Multi-Language Verification:
Solutions for Real World Problems

Bryan Sniderman

Advanced Micro Devices, Inc.
Verification Methodology
Toronto, Canada
bryan.sniderman@amd.com

Abstract—Modern verification projects often need to dealhvat
mixture of available off-the-shelf verification cpoments. This
presents several challenges. The components megpbemented in
different languages (SystemVerilog, e, SystemC,)Chased on
different methodologies (flavors of UVM, VMM, diffiet C++ class
libraries). The involved actors (integrators andrifieation IP
developers) need to combine these components éogeth minimal
changes. This paper presents use-cases that leverag@pen multi-
language architecture addressing those challengEse paper
provides an overview of the solution and illusteateow it can be
applied to one of the emerging use cases.

Keywords— functional verification; verification irgllectual
property (VIP); verification reuse; unified verifiation methodology
(UVM); multi-language; transaction-level modeling TLM) ;
backplane

l. INTRODUCTION

Subsystem and system-level
challenges on different scales: modeling and referd at
different levels of abstraction, verifying propamttionality
and performance of complex systems, integratiockihg and
so on. The need to deal with several implementatinguages
and diverse verification methodologies is only afethose
challenges.

This paper begins with a description of the relévase
cases requiring a multi-language solution. Follgvthat, it
presents the architected solution (UVM-ML OA) tlesiables
efficient integration of multi-language verificatiolP (VIP)
components. UVM ML OA helps to reduce or elimingte
time and effort that verification architects needspend on
dealing with multi-language integration relateduiss This
paper then describes a simplified hypothetical yaibs-level
use case that illustrates the usage of the UVM-MA O
mechanisms for different tasks.

A. VIP Reuse (Vertical and Horizontal) Use Case

Time to market and development efficiency are irtgoar
drivers for reuse in general. Applied to functiometification,
vertical and horizontal reuse reduces duplicatibefforts in
developing testbenches and test scenarios at taedRystem
on a chip (SoC) levels [1],[2].

The need to reuse even one useful VIP, implemented
different language, is a sufficient reason to n&ta® a multi-

verification face many

Vitaly Yankelevich

Cadence Design
Advanced Verification Solutions Division
Rosh Ha'Ain, Israel
vitaly@cadence.com

language environment. [P,
testbenches which employ a re-use methodologyn ditang
together multiple verification IPs (VIP’s), one anore
reference models, scoreboards and virtual sequéhaesnay
be written in different languages. In such a systehe
configuration settings, data transactions, sequensémuli,
and synchronization coordination may cross the dagg
boundaries.

Figure 1 illustrates the typical reuse of an IPelev
verification environment on a subsystem level.
VviP

Virtual Sequencer ' SCBD. ﬂsgme/

Two module-
UVCs are
reused

X Bus

uve

Two Interface
UvCs
reused

Fig. 1. Vertical reuse: IP level vericiation environmentdats integration in
the subsystem level.

subsystem and systerh-leve

B. Transformation of a Design Under Test Through Nblgti
Abstraction Levels Use Case
[3] and [4] describe the real-world use cases wlbe

design under test (DUT) is modeled in differentgiaages at
different abstraction levels.

As the DUT abstractions evolve, the testbench shoul

evolve in parallel to incorporate the different db of
abstractions into it. For example, as shown iufé@, a DUT
can be initially represented by a high level Sy§ieiomctional

TestBench

‘ Checker ‘

(___ /1 ‘ ScoreBoard N ‘, . -

Transaction EProxy“ 5§ =remeanuni=y B, 1oy | | | Transaction
UVC A1 (réw% (CH)Tﬁﬁv,ig 3 (Synth))—;E—ng@.(cﬂ).narsacuo;, Ve BT
Acceleration Device)

J

model. This SystemC model enables development ef th

testbench ahead of an RTL model and can also bedsted
into a scoreboard.

TestBench
Checker
| ScoreBoard | -
S—
Transaction - High Level DUT - Transaction
UVC A1 J ginsactlons// (SystemC) transactions 4 UVCB1
/ S—
TestBench
Checker

High Level Ref.
Model of DUT(SC)

A ScoreBoard N —
(—

Transaction | Interface »=—! Refined DUT ,‘ =) Interface ' Transaction
UVCA1 UVCA2 (RTL) 1 UVCB2 uvCB1
—— L J

Fig. 2. Testbench reuse with different design-under-testet®

This naturally leads the testbench to evolve intatim
language. Leveraging the standard transaction-ieeleling
(TLM) in the testbench aids in making it invariattt the
abstractions and to the implementation languageheoDUT
model. A testbench architected with these enalfnijties is
able to support different abstractions or even coent mixed-
abstractions seamlessly.

C. Hardware-Assisted Verification With an Acceleratdé
Use Case

[5] and [6] present the use cases where the aateteVIP
helps reduce verification time. They make the psesithat the
testbench won't require significant reworking oregant
debugging challenges when switching between soéased
simulation and hardware-based acceleration envieoisn

This use-case can be viewed as a specializatiotheof

previously referenced multiple abstractions DUT-case.

Figure 3 shows a synthesizable version of the Dlaceul
in an acceleration device (such as FPGA, or HWilacater).

Fig. 3. Accelerated verification IP.

Both the software layer and synthesizable part haf t
testbench would benefit from leveraging standacdizeulti-
language TLM communication, phasing, and hieraethic
configuration facilities which are portable to di€nt domains.

