
 

1 

 

Moving SystemC to a New C++ Standard 

Ralph Görgen, OFFIS, Oldenburg, Germany (ralph.goergen@offis.de) 

Philipp A. Hartmann, Intel, Duisburg, Germany (philipp.a.hartmann@intel.com) 

 

Abstract—With C++11, a long expected update of the C++ programming language has been standardized, followed 

by another update to C++14, bringing in additions to close some remaining gaps. These two releases of the C++ 

standard have received much attention in the C++ community as they have introduced a number of features that can 

significantly improve productivity, safety and performance of C++ programs.  In this paper, we briefly review the 

relation of SystemC to its C++ foundation and give recommendations how to move the IEEE 1666 SystemC standard 

and its implementations towards building upon these new C++ standards. 

Keywords—IEEE 1666; SystemC; C++; C++11; C++14; standardization;  

I.  INTRODUCTION 

After the initial release as ISO/IEC 14882:1998, it took more than ten years to finalize the next revision of the 

C++ programming language standard. This long awaited major update of C++ has been ratified and released in 

2011 and is informally known as “C++11”. Along with this new standard, the development model for the C++ 

language standard has been switched to a decoupled one based on so-called Technical Specifications (TS) enabling 

a much faster update cadence. As a result, the next major standard update took place in 2014 already ([1], “C++14”) 

and another one is expected for 2017 [2]. Unlike with earlier C++ standards, implementers have been very quick to 

support newly added language features together with or shortly after the standards’ releases. At least three major 

implementations for C++14 are already available today. 

With C++ being the technical foundation of SystemC, the evolution of the C++ language is very relevant for 

SystemC as well. In practice, many of the new C++ features can already be directly used in SystemC models today, 

provided that the underlying C++ implementation supports them. This includes features like automatic type 

deduction, lambda functions, or direct initialization, which are especially valuable in the context of SystemC 

modeling as demonstrated in [3], [4], and [5]. In order to leverage this evolution towards increased modelling 

productivity, safety, and performance in SystemC, an update of the C++ foundation of SystemC is needed. 

In practice, the evolution of SystemC can be divided into two aspects: the evolution of the SystemC standard 

and language reference manual (IEEE Std. 1666, [6]), and the development of the SystemC implementations 

provided by the several vendors, including Accellera’s open-source proof-of-concept implementation [8]. 

Regarding the underlying C++ foundation, these two aspects come with different steps and requirements, which 

are discussed in the following Sections II and III. In Sections IV and V, we discuss some semantics preserving 

language and implementation improvements, which can be introduced in SystemC on top of C++14. Extending the 

SystemC language itself with new features based on modern C++ primitives is out of the scope of this paper. 

II. IEEE STD. 1666 EVOLUTION STRATEGY  

As required by the IEEE Standards Association, the IEEE Std. 1666 must be updated at least every ten years. 

The current IEEE Std. 1666-2011 Standard SystemC Reference Manual [6] refers to C++ as its underlying 

technology in Section 1.4 Relationship with C++ and Section 2. Normative references. More specifically, it 

currently references ISO/IEC 14882:2003, the most recent C++ standard when IEEE 1666-2011 was ratified. The 

standard requires that SystemC shall be used in conjunction with ISO/IEC 14882:2003. Strictly speaking, this 

means that using C++11 features together with the SystemC library is not conforming to IEEE 1666-2011. Hence, 

this reference needs to be updated.  

The next revision of IEEE Std. 1666 is currently planned for the end of this decade. We propose to link the next 

revision to C++14 (ISO/IEC 14882:2014, [1]) to officially allow using the new C++ features together with 

SystemC. Moreover, such features are allowed to be used in the standardized API as well. This enables several 

mailto:ralph.goergen@offis.de
mailto:philipp.a.hartmann@intel.com


 

2 

 

major language improvements, and by the time of the release of the next revision of IEEE Std. 1666, most 

productively used compilers and tools are expected to support C++14. 

Given the more frequent release cadence of C++ standards mentioned in the introduction, an additional 

clarification on the use of more recent C++ standards (or implementations) should be added to IEEE Std. 1666 as 

well. Here, we propose allowing the use of future versions of C++, provided that the execution semantics of the 

API defined in IEEE 1666 is explicitly defined by the implementation.  This means, users and implementations 

agree on the chosen C++ standard. 

III. SYSTEMC IMPLEMENTATION EVOLUTION STRATEGY 

On the other side, SystemC implementers – including the Accellera SystemC Language Working Group [7], 

providing the proof-of-concept implementation – release updated versions more frequently to address errata, 

distribute bug fixes and to include new features beyond the definitions of IEEE Std. 1666.  Usually, these new 

features address immediate modeling needs or are provided for field testing before being submitted for inclusion 

into the next IEEE revision1. 

In order to address the inclusion of new C++ features based on C++11/C++14, several practical aspects for 

SystemC implementers and users need to be considered. Today, not every EDA tool and compiler provides full 

support for C++1x in their bundled C++ implementations. Although the list of supported features is growing, 

SystemC users may run into problems if their SystemC implementation relies on not yet supported C++1x features. 

