected use case represents a verification environment
for a hypothetical communication subsystem. A top-level
SystemVerilog DUT testbench module comm_subsystem_tb,
instantiates an abstract module comm_subsystem_top and its
two interfaces: host_if and comm_if as shown in Figure 7.

Fig. 7. An abstract SystemVerilog design under test.

The verification environment for this testbench is
composed of three layers as shown in Figure 8.

// SystemVerilog testbench and DUT

import uvm_pkg::*;

interface comm_if(input logic clk);
 wire data [31:0];
 wire addr [31:0];
 string this_name = $sformatf("%m");
endinterface

interface host_if();
 string this_name = $sformatf("%m"); …
endinterface

module comm_subsystem_top (comm_if cif, host_if
hif);
endmodule

module comm_subsystem_tb;
 logic clk = 0;
 comm_if cif (clk);
 host_if hif();
 comm_subsystem_top comm(.cif (cif), .hif(hif));
 …
endmodule

Fig. 8. ML verification environment for an abstract communication
subsystem.

The high-level SystemC verification harness layer enables
integration with the application software domain. The harness
layer is leveraging the UVM-SC framework and its primary
task is to mediate between the control knobs, belonging to the
software, and a SystemVerilog reusable VIP. Additionally, the
SystemC layer includes a reference model. This reference
model was originally used as a high-level abstract model of the
DUT and is now connected to the scoreboard. While the actual
software is not available in this example, the tests provided (see
test1 on Figure 8) are also implemented in SystemC/C++,
mimicking the software control knobs. The control knobs in the
SystemC are modeled using a command API class. The "toy"
command API in this use case represents a C structure,
containing a command op and few arguments op1, op2 … In a
more realistic example; this structure could be represented by a
group of registers or a high-level programming library.

Fig. 9. SystemC verification harness layer.

Figure 9 shows the definitions of the SystemC harness and
test classes. Both classes are derived from the base structural
class uvm_component, similar to its corresponding class in the
standard UVM SystemVerilog library. The classes have the
same phase callback methods (build_phase, connect_phase
etc.). In this example, test1 activates the control API in the
blocking run phase.

Figure 10 demonstrates how the reusable SystemVerilog
VIP is instantiated in the SystemC harness layer. It provides a
more detailed view of the class sc_harness than shown on
Figure 9.

// SystemC high-level harness environment
#include "tlm.h"
#include "uvm.h" // UVM-SC topmost header file
#include "uvm_ml.h" // UVM-ML adapter header file
using namespace uvm;
using namespace uvm_ml;

class command_api{// Mimicking SW control knobs
public:
 int command; int op1; int op2;
 sc_event command_event;
 …
 void set(int c, int i1, int i2) {
 command = c; op1 = i1; op2 = i2;
 command_event.notify();
 }
};
class sc_harness : public uvm_component {
public:
 command_api ca; // command API instantiated
 sc_tb (sc_module_name nm):uvm_component(nm), …
 { … }
 void build_phase(uvm_phase *phase) { … }
 void connect_phase(uvm_phase *phase) { … }
 void run_phase(uvm_phase *phase) { … }
 UVM_COMPONENT_UTILS(sc_tb)
};
class test1 : public uvm_component { // A test
public:
 sc_harness * sc_h; // SC harness component
 sc_test1(sc_module_name nm): uvm_component(nm)
 { sc_h = new sc_harness("sc_h"); }
 void run_phase(uvm_phase *phase) {
 wait(1, SC_NS);
 sc_h->ca.set(RST_SEQ, (-1), (-1));
 wait(10, SC_NS);
 sc_h_>ca.set(TRANS_SEQ, 10,(-1));
 …
 }
 UVM_COMPONENT_UTILS(sc_test1)
};

Fig. 10. UVM-SC component instantiating a SystemVerilog UVM
component.

The sc_harness class in Figure 10 has few additional
member fields (compared to those shown on Figure 9). The
class member vip_env points to sc_harness's hierarchical child
component. In the previous section we explained that UVM-
ML OA supports a unified logical hierarchy. In the given use
case, env is a proxy of the SystemVerilog child component of
the UVM-SC parent component.

The hierarchical construction is performed in the build
phase of sc_harness, as prescribed by the UVM methodology.
Vip_env is assigned with return value of the SystemC ML
adapter's method uvm_ml_create_component. This method
accepts 4 arguments: the string identifier of the target
framework (in our case, it is "SV"), the type name of the
SystemVerilog component ("comm_vip_env"), instance name
("env") and a pointer to the parent component (this).