D. Software-Driven Functional Verification Use Case

Software-driven verification has been gaining motuen
over the past few years. [7] and [8] present diffier
mechanisms for using the software to control tesirenment.
[7] presents the usage of TLM2.0 virtual platforansd [8]
describes how SW tests can control a VIP via théeuali
register interfaces as shown on Figure 4.

The main goal is to enable real world software ades to
be executed on a DUT (IP or subsystem) in ordexéucise it
in the way it is intended to be used. Conversatyabstraction
of a DUT can be provided to the associated softweaens in
order to enable early software development. I lmaises, a
software environment (e.g. a virtual machine) isifiegted in
one language, and a simulation or acceleratiorr@mvient is
deployed in another. Regardless of the specifichauetiogy,
leveraging a seamless multi-language platform
interoperating between domains is necessary irr dodenable
rapid integration.

for

SW Tests
CAPI |
\ DUT

Reg. Model | ‘TLM ‘ Interfﬂce.J "

_ N’ == ‘
Virtual .
Abstraction
Layer

| Interface ™ IP2
N ABSEVER 2 J Y,

4 ———

Verification Environment

The bus functional model (BFM) and passive collectoF'9-4- Software-driven functional verification
components of the testbench are also included & th

synthesizable part of the design. A specializedwsog
transaction layer (implemented, for example in Cab$tracts
between the simulated and synthesized domains.

II. PrREVIOUSWORK

There is a long list of former and currently-avbliéa
solutions enabling mixed-language communicatioreyTban

be grouped into 2 categories: multi-language casgtion spectrum of high level services. None of the aboestioned
solutions and multi-language verification methodglo solutions currently address all of these requireémen
solutions.

The first category, which includes EDA vendor siatats . UVM-ML OPENARCHITECTURE
and co-simulation backplanes, targets low-levetgration of As discussed in the introduction, there is a broad
hardware-description languages (HDL) and simulagiogines. growing need for integration of the multi-languagification
This level is targeted primarily for design purpwsed it deals components in modern verification environments. @betents
with issues such as signal propagation, fine-graimf the aforementioned papers (and many other papers
synchronization of simulation engines, and so onotAer published) reveal that a great variety of the laugs and
characteristic of the low-level communication iatth does not methodologies are used in practice: UVM Systemyagril
support an object-oriented programming paradigm. IrBystemC, e, VMM, OVM, C++, Python and more. This
particular, it does not address class-based conwamion indicates there is strong industry need for a gersmlution
between the languages. Based on these criteriaamenclude that addresses this problem and results in sakiegmgineers
in category the C-language programming interfasesh as from having to devise a proprietary solution inteproject.

the standard SystemVerilog DPI, the Specman Cfauer and) .) .
similar C-baseg interfaces.g P d This section describes the purpose and designecdplen

source package named UVM-ML Open Architecture (UVM-

The second category aims at enabling integrationigh- ML OA), jointly developed by AMD and Cadence. I at
level verification methodologies, such as Systerh®!,TUVM enabling rapid integration and re-use of multi-laage
SystemVerilog, UVM-e, OVM, and VMM, to name a feWhe verification components. The teframeworkis used to denote
focus of this category is to align the main commonan assembly of verification and modeling facilities
methodological constructs, such as testbench mhasinimplemented in a single language. Frameworks mayrkiten
configuration, transaction-level communication, anést in a specialized Hardware Verification Language [j'guch
selection. This category requires support of tressbased as SystemVerilog, ore, a modeling language (such as
interfaces. This multi-language solution descrilvethis paper SystemC), or a generic programming language (faimgke,
falls under the second category. C++). Examples of frameworks include UVM System\teyj
UVM e, ASI SystemC, VMM. Different frameworks can be
deployed in the same language (for example, UVM\Axi
are both in SystemVerilog). A new framework can be
composed from a few simpler frameworks in the same

For example, Cadence Design developed a UVM multitanguage (for example, a combination of ASI Systemith a
language library that allows UVM SystemVerilog, and UVM SystemC library). The term multi-language used
SystemC to be interconnected via TLM ports. In &oidito the throughout this paper is extended to include therdity of
multi-language communication, Cadence's solutimtudes a frameworks being integrated, regardless of their target
UVM-based SystemC class library, which can be cot@tketo languages.
the other languages. This product is proprieta@adence and
it does not allow the users to incorporate additidanguages
or methodologies.

Products already available on the market providdigba
solutions for this area. Each of these productselvew has
some limitations.