Hence, we recommend a step-by-step introduction of new features that is accompanied with an Opt-Out mechanism 

in the first phase. This allows users to benefit from bug fixes and other improvements even if they are bound to 

older compilers or build configurations.  

A. Opt-Out mechanism for C++1x features 

A straight forward setup to enable optional inclusion of certain features is the use of the C++ preprocessor. We 

recommend to introduce a “top-level” switch to limit the underlying C++ standard in a SystemC implementation 

via a symbol called SC_STD_CPLUSCPLUS, with values following the __cplusplus symbol as defined by 

ISO/IEC 14882: 

ISO/IEC 14882 __cplusplus 

14882:1998, 14882:2003 199711L 

14882:2011 201103L 

14882:2014 201402L 

 

A similar IEEE_STD_1666_CPLUSPLUS symbol could also be added to IEEE Std. 1666-20xx, referencing 

the base version of C++ for the current SystemC standard. Users could then request a reduced C++ language subset 

by defining this value to a smaller value than provided by the compiler itself: 

   #ifndef SC_STD_CPLUSCPLUS // default to compiler’s value, if not set by user 

   # define SC_STD_CPLUSPLUS __cplusplus 

   #endif 

As a quality of implementation measure, implementations could then define detailed feature macros for the 

individual C++ language features, which are controlled by the top-level setting.  This would then allow further 

control of the C++ subset, taking compiler or platform specific limitations into account. 

B. ABI compatibility checks  

Many (modern) C++ implementations provide manual selection of a specific C++ standard based on a 

configuration switch (e.g. -std=c++11 on GCC-compatible compilers). In some C++ implementations, this leads 

to changes in the compiler’s Application Binary Interface (ABI).  Additional changes to the ABI can be introduced 

by some of the C++ annotations mentioned below. When combining user models with a SystemC implementation 

                                                           
1 This is in accordance with IEEE 1666-2011 [6], Section 1.4: Implementors and users are free to extend SystemC [using the 

mechanisms provided by the C++ language], provided that they do not violate this standard.  



 

3 

 

library2, the compatibility of the compiler and library configurations must be ensured in order to avoid runtime 

errors. We recommend extending the commonly used “compatibility check” in the SystemC implementations to 

include the C++1x-related configuration into the set of consistency checks between the library and the user models. 

IV. SYSTEMC LANGUAGE IMPROVEMENTS 

In the following, we propose improvements to the SystemC language and standardized API. Some are low-

hanging fruits and require only the addition of annotations wherever they make sense, others are more complex and 

need to be discussed and defined in detail first.  

A. Add default and delete annotations 

The keywords default and delete can be used with special member functions such as constructors or 

operators. They express explicitly that the default implementation should be used here or usage of this function is 

not allowed. In SystemC, this can be used to disable copying and default construction of SystemC objects.  

B. Add constexpr annotations 

Generalized constant expressions – marked with constexpr qualifier – are functions/variables that contain 

simple statements only and that can be evaluated at compile time. Beyond improvement of execution performance, 

constant expressions are allowed to be used as template arguments, which opens a variety of applications in 

SystemC, for example in high-level synthesis. 

C. Add override and final annotations 

The keywords override and final are used to explicitly mark a method that overrides a base class method 

or to mark a base class method that shall not be overridden in any derived class. This feature improves code quality 

by avoiding accidental creation of virtual functions or overrides.  

D. Add noexcept annotations  

This annotation marks functions that do not throw exceptions and it is used for compiler optimizations.  

E. Remove reference to Boost library 

The current implementation of the SystemC library refers to the Boost C++ Library [9], which is not covered 

by an international standard. The new C++ standards provide features that are similar to the Boost features used in 

SystemC. Hence, they can be replaced by standard features and the dependency on the Boost library can be removed 

from IEEE Std. 1666, Section 5.5 sc_spawn_options and sc_spawn3.  

F. Replace internal enums with strongly typed enumerations 

In C++11, type-safe enumerations have been introduced. In contrast to C++03 enumerations, they do not 

automatically convert to integer, e.g., comparison of two values of different enumeration types is not allowed. In 

SystemC, such strongly typed enums can be used to replace the internal enum types like sc_logic_value_t 

or TLM phases. 

G. Move support for SystemC objects 

Another feature introduced in C++11 are so-called rvalue references to implement move semantics for objects. 

Rvalue references are specific references to temporary objects and move means extending the temporaries lifetime 

by assigning it to another reference, effectively moving it to another scope. This avoids unnecessary copying of 

objects and is especially useful for NonCopyable objects. In the SystemC language, many classes forbid default 

construction and/or copying of its instances, for instance modules or signals. Enabling move semantics for these 

objects could facilitate their creation and handling a lot. However, the definition of the exact move semantics is not 

straightforward. It requires some more discussion, which makes this a more long-term goal.  

