Multi-Language Verification:
Solutions for Real World
Problems

By
Bryan Sniderman, Advanced Micro Devices, Inc. &
Vitaly Yankelevich, Cadence Design Systems, Inc.

AMDCT cadence

1

Agenda

Multi Language (ML) Verification Challenges

Use Cases Requiring an ML Solution

UVM-ML Open Architecture (OA) — An Overview
Unified Hierarchy and Phase Alignment

An lllustrative Use Case Detailed

Summary

= ML Verification Challenges

 The need to deal with several implementation languages and
diverse verification methodologies is only one of the
subsystem - and system — level verification challenges

e SystemVerilog, e, SystemC and C++ are commonly used for
verification purposes

e UVM, OVM and VMM libraries are used for development of
reusable testbenches

 Adoption of external verification IP’s consistently increases

e Difficulty of integration may impact cost and time to market

CONFERENCE & EXHIBITION

e The need to reuse
one useful VIP,
implemented in a

different language,

is a sufficient
reason to
necessitate a
multi-language
environment

Two module-
UVCs are
reused

Interface
uvcC
reused

X Bus

VIP Reuse Use Case

' Virtual Sequencer |SCBD Module ogeI
| module
uvC - Ve
X Y
uve] | Core | ™ uve
X Y
Two
Interface
UVCs
Module SCBD Core Dual-core
Module UVC
[. Sub-system
| uwe Il Testbench

Module SCBD

| (passive)

~ Virtual
Sequencer

Core
Module UVC

DESIGN & VEHIFICATIUN

.'O’
201 4

CONFERENCE & EXHIBITION

e Multiple Design

abstractions in
different languages
can be employed

Start with high-level
SystemC (SC) model

Progress to refined
RTL and re-use SC

model abstraction

concurrently

Testbench Checker

Multi-Abstraction Use Case

. Scoreboard }

Transactlon

UVC A1 Itransactlons;

High Level DUT
(SystemC)

Testbench Checker

H|gh Level model
; as Ref Model (SC)

Transaction

J\transacnon/s/ UVC B1

(Scoreboard \ !

Transactlon Interfacemp Refined DUT
UVC A1 j(UVC A2 DI'"' (RTL)

s

lP._Llnterfacel Transactlo
¢ UVC BZJ[/ UVvC B1

”J

DESIGN & VERI

(LIVZN‘

£ Hardware-Assisted Design
) Acceleration Use Case

e Accelerated DUT abstraction for verification acceleration
e Specialized case of multi-abstraction use case

e Re-use same testbench with minimal changes

Testbench —
ecker
) |
Scoreboard J -

f / | .. \. r n . iy .."u
Transaction yt | . 1 - §—§\—+Refined DUT:\ﬁ@—B\JEBA\ Proxy | | X ~Transaction
UVC A1 ransac lons C++) 5 8:2 (Synth) _i:‘::-rg g (C++)yransactions UVC B1

\ J\ /\ JTQ— “Acceleration Device ™ u /

verification scenarios

e Software environment
may be deployed in
one language while
simulated frameworks
are in another
languages

e Necessitates a multi-
language solution

Software Driven Functional
Verification Use Case

e Leverage software to
drive ‘real world’

SW Tests
—
C API
;‘J DUT
| Reg. Model |/F 1 4
_ Prgu—p—
TLM/UVC1 s P11
Virtual — |
Abstr- | e L .[
action -TLI\/I/(UVCo tommd P2
~ layer \ _JTL

Verification Environment

I CATIO
e —
L W ARxS

IO

UviMm Multl-l..anguage
Open Architecture

« UVM-ML OA was developed jointly by Cadence and
AMD and is available as open source under the
Apache 2.0 license

e |tis posted on the Accellera website at
http://forums.accellera.org/files/file/65-uvm-ml-open-architecture

e |t was intentionally developed to serve the
verification community as a basis for standardization

 The presented work was done with attention to the
establishment and requirements of the Accellera
Multi-Language Working Group

UV> UVM-ML OA Key Features

 Framework- and simulator—independent API
 Coordinated initialization

* Delegation of system services

e Pre-/Post-/Runtime phase synchronization

e TLM communication (TLM1 and TLM?2)

e Unified hierarchy solution

* ML configuration

 Broader synchronization support

DESIGN & VERIFICATION

NS .
Uv= UVM-ML OA Overview

Backplane serves as a central hub B
;—pl\l connecting the frameworks in a star | | | |

topology (not peer-to-peer)

| I - UVM-ML BACKPLANE A

-

| Registration API -7 -7

-
-
-
-
-
e
L -

”:) ”’ _— — — | Service API

S~a
-~

Provided API

_______ . Top4 I
_________ \ Required API Framework / Routing /
\ q { Proxy Info / | I

Each framework is

A < ,
connected via an - \ ,‘\\\ | &l , |
1! \ \
adapter to th.e o \\\ \ — |
backplane using the o N |
, \ Servi _
same API Services ! : - . Services | I

System services may be

Service FW n provided by Framework 3
| ML-Adapter l‘l frameworks or as | I
vt | gedicated services \ s ML-Ad_aplter __

N . = ”7 — —

\\
\\
\\\
{ A
FW1 K

I
1
v

o 4
. ;