UVM-ML Open Architecture is so named because it
follows the primary concepts defined by the UVM
methodology. The qualifier "Open Architecture” erapizes

Synopsys VCS-TLI supports transaction-level the intended openness of the solution to enabégiation of
communication between SystemVerilog and SystemCIf®8§ multiple frameworks, rather than limiting the sadat to the
limited by being non-portable between the simuktand fixed selection of languages.

integr nly those two frameworks. .
tegrates only To further clarify the scope of the work, we need t

Mentor Graphics' open-source UVM Connect (UVMC)emphasize that UVM-ML OA focuses on bridging the
library [10] allows connecting UVM SystemVerilog én languages and frameworks on the methodology lesahg the
SystemC via TLM ports. It also provides a procetuntarface currently available language constructs. The asthid not
for accessing other UVM SystemVerilog facilitiesodr attempt to address the mixed language challenggb wi
SystemC. This library is portable and runs on oiffé invention of new specialized extensions, suchasefample,
simulators. It was designed to only support pampdint supporting passing objects directly by referenae,calling
integration between the two languages, and reqtheedJVM “foreign" class methods in few selected languages.
SystemVerilog is put in charge of providing the inoetology-
level services to SystemC. As such, all the meilogy
facilities in the SystemC framework cannot be use
independently and require presence of UVM Systerfiidder

The primary goal is to isolate the concerns of YHE
fleveloper and integrator. The developer should bet
concerned about whether the VIP will be used inngle-
language or a multi-language environment, so loagthee

The Accellera Multi-Language Work Group (MLWG) was developer is following the recommended UVM methodyl
publicly established in April 2013 [11]. It estaddlied the key practices. The integrator is expected to have expo® the
requirements that a complete multi-language solugiwould be nature of the environment (single- or multi-langelagBy
portable between simulators, should be extensibéltitional leveraging the multi-language aware facilities ahémable the
languages and methodologies, should not depend ngn aintegrator, for example, to bind TLM ports acrdss tanguage
specific methodology library, and should supportbr@ad boundary or to instantiate a “foreign" framework PVI

hierarchically, the integrator can assemble matiguage
components and environments.

The UVM-ML OA software distribution package [12],3]
comprises the backplane, reference frameworks auafti-m
language (ML) adapters. All the open source compisnef
the package are licensed under the Apache License.

A. Backplane

The core of the package idackplaneshared library. The
backplane serves as a routing layer between twonare

B. Reference Frameworks

The frameworks supported in the current releas¢hef
UVM-ML OA package include three UVM flavors: UVM
SystemVerilog, UVM SystemC, and UVBI In particular, the
package provides the patch source code for UVM
SystemVerilog with ML enablers, and the source doddhe
UVM-SC library.

A detailed description of the UVM-SC library is loeyl the
scope of this paper but we introduce it here lyiédl raise
awareness of the availability of this framework twithe

integratedrameworksand holds information about the overall package and of its importance for successful iatémy of

topology, which is necessary for routing. This @sgtture
enables collaboration
abstracting away from specific methodologies anduiages.

between the frameworks while \,\/\m.sc

SystemC in a complex ML environment.

is a standalone C++ class library which
implements the standard UVM methodology as a fraonkew

Figure 5 illustrates the UVM_ML topology where the on top of a standard Accellera Systems InitiativeSI}

framework clients are connected to the backplaneese
located in the middle of the "star system". Any toem of
frameworks can be interconnected at the same time.

Env2 |

| |

Framework 2

envt |

wet| uvea)

| ML Adapter |
| UVM-ML BACKPLANE o
Framework 1 ‘
Registration API J ere
ML-Adapter !
- Service AP| J
A—— Envd_|
Tyl) ProVdedAPI 1 | e
=L | RequiredAPI Framevork/Rouin Gieal l
o @ uvea |
!)
Sewwcesi Senices } |
] —
Service FWn Framework 3
_Mipgeer || ML-Adapter

Fig. 5. The backplane and the frameworks.

Communication in the system generally falls inte ofithe
following categories:

SystemC version or a vendor-proprietary SystemC
implementation. This framework enables usage ofeBy& for
high-level verification. The UVM-SC framework cagdizes on
the native SystemC facilities, such as threadingstesnC
phasing, TLM, events, barriers, and derives fromm3lystemC
base classes as a foundation for the UVM classes.
Additionally, UVM-SC builds upon SystemC by leveiragthe
power of the UVM methodology: standardized testhenc
components, configuration facilities, common phases
callbacks, resource pools, synchronization extessicand
factory overrides. There are still a few outstagdiacilities
that should be added to UVM-SC as it matures.

The UVM-SC library was architected from the growrmal
to be usable in both standalone framework mode fist
UVM-SC) or in a multi-language environment, in aomgtion
with its adapter. All of the facilities deployed UVM-SC are
scalable to a multi-language environment transgigren

C. Multi-Language Adapters

The previous figure shows the frameworks conneiti¢de
backplane via specializeédL adapters The role of the adapter

* Providing information to the backplane global datais to connect existing frameworks to the predefibadkplane
repository (for example, the frameworks shall API. The ML adapter provides an abstraction ldatween its

register themselves upon initialization)

e Broadcasting messages from a service provider t
the rest of the frameworks (for example, the

phasing service is implemented in this way)

associated framework and the backplane in ordérattslate
petween the two in a seamless manner. Some frarkeway,
Botentially, connect to the backplane directly,hwiit a special
adapter, if they are designed to natively allowiresdion of
their facilities to an external backplane like serv

¢ Broadcasting messages from any framework to the

rest of the frameworks (for example,
distributed configuration and resources settings)

e Paint-to-point communication (for example,

passing transactions via TLM)

The content of the messages,
frameworks, is transparent to the backplane.

