
Multi-Language Verification:
Solutions for Real World
Problems

By
Bryan Sniderman, Advanced Micro Devices, Inc. &
Vitaly Yankelevich, Cadence Design Systems, Inc.

1

Agenda

• Multi Language (ML) Verification Challenges
• Use Cases Requiring an ML Solution
• UVM-ML Open Architecture (OA) – An Overview
• Unified Hierarchy and Phase Alignment
• An Illustrative Use Case Detailed
• Summary

2

ML Verification Challenges

• The need to deal with several implementation languages and
diverse verification methodologies is only one of the
subsystem - and system – level verification challenges

• SystemVerilog, e, SystemC and C++ are commonly used for
verification purposes

• UVM, OVM and VMM libraries are used for development of
reusable testbenches

• Adoption of external verification IP’s consistently increases
• Difficulty of integration may impact cost and time to market

3

YX

YX

VIP Reuse Use Case

• The need to reuse
one useful VIP,
implemented in a
different language,
is a sufficient
reason to
necessitate a
multi-language
environment

YX

Module
UVC

Two
Interface

UVCs

One
module

UVC

Dual-core
Sub-system
Testbench

Two module-
UVCs are

reused

X
Bu

sInterface
UVC

reused

Core
Module UVC

Core
Module UVC

4

Multi-Abstraction Use Case

• Multiple Design
abstractions in
different languages
can be employed

• Start with high-level
SystemC (SC) model

• Progress to refined
RTL and re-use SC
model abstraction
concurrently

Testbench

Testbench

5

Hardware-Assisted Design
Acceleration Use Case

• Accelerated DUT abstraction for verification acceleration
• Specialized case of multi-abstraction use case
• Re-use same testbench with minimal changes

Testbench

6

Software Driven Functional
Verification Use Case

• Leverage software to
drive ‘real world’
verification scenarios

• Software environment
may be deployed in
one language while
simulated frameworks
are in another
languages

• Necessitates a multi-
language solution

Virtual
Abstr-
action
Layer

Verification Environment
7

UVM Multi-Language
Open Architecture

• UVM-ML OA was developed jointly by Cadence and
AMD and is available as open source under the
Apache 2.0 license

• It is posted on the Accellera website at
http://forums.accellera.org/files/file/65-uvm-ml-open-architecture

• It was intentionally developed to serve the
verification community as a basis for standardization

• The presented work was done with attention to the
establishment and requirements of the Accellera
Multi-Language Working Group

8

UVM-ML OA Key Features

• Framework- and simulator– independent API
• Coordinated initialization
• Delegation of system services
• Pre-/Post-/Runtime phase synchronization
• TLM communication (TLM1 and TLM2)
• Unified hierarchy solution
• ML configuration
• Broader synchronization support

9

Top2

Framework 2

ML-Adapter

Framework 1

Top1

vip1 vip2

ML-Adapter

Framework 3

Top3

Top4

Services

ML-Adapter
Service FW

Services

Service FW

Services

Service FW n

Services

ML-AdapterML-AdapterML-Adapter

Provided API

Required API

Service API

Framework / Routing /
Proxy Info

Registration API

Backplane serves as a central hub
connecting the frameworks in a star

topology (not peer-to-peer)

Each framework is
connected via an
adapter to the
backplane using the
same API

System services may be
provided by
frameworks or as
dedicated services

UVM-ML OA Overview

10

Unified Hierarchy and Phases

FW 1 FW 2 FW 3

B

B2B1
FW2

B

B2B1
FW2

C

C1 C2
FW3

E2

E

E1

D2D1

D

FW1

A2

A

A1
FW1

ML Unified Hierarchy Phase Sequence Representation

D2D1

D

FW1

E2

E

E1 FW2

C

C1 C2
FW3

A2

A

A1
FW1

• Top-down ‘build’ pre-run phase example• Depth-First Build by Hierarchy

build

build
build

build
build

build

build
build

build
build

build
build

build

build

build

11

An Illustrative Use Case

• The use case represents an ML verification
environment for a hypothetical communication
subsystem

• A SystemVerilog DUT testbench instantiates a
module and its two interfaces

• The verification environment for this testbench is
composed of three layers:
– SystemC layer that can be controlled by an application SW
– SystemVerilog subsystem-level VIP
– Interface UVC’s implemented in UVM-SV and UVM-e