There is also a TLM analysis port aport that is used for
communication between the parent and child components. It
passes polymorphic transactions of the base class
uvm_seq_control_base. This and the derived class definitions
are not shown here due to the paper's constraints. The binding
between the port and its counterpart implementation (export) is
done by the ML adapter's method uvm_ml_connect that
receives two string arguments. One of the benefits of the
unified ML hierarchy is that it allows the integrator to use
relative names for connection between the parent and child (see
aexport_name on Figure 10). In our use case, the integrator
does not need to keep track of a shadow SystemVerilog

hierarchy in SystemC, but only needs to use the child
component's export field name "control_imp" (as used also in
the single-language environment). By using the hierarchical
port names, the integrator eliminates any potential scalability
issues because those names are guaranteed to be unique
always.

The ML adapter's function uvm_ml_connect() is invoked in
the connect phase, synchronized to its corresponding phase in
the other connected frameworks. Synchronized phasing
ensures that all the ports in all the frameworks are already
instantiated prior to being connected. This also allows the
backplane to issue a non-delayed error message if the integrator
specifies incorrect or invalid port names.

UVM recommends using SystemVerilog virtual interfaces
for signal-level access between a verification component (e.g. a
driver or a monitor) and the DUT. In our use case, the DUT has
two interfaces: host_if and comm_if. In a single-language
environment, the integrator can pass the virtual interface from
the DUT to the verification component, using the configuration
mechanism. In a multi-language environment, passing the
interfaces by pointer is not possible but also not required.
Access from a hardware verification language (HVL) to a
hardware description language (HDL) is usually implemented
via a standard API, for example SystemVerilog VPI or DPI.
Those API's operate with the hierarchical names (of signals,
functions etc.) in the string format. Consequently, in the ML
environment, the UVM-ML integrator needs to pass a
hierarchical name of the DUT interface as a string.

Figures 11 and 12 illustrate how the UVM ML
configuration mechanism can be used for passing the interface
names between frameworks. Figure 11 shows the DUT
testbench (the same module comm_subsystem_tb as in Figure
7), writing the interface names in the configuration database.

// SystemC high-level harness class - zoomed in
#include "tlm.h"
#include "uvm.h" // UVM-SC topmost header file
#include "uvm_ml.h" // UVM-ML adapter header file
using namespace uvm;
using namespace uvm_ml;
…
typedef class build_config_c;// config object
class sc_harness : public uvm_component {
public:
 command_api ca;
 uvm_component * vip_env;
 build_config_c * env_config; // Config object

 tlm_analysis_port<uvm_seq_control_base> aport;

 sc_harness(sc_module_name nm):uvm_component(nm)
 ,aport("aport"), vip_env(0)
 { env_config = new
 build_config_c("SV","comm_vip_env",ACTIVE);
 uvm_ml_register(&aport);
 }
 void build_phase(uvm_phase *phase) {
 vip_env = uvm_ml_create_component (
 env_config->frmw_name,
 env_config->type_name, "env",
 this);
 }
 void connect_phase(uvm_phase *phase) {
 string aexport_name =
 vip_env->name()+string(".")+"control_imp";
 uvm_ml_connect (aport.name(), aexport_name);
 }
};

Fig. 11. Passing SystemVerilog DUT interface names in the configuration
database.

As previously mentioned in Section III, the SystemVerilog
ML adapter broadcasts the UVM configuration settings to the
rest of the participating frameworks. Figure 12 shows how the
e UVC should be extended to retrieve and use the
communication interface name.

Fig. 12. e UVC retrieving SystemVerilog interface name.

In Figure 12, the UVM e unit comm_uvc_env_t retrieves the
hierarchical interface name using the constraint keep
uvm_config_get(). This name is propagated to the e interface
unit comm_dut_intf (using an hdl_path attribute). In this way,
all the e ports are automatically associated with the
corresponding SystemVerilog interface signal names (because
the hdl_path attributes of units and ports are implicitly
concatenated).

In UVM, settings from hierarchically higher levels made at
build time have higher precedence. This feature allows a
component on a higher level to override a default configuration
specified in a lower-level component. Figure 13 illustrates how
the SystemVerilog comm._vip_env sets a default configuration
for the e communication UVC agent (UVM_PASSIVE) and
how the SystemC testbench harness component provides the
actual configuration (UVM_ACTIVE) for the agents.

Fig. 13. Hierarchical configuration during the build phase.