The backplane, provided in the UVM-ML OA distriborti,
is general in nature, and does meted any intervention by
users. For example, an end user integrating VIRs &
testbench (an ML integrator) can link in the aualia
backplane library and supported frameworks as dsdaes not
need to be aware of the backplane presence.

flowing between the

the D. Services and Facilities

The backplane currently supports the following ML
facilities:

« Initialization and registration of the unlimited
number of frameworks

¢ Synchronized phased pre-run, runtime, and post-
run execution

¢ TLM communication

e Hierarchical construction of a multi-language
verification environment (a.k.a. unified hierarchy)

¢ Build-time and run-time configuration

¢ Resource sharing

SystemC and UVM SystemVerilog standards definelaimi
hases, but they do not enable alignment betweem th

* Runtime synchronization between the master anEecause the standardized implementations wereafmeewith

slave frameworks

Some of the deployed facilities require a centealigervice
provider. This is true for the currently availalsiervices, such

as phasing, and for the some future facilities #natplanned to

a single-language use-case in mind and do notgeavipublic
interface for controlling the phasing process framexternal
controller.

A partial solution, applicable to SystemC, is erdbbith

be added (e.g. messaging, shutdown, and quantum tifhyoquction of the UVM-compatible” SystemC clasbrdiy

keeping). The UVM-ML OA backplane is flexible tda any
framework to register itself as a service proviftera specific
service. The ML integrator has the option to chotise

(UVM-SC). A structural base class in UVM-SC
(uvm_components in UVM SystemVerilog) is derived from
the base classc_modulébut defines UVM phase callbacks, in

provider among multiple candidates although a defau 4qgition to the standard callbackssef modulelf the SystemC

provider per service always exists.

E. The Challenge of Enabling Multi-Language Facilities

Many frameworks were not designed with the intent
participating in a multi-language environment. ®oof the
desired multi-language facilities do not easilygalibetween
the various frameworks as they are currently writt€here
may be significant value in synchronizing frameveolietter
and enhancing them to be multi-language capableit vill
require working closely with the framework develpedo
extend their frameworks to be ML friendly.

Ideally, the ML features should not require modifions to
the existing frameworks however in reality some ifications
are necessary. This creates the dilemma of chodsitween
sacrificing some important multi-language featwegying to
add some hooks to enable the features. The featoat we
could not support with the standard unmodified &amorks
implementations were:

¢ Propagation of

the phases (and especially, the

testbench developer useym_componelst rather than base
sc_modules then the SystemC adapter can traverse that
hierarchical tree and invoke the UVM-compatible ggha
callbacks. UVM-SC ML adapter also supports conmecto
SystemC TLM ports located in standard SystemC nasglaind

not only inuvm_componelst In this way it enables seamless
ML TLM communication between the SystemC design and
testbench domains.

The main disadvantage of this partial solution Hat tit
requires mandatory usage of UVM-SC classes for ghlise
synchronization. Although the native SystemC phases
supported for sc_moduls, aligning the native phases
transparently requires an enhancement to the Sgstem
framework.

A more comprehensive alignment of the phases iigasth
by applying some unobtrusive patches to the stdndar
frameworks. The alignment can be coarse-graineding
grained, depending on the framework or its adapter.

The coarse-grained alignment scheme means thae phas

"build” phase) betweeln the f_rfgmeworl<ls_,|which ISalignment only occurs at the boundary of a groupluses.
necessary to enable unified multilanguageror example, it is rather important that all invevrameworks
hierarchy of verification components complete their pre-run phases before executiohefrtintime

« The ability to configure VIP build-time properties Processes or threads, so a coarse-grained deploymoernd
in the process of hierarchical construction (forensure all frameworks align at the end of the prephases

example, number of agent instances, active opefore proceeding to the runtime phases. Similaaly,the
passive agent mode etc.) natively from verification'untime phases should be finished before any fraorestarts
code written in another framework. execution of the post-run phases. Alignment withicoarse-
grained group between frameworks would not be stgpo
¢ Graceful termination of the test through

synchronization of the post-run phases for the Fine-grained alignment of the phases means that eac
involved frameworks component's callbacks in the multi-language systenaligned

per a common phase, regardless of the framewogknoriThe
* Runtime checking of TLM connections, with the fine-grained alignment of the phases is a preferalption, if
assumption that all the aligned frameworks finishthe framework adapter can support it. Such aligrireeables
their build phase before the first framework'sbetter synergy and makes the whole environmentialigt
connect phase begins. Runtime checking allowdehave as though it is implemented in one languagkis
issuing connectivity error messages on the spotresults in a more natural approach for integratmglti-
with a proper source reference. Catching the errolanguage VIP and eliminates any potential sideceffehat may
immediately allows for a better debugging be incurred with the coarse-grained scheme.

ﬁﬁg?gg&%efutﬁtﬁ%:an deferring the checking In the UVM-ML OA package, we included patches foe t
ASI SystemC and UVM SystemVerilog frameworks enapli
the fine-grained alignment of the ML phases. Thielpess add
to those frameworks public methods that allow imdmn of
the phases individually from an external phaserodat at the
beginning of simulation. These patches do not comjse

Let us take a closer look at phase propagatiorallige
native test phases of different frameworks shoeldligned to
some common boundaries (see, for example, thisresnent
in [14]).

backwards compatible behavior and are transpavemsdrs of
those frameworks.

The following figure illustrates an example of hdhe
finely aligned pre-run phases for 3 frameworksrioperate: a
patched UVM SystemVerilog, a patched SystemC and e.

