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= ML Verification Challenges

 The need to deal with several implementation languages and
diverse verification methodologies is only one of the
subsystem - and system — level verification challenges

e SystemVerilog, e, SystemC and C++ are commonly used for
verification purposes

e UVM, OVM and VMM libraries are used for development of
reusable testbenches

 Adoption of external verification IP’s consistently increases

e Difficulty of integration may impact cost and time to market
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£ Hardware-Assisted Design
) Acceleration Use Case

e Accelerated DUT abstraction for verification acceleration
e Specialized case of multi-abstraction use case

e Re-use same testbench with minimal changes
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verification scenarios

e Software environment
may be deployed in
one language while
simulated frameworks
are in another
languages

e Necessitates a multi-
language solution

Software Driven Functional
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UviMm Multl-l..anguage
Open Architecture

« UVM-ML OA was developed jointly by Cadence and
AMD and is available as open source under the
Apache 2.0 license

e |tis posted on the Accellera website at
http://forums.accellera.org/files/file/65-uvm-ml-open-architecture

e |t was intentionally developed to serve the
verification community as a basis for standardization

 The presented work was done with attention to the
establishment and requirements of the Accellera
Multi-Language Working Group




UV>  UVM-ML OA Key Features

 Framework- and simulator—independent API
 Coordinated initialization

* Delegation of system services

e Pre-/Post-/Runtime phase synchronization

e TLM communication (TLM1 and TLM?2)

e Unified hierarchy solution

* ML configuration

 Broader synchronization support
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» Depth-First Build by Hierarchy

WS unified Hierarchy and Phases
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ML Unified Hierarchy

Phase Sequence Representation
FW1 FW 2 FW3

» Top-down ‘build’ pre-run phase example




N'E An Illlustrative Use Case

 The use case represents an ML verification
environment for a hypothetical communication
subsystem

e A SystemVerilog DUT testbench instantiates a
module and its two interfaces

* The verification environment for this testbench is
composed of three layers:
— SystemC layer that can be controlled by an application SW
— SystemVerilog subsystem-level VIP
— Interface UVC’s implemented in UVM-SV and UVM-e
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An lllustrative Use Case:
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UVM SystemC Harness Layer

CONFERENCE & EXHIBITION

—

#include "uvm.h sc_harness : public uvm_component {

Familiar VM syntax

#include "uvm_ml.h"”

class sc_harness : public uvm_component { .
uvm_component * vip_env;

public: tIm_analysis_port<uvm_seq_control_base> aport;
command_api ca; // command API sc_harness(sc_module_name nm):
void build_phase (uvm_phase *phase){ ... } uvm_component(nm)
void run_phase (uvm_phase *phase){ ... } { " qu_mI_register(&aport); }
UVM_COMPONENT_UTILS(sc_tb) ... vold Dylldp e o oy m——

b vip_env = uvm_ml_create_component (

class testl : public uvm_component env_config->frmw_name,// “SV”

{ // Mimicking SW-driven test env_config->type_name, // “vip_env_t”
sc_harness * sc_h; “vip_env", this);
void build_phase (uvm_phase * phase) { }

void connect_phase (uvm_phase *phase) {

sc_h = new sc_harness("sc_h"); ...} string aexport_name =

void run_phase (uvm_phase *phase) { vip_env->name()+string(".")+"control_imp";
wait(1, SC_NS);sc_h->ca.set(RST_SEQ, (-1), (-1)); uvm_ml_connect(aport.name(), aexport_name);
onnecting ML TLM using relative name
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Instantiating
and configuring interface UVC’s

CONFERENCE & EXHIBITION
import uvm_p YVM-ML adapter PaCka e // e env retrieving DUT interface name
import uvm_ml::*; <
unit comm_dut_intf {
clk_p: in event_port is instance;
keep clk_p.hdl_path() == "clk";
uvm_component comm_uvc_env; data_p: inout simple_port of int is instance;
uvm_component host_uvc_env; keep data_p.hdl_path() == "data"; ...

function void build_phase(u<T_Configuring default agent mode >

uvm_config_db#(int)::set(this,
"comm_uvc_env.agent", "active_passive", ur:;t cqm;n_uvc_er;v_t{ fisi
uvm_active_passive_enum'(UVM_PASSIVE)); Hg lie s EInlaL el Nl e e e

class comm_vip_env extends uvm_env;

a : uvm_agent is instance;
comm_uve_env= Instantiating an e unit >
uvm_ml_create_component("e" comm_intf_name: string;
"comm_uvc_env_t", “comm_uvc_env", this); keep uvm_config_get(comm_intf_name);

host_uvc_env = . @ieving DUT interface p@

host_uvc_env_t::type_id::create
(“host_uvc_env”, this); keep dut_intf.hdl_path() == comm_intf_name;

endfunction }"'

endclass S

15




= Summary

* UVM-ML OA represents a generic approach to
enabling multiple frameworks to interoperate within
the same environment

e UVM-ML OA is capable of addressing the use-cases
presented and beyond, without any underlying
assumptions about the number or types of language
and methodology frameworks that are integrated

e It will continue to evolve and align with emerging
industry needs
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