// e agent configuration:
<'
unit comm_uvc_agent like uvm_agent {
 keep soft uvm_config_get(active_passive); …
};
'>
…
// SystemVerilog VIP env instantiating the e UVC
// and setting the default configuration for the
// e agent to be passive:
import uvm_pkg::*;
import uvm_ml::*;
class comm_vip_env extends uvm_env;
 …
 `uvm_component_utils(comm_vip_env)
 uvm_component comm_uvc_env;
 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 uvm_config_db#(int)::set(this,
 "comm_uvc_env.agent", "active_passive",
 uvm_active_passive_enum'(UVM_PASSIVE));
 comm_uvc_env = uvm_ml_create_component("e",
 "comm_uvc_env_t","comm_uvc_env",this);
 endfunction
 …
endclass
…
// SystemC harness env (see Fig. 10) configures
// the comm UVC agent to be active and thus
// overrides the default
#include "uvm_ml.h"
using namespace uvm_ml;
class sc_harness : public uvm_component {
public:
 void build_phase(uvm_phase *phase) {
 set_config_int("vip_env.*.agent",
 "active_passive",
 uvm_active_passive_enum(UVM_ACTIVE));
 vip_env = uvm_ml_create_component(
 env_config->frmw_name,
 env_config->type_name, "env",this);
 }
 …
};

// SystemVerilog testbench and DUT

import uvm_pkg::*;

interface comm_if(input logic clk);
 …; string this_name = $sformatf("%m");
endinterface

interface host_if();
 …; string this_name = $sformatf("%m");
endinterface

module comm_subsystem_tb;
 logic clk = 0;
 comm_if cif (clk);
 host_if hif();
 comm_subsystem_top comm(.cif (cif), .hif(hif));
 initial begin
 uvm_config_db#(string)::set(null,
 "uvm_test_top.*",
 "comm_intf_name",
 cif.this_name);
 uvm_config_db#(string)::set(null,

 "uvm_test_top.*",
 "host_intf_name",

 hif.this_name);

 end
endmodule

// e env retrieving DUT interface name
unit comm_dut_intf {
 clk_p: in event_port is instance;
 keep clk_p.hdl_path() == "clk";
 data_p: inout simple_port of int is instance;
 keep data_p.hdl_path() == "data"; …
};
unit comm_uvc_env_t {
 dut_intf: comm_dut_intf is instance;

 comm_intf_name: string;
 keep uvm_config_get (comm_intf_name);
 keep dut_intf.hdl_path() == comm_intf_name;
 keep agent.driver.signal_map == dut_intf;
};

// e sequence using ports of comm_dut_intf
extend tx_sequence {
 num_t: int;
 body () @driver.signal_map.clk_p$ is only {
 for j from 1 to num_t {
 wait @driver.signal_map.clk_p$;
 driver.signal_map.data_p$ = j; … };
 };
};

V. FUTURE DIRECTIONS

UVM-ML OA, as developed by AMD and Cadence, was
intentionally developed to serve the verification community as
a basis for standardization. It is provided as open source under
the Apache 2.0 license, and is currently posted on Accellera
website [12].

The work presented in this paper was done with awareness
and attention to the establishment of the Accellera Multi-
Language Working Group (MLWG). The working group
provided a broad set of user community requirements for the
emerging ML standardized solution, and we strive to keep
UVM-ML OA aligned with these requirements.

There are various additional frameworks or enhancements
to frameworks that companies or organizations have expressed
interest in. We are open to explore collaboration with other
framework developers to enable broader integration.

 As previously mentioned, UVM-ML OA currently
includes ML enabling reference patches for the standard
frameworks (UVM SystemVerilog and ASI SystemC). If
UVM-ML OA is adopted as the basis for standardization by the
Accellera ML WG, then we intend to work with the
corresponding owning Accellera working groups to incorporate
the ML specific requirements and address them in the future
releases of their corresponding frameworks, thus eliminating
any provided patches.

UVM-ML OA will continue to be developed. Currently it
supports a rich set of facilities that enable the UVM
methodology for ML, however there are still some important
features missing and they should be added in the near future.
This includes the following ML capabilities:

• Coordinated test framework completion and
shutdown

• ML messaging service

• Error reporting and handling

• Time quantum service

• Basic UVM synchronization facilities (events,
objections, barriers) working for ML

• Sequence coordination between frameworks

• Expanded set of supported transaction types in the
TLM communication

• Enhanced debugging capabilities and tracing

• Expanded methodology guidelines and examples
addressing the high-level verification tasks

SUMMARY

This paper describes the challenge of integration and reuse
of verification components based on different methodologies
and languages when combined together into a single
environment. Some key relevant use cases described in this
paper include VIP reuse, multi-abstraction substitution,
hardware assisted verification, and software driven verification.

These use cases were presented to illustrate the broad spectrum
of applications that face this common challenge.