ML Unified Hierarchy Phase Sequence Representation

—BN | <= .. G) ©@
— (Cbuitd |
Q.. (i) @
‘ B el @
- . I
L&A M Cm (5]
-0 G
Leuia
“RepiETist Uy Hermehy +Top-down ‘build’ pre-run phase example

Fig. 6. Time sequence for fine-grained phase aligned fraonesvand its
corresponding unified hierarchy.

F. Support for ML Configuration and Resources

UVM configuration is a method of sharing
configuration elements via the configuration dasabaTlhe
configuration element comprises a name, value aopepties.
One property is a context of an originating compne

During the UVM build phase, the context automatjcal
affects the priority property. This allows the hégh ancestral

parent component to override the values specifigdother
components on lower hierarchical levels. To emaeashis
effect of the hierarchical position of the origingtcomponent,
we refer to the build phase time configuratiorhesarchical

configuration. @nfiguration during the rest of the phases is

referred asuntime configuration

Deploying a multi-language hierarchy requires idtrang
a multi-language aware configuration facility.

Resources differ from configuration in that therhichical
context of the originating component is not stoeedl not
used. The remaining characteristics for resousmas the
configuration elements are common. This allows Me
adapters to maintain both configuration and resoetements
in a unified manner.

There are two potential storage models for the imult

language configuration database: the centralizegehand the
distributed model. Both approaches have their adgas and
disadvantages. Developers of the UVM-ML OA haves&m
the distributed model based on performance andbifliy

considerations. The distributed model
performance characteristics because reading thebdisd
database does not require crossing the languagedaices.
The distributed model also allows different framekgo to
maintain different (potentially, legacy driven) samtics of
interpreting the configuration properties, thusiewing greater
flexibility.

the

The UVM-ML OA backplane API allows a framework to
broadcast configuration and resource settings abthiey can
be stored in the corresponding databases of othramected
frameworks. The actual implementation of the usewvand
the broadcasting implementation are framework-figecihe
reference framework adapters, that are currentlyded in the
UVM-ML OA distribution, support configuration anésource
value types that can be passed by copy (singutegril types,
strings and serializable objects).

IV. AN ILLUSTRATIVE USECASE

This section describes an emerging use case (iolgpthe
lines of the work presented in [8]), that we uselémonstrate
the UVM-ML OA facilities in greater detail. Morefmrmation
about each construct explained below can be foarnke open
source package documentation [15],[16].

The selected use case represents a verificatioroement
for a hypothetical communication subsystem. A wgel
SystemVerilog DUT testbench modut®mm_subsystem, tb
instantiates an abstract modwemm_subsystem_tagmd its
two interfaceshost_ifandcomm_ifas shown irFigure 7

/I SystemVerilog testbench and DUT
import uvm_pkg::*;

interface comm_if(input logic clk);
wire data [31:0];
wire addr [31:0];
string this_name = $sformatf("%m");
endinterface

interface host_if();
string this_name = $sformatf("%m"); ...
endinterface

module comm_subsystem_top (comm_if cif, host_if
hif);
endmodule

module comm_subsystem_tb;
logic clk = 0;
comm_if cif (clk);
host_if hif();
comm_subsystem_top comm(.cif (cif), .hif(hif));

endmodule

Fig. 7. An abstract SystemVerilog design under test.

The verification environment for this testbench is
composed of three layers as shown in Figure 8.

enables tbette

DUTTB

SystemC layer

SystemC
e
Refmodel

COMM_SUBSYSTEM_TB

. uvm_config_db#(string)::set(null,
"uvm_test_top.*", "comm_it_name"
if this_name)

i SystemVerilog subsytem-level VIP

1 gonig;
|

1vm_config_db#(string)::set(null
uvm_test_top."", *host if_name",
- hif his_name)

COMM_SUBSYSTEM

BFMidrivers

“honitor

Fig. 8. ML verification environment for an abstract commuation

subsystem.

The high-level SystemC verification harness layeabtes
integration with the application software domaimeTharness
layer is leveraging the UVM-SC framework and itsnmary
task is to mediate between the control knobs, lpatonto the
software, and a SystemVerilog reusable VIP. Addélly, the
SystemC layer includes a reference model. Thisreete
model was originally used as a high-level abstmamtie! of the
DUT and is now connected to the scoreboard. Whieatctual
software is not available in this example, thestpsbvided (see

testl on Figure 8) are also implemented in SystemC/C++

mimicking the software control knobs. The contnobks in the
SystemC are modeled using a command API class'tojie
command API in this use case represents a C gteuctu
containing a commanap and few argumentspl, op2... In a
more realistic example; this structure could beespnted by a
group of registers or a high-level programmingdiiyr

/I SystemC high-level harness environment
#include "tim.h"

#include "uvm.h" // UVM-SC topmost header file
#include "uvm_ml.h" // UVM-ML adapter header file
using namespace uvm;

using namespace uvm_ml;

class command_api{// Mimicking SW control knobs
public:

int command; int opl; int op2;

sc_event command_event;

void set(int ¢, int i1, inti2) {
command =c; opl =il; op2 =i2;
command_event.notify();
}
h
class sc_harness : public uvm_component {
public:
command_api ca; // command API instantiated
sc_tb (sc_module_name nm):uvm_component(nm), ...
{...}
void build_phase(uvm_phase *phase) { ... }
void connect_phase(uvm_phase *phase) { ... }
void run_phase(uvm_phase *phase) { ... }
UVM_COMPONENT_UTILS(sc_tb)
h
class testl : public uvm_component { // A test
public:
sc_harness * sc_h; // SC harness component
sc_testl(sc_module_name nm): uvm_component(nm)
{'sc_h =new sc_harness("sc_h"); }
void run_phase(uvm_phase *phase) {
wait(1, SC_NS);
sc_h->ca.set(RST_SEQ, (-1), (-1));
wait(10, SC_NS);
sc_h_>ca.set(TRANS_SEQ, 10,(-1));

}
UVM_COMPONENT_UTILS(sC_test1)

Fig. 9. SystemC verification harness layer.