12

An Illustrative Use Case:
Hierarchical Diagram

sequencer

Comm UVC env

monitor

e

vip_env_t

Comm UVC env

Virtual sequencer

command
API

Test

vip_env

SystemC COMM_SUBSYSTEM_TB

uvm_config_db#(string)::set(null,
"uvm_test_top.*", "comm_intf_name",
cif.this_name)

TLM

BFM/driver

Ref model
Ref model

Scoreboard

TLM

COMM_SUBSYSTEM

COMM_IF

DUT TB

data, addr

config_db

config_db

Test Harness Layer

Subsytem-level VIP

SC harness

TLM

SystemC

SystemVerilog

uvm_config_db#(string)::set(null,
"uvm_test_top.*", “host_intf_name",
hif.this_name)

e Comm UVC
SV Host UVC

Host UVC env

agent

SystemVerilog

TLM
reset sequence

tx sequence

config_db

Host UVC env

DUT

HOST_IF

…

rd/wr

13

UVM SystemC Harness Layer

#include "uvm.h"
#include "uvm_ml.h”
class sc_harness : public uvm_component {
public:
command_api ca; // command API
void build_phase (uvm_phase *phase) { … }
void run_phase (uvm_phase *phase) { … }
UVM_COMPONENT_UTILS(sc_tb) …

};
class test1 : public uvm_component
{ // Mimicking SW-driven test
sc_harness * sc_h;
void build_phase (uvm_phase * phase) {

sc_h = new sc_harness("sc_h"); … }
void run_phase (uvm_phase *phase) {
wait(1, SC_NS);sc_h->ca.set(RST_SEQ, (-1), (-1));
…

class sc_harness : public uvm_component {
public:
…
uvm_component * vip_env;
tlm_analysis_port<uvm_seq_control_base> aport;
sc_harness(sc_module_name nm):

uvm_component(nm)
{ ...; uvm_ml_register(&aport); }
void build_phase(uvm_phase *phase) {
…
vip_env = uvm_ml_create_component (

env_config->frmw_name,// “SV”
env_config->type_name, // “vip_env_t”
“vip_env", this);

}
void connect_phase (uvm_phase *phase) {
string aexport_name =
vip_env->name()+string(".")+"control_imp";

uvm_ml_connect(aport.name(), aexport_name);
}

UVM-SC header
UVM-ML adapter header

Familiar UVM syntax

Instantiating foreign component

Connecting ML TLM using relative names

14

Instantiating
and configuring interface UVC’s

import uvm_pkg::*;
import uvm_ml::*;
class comm_vip_env extends uvm_env;

…
uvm_component comm_uvc_env;
uvm_component host_uvc_env;
function void build_phase(uvm_phase phase);
uvm_config_db#(int)::set(this,

"comm_uvc_env.agent", "active_passive",
uvm_active_passive_enum'(UVM_PASSIVE));

comm_uvc_env =
uvm_ml_create_component("e",

"comm_uvc_env_t", “comm_uvc_env", this);
host_uvc_env =

host_uvc_env_t::type_id::create
(“host_uvc_env”, this);

endfunction
endclass

// e env retrieving DUT interface name
<'
unit comm_dut_intf {
clk_p: in event_port is instance;
keep clk_p.hdl_path() == "clk";

data_p: inout simple_port of int is instance;
keep data_p.hdl_path() == "data"; …

};

unit comm_uvc_env_t {
dut_intf: comm_dut_intf is instance;
agent: uvm_agent is instance;

comm_intf_name: string;
keep uvm_config_get(comm_intf_name);

keep dut_intf.hdl_path() == comm_intf_name;
…

};
'>

UVM-ML adapter package

Configuring default agent mode

Instantiating an e unit

Retrieving DUT interface path

15

Summary

• UVM-ML OA represents a generic approach to
enabling multiple frameworks to interoperate within
the same environment

• UVM-ML OA is capable of addressing the use-cases
presented and beyond, without any underlying
assumptions about the number or types of language
and methodology frameworks that are integrated

• It will continue to evolve and align with emerging
industry needs

16

	Slide Number 1
	Agenda
	ML Verification Challenges
	VIP Reuse Use Case
	Multi-Abstraction Use Case
	Hardware-Assisted Design�Acceleration Use Case
	Software Driven Functional Verification Use Case
	UVM Multi-Language �Open Architecture
	UVM-ML OA Key Features
	UVM-ML OA Overview
	Unified Hierarchy and Phases
	An Illustrative Use Case
	An Illustrative Use Case: �Hierarchical Diagram
	UVM SystemC Harness Layer
	Instantiating�and configuring interface UVC’s
	Summary