The paper presents an overview of a novel solution called
UVM-ML OA. UVM-ML OA represents a step forward in
technology and a generic approach to enabling multiple
frameworks to interoperate within the same environment. The
benefits of this architecture were described as well. UVM-ML
OA is capable of addressing all of the use-cases presented and
beyond, without any underlying assumptions about the number
or types of frameworks that are integrated. An in-depth
illustrative use-case example was then provided to demonstrate
the capability and flexibility of the UVM-ML OA solution.

The UVM-ML OA solution will continue to evolve and
align with emerging industry needs. It contains a rich set of
facilities and will be further enhanced to broaden its
capabilities.

We believe that UVM-ML OA will be extremely beneficial
for users facing practical multi-framework interoperability
challenges and will provide them with an efficient and well
architected solution. We also hope that it can become a basis
for the emerging standardization in this area.

 REFERENCES

[1] B. Bailey, F. Balarin, M. McNamara, G. Mosenson, M. Stellfox, Y.

Watanabe, “TLM-Driven design and verification methodology”,
Cadence Design Systems, Inc., 6-12, June 2010,
http://www.amazon.com/TLM-Driven-Design-Verification-
Methodology-Bailey-ebook/dp/B003XVZBE8.

[2] A. Jain, G. Bonanno, Dr. H. Gupta, A. Goyal, A. Mangla. "System
Verilog Universal Verification Methodology based verification
environment for imaging IPs/SoCs", CDNLive Users Conference,
Bangalore, 2012, http://www.cadence.com/cdnlive.

[3] S. Swan, Qiang Zhu, Xingri Li, “Moving to SystemC TLM for design
and verification of digital hardware” EE Times, May 13, 2013,
http://www.eetimes.com/document.asp?doc_id=1280845.

[4] K. Herterich, " Verifying Multiple DUV Representations with a Single

UVM-e Testbench", CDNLive Users Conference, Boston MA, August
2013, http://www.cadence.com/cdnlive.

[5] Srivatsan Raghavan, “Can hardware-assisted verification save SoC
realization time?", EE Times, November 8, 2013
http://www.eetimes.com/author.asp?section_id=36&doc_id=1320016.

[6] Sumeet Aggarwal, “Rapid Adoption Kit (RAK) -- creating UVM
verification environments with hardware-assisted verification,” System
Design and Verification Blog, Cadence Design Systems, June 28, 2013
http://www.cadence.com/Community/themes/blogs.

[7] D. Black, J. Aynsley, B. Bunton, V. Essen, T. Wieman, Technical
Tutorial: "Software-driven verification using TLM-2.0 virtual
platforms". Design and Verification Conference (DVCon) February 28,
2011, http://videos.accellera.org/tlm20sdvvirtual/ts82dpj34d/index.html.

[8] Sandeep Jana, Sonik Sanchdeva, Krishna Kumar, Swami Venkatesan,
Debajyoti Mukherjee, "TLM based software control of UVCs for
Vertical Verification Reuse", DVClub, Apr 18, 2013,
http://www.slideshare.net/directory/slideshows/tlm-based-software-
control-of-uvcs-for-vertical-verification-reuse.

[9] J. Aynsley, "VMM-to-SystemC Communication Using the TLI", VMM
Central, http://www.vmmcentral.org/vmartialarts/2011/03/vmm-to-
systemc-communication-using-the-tli.

[10] A. Erickson, "Transaction-Level Friending: An Open-Source, Standards-
Based Library for Connecting TLM Models in SystemC and
SystemVerilog", DVCon 2013, San Jose, CA
http://events.dvcon.org/2013/proceedings/papers/07_1.pdf.

[11] Multi-Language (ML) Working Group
http://www.accellera.org/activities/committees/multi_language.

[12] UVM-ML Open Architecture version 1.3 (Overview and download)
http://forums.accellera.org/files/file/65-uvm-ml-open-architecture.

[13] B. Sniderman, V. Yankelevich, “Techtorial: UVM Multi-Language:
Technology and Reference Application”, CDNLive Users Conference,
Santa Clara CA, March 2013,
http://www.cadence.com/cdnlive/na/2013/Pages/default.aspx.

[14] Shankar Myilswamy, Kai Chirca, Matthew Pierson, Kedar Basavaraj,
Izuchukwu Nwachukwu, " Molding multi-methodology (VMM, UVM,

SystemC) VIPs for reuse", CDNLive Users Conference, Boston MA,
August 2013, http://www.cadence.com/cdnlive, pp.11,17.

[15] G. Leshem, V. Yankelevich, B. Sniderman. "UVM-ML Whitepaper. A
Modular Approach for Integrating Verification Frameworks" (available
for download at http://forums.accellera.org/files/file/65-uvm-ml-open-
architecture.

[16] UVM-ML Integrator User Guide (available for download at
http://forums.accellera.org/files/file/65-uvm-ml-open-architecture.