Figure 9 shows the definitions of the SystemC resrand
test classes. Both classes are derived from the siasctural
classuvm_componensimilar to its corresponding class in the
standard UVM SystemVerilog library. The classesehéve
same phase callback methodsuild_phase connect_phase
etc.). In this exampletestl activates the control API in the
blockingrun phase.

Figure 10 demonstrates how the reusable Systenogeril
VIP is instantiated in the SystemC harness layamradvides a
more detailed view of the clas_harnesshan shown on
Figure 9.

/I SystemC high-level harness class - zoomed in
#include "tim.h"

#include "uvm.h" // UVM-SC topmost header file
#include "uvm_ml.h" // UVM-ML adapter header file
using namespace uvm;

using namespace uvm_ml;

typedef class build_config_c;// config object
class sc_harness : public uvm_component {
public:

command_api ca;

uvm_component * vip_env;

build_config_c * env_config; // Config object

tim_analysis_port<uvm_seq_control_base> aport;

sc_harness(sc_module_name nm):uvm_component(nm)
,aport("aport"), vip_env(0)
{ env_config = new
build_config_c("SV","comm_vip_env",ACTIVE);
uvm_ml_register(&aport);

void build_phase(uvm_phase *phase) {
vip_env = uvm_ml_create_component (
env_config->frmw_name,
env_config->type_name, "env",
this);
}
void connect_phase(uvm_phase *phase) {
string aexport_name =
vip_env->name()+string(".")+"control_imp";
uvm_ml_connect (aport.name(), aexport_name);
}
h

Fig. 10.UVM-SC component instantiating a SystemVerilog UVM
component.

hierarchy in SystemC, but only needs to use thddchi
component's export field namechtrol_imp' (as used also in
the single-language environment). By using theahahical
port names, the integrator eliminates any potesgalability
issues because those names are guaranteed to dpee uni
always.

The ML adapter's functionvm_ml_connect(s invoked in
the connectphase, synchronized to its corresponding phase in
the other connected frameworks. Synchronized pbasi
ensures that all the ports in all the frameworlks already
instantiated prior to being connected. This aldowa the
backplane to issue a non-delayed error messalge ifitegrator
specifies incorrect or invalid port names.

UVM recommends using SystemVerilog virtual intees.c
for signal-level access between a verification comept (e.g. a
driver or a monitor) and the DUT. In our use cdlse, DUT has
two interfaces:host_if and comm_if In a single-language
environment, the integrator can pass the virtuariace from
the DUT to the verification component, using thafiguration
mechanism. In a multi-language environment, passhe
interfaces by pointer is not possible but also remjuired.
Access from a hardware verification language (H\b)a
hardware description language (HDL) is usually enpénted
via a standard API, for example SystemVerilog VPID#I.
Those API's operate with the hierarchical namessighals,
functions etc.) in the string format. Consequenithythe ML
environment, the UVM-ML integrator needs to pass a
hierarchical name of the DUT interface as a string.

Figures 11 and 12 illustrate how the UVM ML
configuration mechanism can be used for passingnteeace
names between frameworks. Figure 11 shows the DUT

The sc_harnessclass in Figure 10 has few additional testbench (the same modwlemm_subsystem_#s in Figure

member fields (compared to those shown on Figurereg

7), writing the interface names in the configunatitatabase.

class membevip_envpoints tosc_harness' hierarchical child
component. In the previous section we explained thav-

ML OA supports a unified logical hierarchy. In tven use
case,envis a proxy of the SystemVerilog child component of
the UVM-SC parent component.

The hierarchical construction is performed in théld
phase okc_harnessas prescribed by the UVM methodology.
Vip_envis assigned with return value of the SystemC ML
adapter's methoduvm_ml_create_componeniThis method
accepts 4 arguments: the string identifier of tlegdt
framework (in our case, it is "SV"), the type nawik the
SystemVerilog component (“comm_vip_env"), instaneene
("env") and a pointer to the parent componénisy;

There is also a TLM analysis paport that is used for
communication between the parent and child comgsnén
passes polymorphic transactions of the base class
uvm_seq_control_bas&his and the derived class definitions
are not shown here due to the paper's constrdinésbinding
between the port and its counterpart implementagaport) is
done by the ML adapter's methasvm_ml_connectthat
receives two string arguments. One of the benalfitshe
unified ML hierarchy is that it allows the integratto use
relative names for connection between the parehthitd (see
aexport_nameon Figure 10). In our use case, the integrator
does not need to keep track of a shadow Systenoderil

/I SystemVerilog testbench and DUT
import uvm_pkg::*;

interface comm_if(input logic clk);
...; string this_name = $sformatf("%m");
endinterface

interface host_if();
...; string this_name = $sformatf("%m");
endinterface

module comm_subsystem_tb;
logic clk = 0;
comm_if cif (clk);
host_if hif();
comm_subsystem_top comm(.cif (cif), .hif(hif));
initial begin
uvm_config_db#(string)::set(null,
"uvm_test_top.*",
"comm_intf_name",
cif.this_name);
uvm_config_db#(string)::set(null,
"uvm_test_top.*",
"host_intf_name",
hif.this_name);

end
endmodule

Fig. 11.Passing SystemVerilog DUT interface names in thafigoration
database.