:
v

/G\ Q.0

& P

» Depth-First Build by Hierarchy

WS unified Hierarchy and Phases

CONFERENCE & EXHIBITION

ML Unified Hierarchy

Phase Sequence Representation
FW1 FW 2 FW3

» Top-down ‘build’ pre-run phase example

N'E An Illlustrative Use Case

 The use case represents an ML verification
environment for a hypothetical communication
subsystem

e A SystemVerilog DUT testbench instantiates a
module and its two interfaces

* The verification environment for this testbench is
composed of three layers:
— SystemC layer that can be controlled by an application SW
— SystemVerilog subsystem-level VIP
— Interface UVC’s implemented in UVM-SV and UVM-e

12

O3

DES[N & VERIFICATION

An lllustrative Use Case:

DUT TB

COMM_SUBSYSTEM_TB

'~ uvm_config_db#(string)::set(null,

CONFERENCE & EXHIBITION g o o
Hierarchical Diagram
Test Harness Layer
config_db
SystemC SystemC
“““Ref model : '?\‘\\
i |

LM

1
i Subsytem-level VIP

- 7/
. 7
SystemVerilog Vip_env_t gl 1

Virtual sequencer

'
'
Comm UVC env Scoreboard PICEORSRS env‘ o GEe A e
U

' Comm UVC N TIM ’
\

“~Comm UVC env e) ,'S‘//HOSt uvc

Host UVC env S

TL
tx sequence

7/
7 7
7

config_db .

agent SiaEEETEy >'l$;
SystemVerilog
/ BV /dlrivie T S

N
ke "uvm_test_top.*", "comm_intf_name",
L+, cif.this_name)

Y uvm_config_db#(string)::set(null,
~7"uvm_test_top.*", “host_intf_name",
17 hif.this_name)

DUT

COMM_SUBSYSTEM

d/Wr

r>

HOST IF

v

COMM _IF

DESIGN & VERIFICATION

UVM SystemC Harness Layer

CONFERENCE & EXHIBITION

—

#include "uvm.h sc_harness : public uvm_component {

Familiar VM syntax

#include "uvm_ml.h"”

class sc_harness : public uvm_component { .
uvm_component * vip_env;

public: tIm_analysis_port<uvm_seq_control_base> aport;
command_api ca; // command API sc_harness(sc_module_name nm):
void build_phase (uvm_phase *phase){ ... } uvm_component(nm)
void run_phase (uvm_phase *phase){ ... } { " qu_mI_register(&aport); }
UVM_COMPONENT_UTILS(sc_tb) ... vold Dylldp e o oy m——

b vip_env = uvm_ml_create_component (

class testl : public uvm_component env_config->frmw_name,// “SV”

{ // Mimicking SW-driven test env_config->type_name, // “vip_env_t”
sc_harness * sc_h; “vip_env", this);
void build_phase (uvm_phase * phase) { }

void connect_phase (uvm_phase *phase) {

sc_h = new sc_harness("sc_h"); ...} string aexport_name =

void run_phase (uvm_phase *phase) { vip_env->name()+string(".")+"control_imp";
wait(1, SC_NS);sc_h->ca.set(RST_SEQ, (-1), (-1)); uvm_ml_connect(aport.name(), aexport_name);
onnecting ML TLM using relative name

14

DESIGN & VERIFICATION

Instantiating
and configuring interface UVC’s

CONFERENCE & EXHIBITION
import uvm_p YVM-ML adapter PaCka e // e env retrieving DUT interface name
import uvm_ml::*; <
unit comm_dut_intf {
clk_p: in event_port is instance;
keep clk_p.hdl_path() == "clk";
uvm_component comm_uvc_env; data_p: inout simple_port of int is instance;
uvm_component host_uvc_env; keep data_p.hdl_path() == "data"; ...

function void build_phase(u<T_Configuring default agent mode >

uvm_config_db#(int)::set(this,
"comm_uvc_env.agent", "active_passive", ur:;t cqm;n_uvc_er;v_t{ fisi
uvm_active_passive_enum'(UVM_PASSIVE)); Hg lie s EInlaL el Nl e e e

class comm_vip_env extends uvm_env;

a : uvm_agent is instance;
comm_uve_env= Instantiating an e unit >
uvm_ml_create_component("e" comm_intf_name: string;
"comm_uvc_env_t", “comm_uvc_env", this); keep uvm_config_get(comm_intf_name);

host_uvc_env = . @ieving DUT interface p@

host_uvc_env_t::type_id::create
(“host_uvc_env”, this); keep dut_intf.hdl_path() == comm_intf_name;

endfunction }"'

endclass S

15

= Summary

* UVM-ML OA represents a generic approach to
enabling multiple frameworks to interoperate within
the same environment

e UVM-ML OA is capable of addressing the use-cases
presented and beyond, without any underlying
assumptions about the number or types of language
and methodology frameworks that are integrated

e It will continue to evolve and align with emerging
industry needs

16

	Slide Number 1
	Agenda
	ML Verification Challenges
	VIP Reuse Use Case
	Multi-Abstraction Use Case
	Hardware-Assisted Design�Acceleration Use Case
	Software Driven Functional Verification Use Case
	UVM Multi-Language �Open Architecture
	UVM-ML OA Key Features
	UVM-ML OA Overview
	Unified Hierarchy and Phases
	An Illustrative Use Case
	An Illustrative Use Case: �Hierarchical Diagram
	UVM SystemC Harness Layer
	Instantiating�and configuring interface UVC’s
	Summary