                                                           
2 Binary compatibility across different SystemC implementations is not guaranteed by IEEE Std. 1666.   
3 This is an obvious example, where the SystemC implementation ABI changes depending on the selection/deselection of this feature in 

a user model. 



 

4 

 

V. SYSTEMC IMPLEMENTATION IMPROVEMENTS 

The following recommendations are only relevant for SystemC implementations and do not affect the standard, 

while still improving usability and safety: 

A. Add '[[deprecated]]' attribute to deprecated features 

Explicit attribute support has been added to C++11 as well, providing a standardized way for annotations 

without relying on implementation-specific extensions. The [[deprecated]] attribute allows a compiler to issue 

warnings when deprecated features are used. This is safer and more convenient than runtime checks and warnings. 

Especially when deprecated features are used in corner cases, runtime warnings might occur very rarely. In contrast, 

compiler warnings occur whenever a deprecated feature is used somewhere in the code. All classes and functions 

that are listed as deprecated in the SystemC standard ([6], Annex C) can be marked with this new attribute in the 

implementation.  

B. Use nullptr as null pointer constant  

C++11 introduces nullptr as an explicit null pointer constant. It provides better type-safety because it is 

distinguishable from integer constants, for instance when calling a function that has both integer and pointer 

overloads. Moreover, nullptr is not convertible or comparable to integral types, except for bool in explicit 

contexts. In the SystemC implementations and user models, this new keyword can be used to replace NULL or 

comparable constants for pointer initialization.  

Leveraging new C++ language features inside a SystemC implementation can of course bring additional 

benefits. However, in order to provide support for more (and older) C++ implementations, SystemC implementers 

might need to stick to a smaller C++ subset for some time. 

VI. CONCLUSION 

In this paper, we discussed the required steps for moving SystemC to newer C++ standards, both related to the 

IEEE standardization as well as some practical considerations for SystemC implementers. While the SystemC 

standardization side is quite straight forward, the implementation side is more complex, especially when targeting 

multiple C++ implementations (i.e. multiple compiler versions with different C++ standards support).  In order to 

enable an incremental move towards modern C++ usage in the SystemC ecosystem, we suggest a configurable 

selection of the C++ standard, combined with consistency checks to ensure binary compatibility. Additionally, we 

summarized a set of immediate improvements, both to the SystemC language as well as purely on the 

implementation side. 

In summary, the modern C++ standards can provide significant modeling improvements in productivity, safety 

and simulation performance. In the LWG, we have started exploring practical solutions to bring the optional C++1x 

support into the proof-of-concept implementation. 

REFERENCES 

[1] ISO/IEC 14882:2014, Programming Languages—C++. http://www.iso.org/iso/catalogue_detail.htm?csnumber=64029  

[2] Standard C++ Foundation. https://isocpp.org  

[3] David Black. “What C++11 means to SystemC”, NASCUG 2012, http://nascug.org/events/17th/black_cpp11_2_27_2012.pdf 

[4] Ralph Görgen, Philipp A. Hartmann and Wolfgang Nebel. “Automated SystemC Model Instantiation with modern C++ Features and 

sc_vector”. In Proceedings of DVCon Europe 2015. November 2015.  

[5] Roman Popov, “Problems with SystemC syntax”. Accellera Forum, http://forums.accellera.org/topic/5472-/ 

[6] IEEE Computer Society. “IEEE Standard for Standard SystemC Language Reference Manual”, IEEE Std 1666-2011, Jan 2012. 

https://standards.ieee.org/findstds/standard/1666-2011.html  

[7] Accellera Systems Initiative. “SystemC Language Working Group”. http://accellera.org/activities/working-groups/systemc-language  

[8] Accellera Systems Initiative. “Core SystemC Language and Examples”. http://accellera.org/downloads/standards/systemc  

[9] Boost C++ Library. http://www.boost.org/ 

[10] Bjarne Stroustrup, Herb Sutter, et.al. “C++ Core Guidelines”. http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines  

 

http://www.iso.org/iso/catalogue_detail.htm?csnumber=64029
https://isocpp.org/
http://nascug.org/events/17th/black_cpp11_2_27_2012.pdf
http://forums.accellera.org/topic/5472-/
https://standards.ieee.org/findstds/standard/1666-2011.html
http://accellera.org/activities/working-groups/systemc-language
http://accellera.org/downloads/standards/systemc
http://www.boost.org/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

	I.  Introduction
	II. IEEE Std. 1666 Evolution Strategy
	III. SystemC Implementation Evolution Strategy
	A. Opt-Out mechanism for C++1x features
	B. ABI compatibility checks

	IV. SystemC Language Improvements
	A. Add default and delete annotations
	B. Add constexpr annotations
	C. Add override and final annotations
	D. Add noexcept annotations
	E. Remove reference to Boost library
	F. Replace internal enums with strongly typed enumerations
	G. Move support for SystemC objects

	V. SystemC Implementation Improvements
	A. Add '[[deprecated]]' attribute to deprecated features
	B. Use nullptr as null pointer constant

	VI. Conclusion
	References