As previously mentioned in Section Ill, the Systesrilog
ML adapter broadcasts the UVM configuration setihg the
rest of the participating frameworks. Figure 12vehdow the
e UVC should be extended to retrieve and use th
communication interface name.

/I e env retrieving DUT interface name
unit comm_dut_intf {
clk_p: in event_port is instance;
keep clk_p.hdl_path() == "clk";
data_p: inout simple_port of int is instance;
keep data_p.hdl_path() == "data"; ...
I
unit comm_uvc_env_t {
dut_intf: comm_dut_intf is instance;

comm_intf_name: string;

keep uvm_config_get (comm_intf_name);
keep dut_intf.hdl_path() == comm_intf_name;
keep agent.driver.signal_map == dut_intf;

/I e sequence using ports of comm_dut_intf
extend tx_sequence {
num_t: int;
body () @driver.signal_map.clk_p$ is only {
for j from 1 to num_t {
wait @driver.signal_map.clk_p$;
driver.signal_map.data_p$ = j; ...
h
h

2

Fig. 12.e UVC retrieving SystemVerilog interface name.

In Figure 12, the UVMe unitcomm_uvc_env retrieves the
hierarchical interface name using the constrakeep
uvm_config_gé€}. This name is propagated to thénterface
unit comm_dut_intfusing anhdl_pathattribute). In this way,
all the e ports are automatically associated with the
corresponding SystemVerilog interface signal natbesause
the hdl_path attributes of units and ports are implicitly
concatenated).

In UVM, settings from hierarchically higher levetsaade at
build time have higher precedence. This featurewsl a
component on a higher level to override a defautfiguration
specified in a lower-level component. Figure 13siltates how
the SystemVerilogomm._vip_engets a default configuration
for the e communication UVC agentU¥YM_PASSIVE and
how the SystemC testbench harness component psotlide
actual configurationlVM_ACTIVE for the agents.

/I e agent configuration:
<
unit comm_uvc_agent like uvm_agent {
keep soft uvm_config_get(active_passive);
h

>

/I SystemVerilog VIP env instantiating the e UVC
/l and setting the default configuration for the

/I e agent to be passive:

import uvm_pkg::*;

import uvm_ml::*;

class comm_vip_env extends uvm_env;

“uvm_component_utils(comm_vip_env)
uvm_component comm_uvc_env;
function void build_phase(uvm_phase phase);
super.build_phase(phase);
uvm_config_db#(int)::set(this,
"comm_uvc_env.agent”, "active_passive",
uvm_active_passive_enum'(UVM_PASSIVE));
comm_uvc_env = uvm_ml_create_component('e”,
"comm_uvc_env_t","comm_uvc_env"this);

endfunction
endclass

/I SystemC harness env (see Fig. 10) configures
/I the comm UVC agent to be active and thus
I/ overrides the default
#include "uvm_ml.h"
using namespace uvm_ml;
class sc_harness : public uvm_component {
public:
void build_phase(uvm_phase *phase) {
set_config_int("vip_env.*.agent",
"active_passive",
uvm_active_passive_enum(UVM_ACTIVE));
vip_env = uvm_ml_create_component(
env_config->frmw_name,
env_config->type_name, "env" this);

Fig. 13.Hierarchical configuration during the build phase.

V. FUTUREDIRECTIONS These use cases were presented to illustratedhd bpectrum

UVM-ML OA, as developed by AMD and Cadence, Wasof applications that face this common challenge.
intentionally developed to serve the verificati@ammmunity as The paper presents an overview of a novel solutaied
a basis for standardization. It is provided as cgmmce under UVM-ML OA. UVM-ML OA represents a step forward in
the Apache 2.0 license, and is currently posted\ecellera technology and a generic approach to enabling phelti
website [12]. frameworks to interoperate within the same enviremtmThe
benefits of this architecture were described as$ wé\/M-ML
OA is capable of addressing all of the use-casesepted and
beyond, without any underlying assumptions aboetilimber
or types of frameworks that are integrated. Andeépth
illustrative use-case example was then providetbtoonstrate
the capability and flexibility of the UVM-ML OA sation.

The UVM-ML OA solution will continue to evolve and
align with emerging industry needs. It containsgca set of
facilities and will be further enhanced to broadés
capabilities.

We believe that UVM-ML OA will be extremely bendfit
for users facing practical multi-framework interogality
If challenges and will provide them with an efficieartd well
architected solution. We also hope that it can iveca basis

for the emerging standardization in this area.

The work presented in this paper was done with emess
and attention to the establishment of the Accellshalti-
Language Working Group (MLWG). The working group
provided a broad set of user community requiremésrtshe
emerging ML standardized solution, and we strivekéep
UVM-ML OA aligned with these requirements.

There are various additional frameworks or enhaecésn
to frameworks that companies or organizations leypeessed
interest in. We are open to explore collaboratidth vether
framework developers to enable broader integration.

As previously mentioned, UVM-ML OA currently
includes ML enabling reference patches for the dsteth
frameworks (UVM SystemVerilog and ASI SystemC).
UVM-ML OA is adopted as the basis for standardaatyy the
Accellera ML WG, then we intend to work with the
corresponding owning Accellera working groups twmiporate

the ML specific requirements and address them énftiture REFERENCES
releases of their corresponding frameworks, thimirghting
any prowded patChes- [1] B. Bailey, F. Balarin, M. McNamara, G. Mosenson, Btellfox, Y.

. . . Watanabe, “TLM-Driven design and verification metbtogy”,

UVM-ML QA will continue to _be developed. Currently Cadence Design Systems, Inc., 6-12, June 2010,

supports a rich set of facilities that ?nable thé/l\/U http://www.amazon.com/TLM-Driven-Design-Verificatio
methodology for ML, however there are still somepamant Methodology-Bailey-ebook/dp/B003XVZBES
features missing and they should be added in the foéure. [2] A. Jain, G. Bonanno, Dr. H. Gupta, A. Goyal, A. N "System
This includes the following ML capabilities: Verilog Universal Verification Methodology based rifieation

environment for imaging IPs/SoCs", CDNLive Users nf@oence,
e Coordinated test framework completion and Bangalore, 2012http://www.cadence.com/cdnlive

shutdown [8] S. Swan, Qiang Zhu, Xingri Li, “Moving to System@.Nl for design
and verification of digital hardware” EE Times, May3, 2013,
¢ ML messaging service http://www.eetimes.com/document.asp?doc_id=1280845

[4] K. Herterich, " Verifying Multiple DUV Representatis with a Single

) Error reporting and hand“ng UVM-e Testbench"”, CDNLive Users Conference, BostbA, August

. Time quantum service 2013, http://www.cadence.com/cdnlive
[5] Srivatsan Raghavan, “Can hardware-assisted vdiditasave SoC
e Basic UVM synchronization facilities (events, realization time?", EE Times, November 8, 2013
objections, barriers) working for ML http://www.eetimes.com/author.asp?section_id=36&die1320016
. . [6] Sumeet Aggarwal, “Rapid Adoption Kit (RAK) -- cr@gag UVM
¢ Sequence coordination between frameworks verification environments with hardware-assistedfigation,” System

. . Design and Verification Blog, Cadence Design Systejune 28, 2013
* Expanded set of supported transaction types in the http:/www.cadence.com/Community/themes/blogs

TLM communication [7]1 D. Black, J. Aynsley, B. Bunton, V. Essen, T. Wiemalechnical
. e . Tutorial: "Software-driven verification using TLMA2 virtual
« Enhanced debugging capabilities and tracing platforms". Design and Verification Conference (DM February 28,

2011, http://videos.accellera.org/tim20sdvvirtual/ts8 Z#aj/index. html
Sandeep Jana, Sonik Sanchdeva, Krishna Kumar, SWamkatesan,

¢ Expanded methodology guidelines and example%]

addressing the high-level verification tasks Debajyoti Mukherjee, "TLM based software control bVCs for
Vertical ~ Verification Reuse", DVClub, Apr 18, 2013,
SUMMARY http://www.slideshare.net/directory/slideshows/thased-software-

. . . . control-of-uvcs-for-vertical-verification-reuse
This paper describes the Cha”enge of 'ntegram rause [9] J. Aynsley, "VMM-to-SystemC Communication Using thel", VMM
of verification components based on different mdtiogies Central, http://www.vmmcentral.orgivmartialarts/2011/03/vniea-
and languages when combined together into a single systemc-communication-using-the-tli
environment. Some key relevant use cases deddnbthis [10] A. Erickson, "Transaction-Level Friending: An OpSource, Standards-
paper include VIP reuse, multi-abstraction sulisbiy Based Library for Connecting TLM Models in Systeménd

; P s vifi At SystemVerilog", DVvCon 2013, San Jose, CA
hardware assisted verification, and software drixenification. hitp://events.dveon. org/2013/proceedings/paperd/ait

[11] Multi-Language (ML) Working Group
http://www.accellera.org/activities/committees/mutinguage

[12] UVM-ML Open Architecture version 1.3 (Overview amtbwnload)
http://forums.accellera.orgffiles/file/65-uvm-ml-@p-architecture

[13] B. Sniderman, V. Yankelevich, “Techtorial: UVM Midtanguage:
Technology and Reference Application”, CDNLive Us&onference,
Santa Clara CA, March 2013,
http://www.cadence.com/cdnlive/na/2013/Pages/detmsgx

[14] Shankar Myilswamy, Kai Chirca, Matthew Pierson, Kedasavaraj,
lzuchukwu Nwachukwu, " Molding multi-methodology M, UVM,

[15]

[16]

SystemC) VIPs for reuse”, CDNLive Users ConfereriBeston MA,
August 2013http://www.cadence.com/cdnliyep.11,17.

G. Leshem, V. Yankelevich, B. Sniderman. "UVM-ML W4paper. A
Modular Approach for Integrating Verification Framerks" (available
for download athttp://forums.accellera.org/files/file/65-uvm-ml-ep
architecture

UVM-ML Integrator User Guide (available for downkba at
http://forums.accellera.org/files/file/65-uvm-ml-@p-architecture

