
Molding Functional Coverage for

Highly Configurable IP

J. Ridgeway
1
 K. Chaturvedula

2
 K. Dhruv

3

1
Avago Technologies, Ltd., 4380 Ziegler Rd., Fort Collins, CO, 80524, jeremy.ridgeway@avagotech.com;

2
Avago Technologies, Ltd., 1320 Ridder Park Dr., San Jose, CA, 95131, kavitha.chaturvedula@avagotech.com;

3
Consultant, karishma.dhruv@gmail.com

Abstract-It is hard to accurately define a functional coverage model for intellectual property (IP) cores with many top-

level static (compile-time) and runtime (modes for simulation) configurations. One approach develops a super-set model

and waive, in post-regression analysis, scenarios deemed not applicable. Since, customer requirements specify the IP

static configuration, a customer-specific model may be generated from the super-set prior to simulation. In this paper we

present a methodology transforming a super-set abstract functional coverage model to a customer-specific

implementation. We show how the model can change dramatically between customers. Our approach was successfully

employed in an IP project supporting simultaneous customers.

I. INTRODUCTION

 It is hard to accurately define and maintain a functional coverage model for intellectual property (IP) cores with

many different configuration options. The customer-specific IP static configuration is usually chosen by compiler

directives (e.g., `define macro). Within a single static configuration, the IP may further operate in disparate modes,

often chosen at hardware reset-time. For constrained random verification, the IP mode of operation is chosen at

simulation time zero by randomizing a global configuration object. The IP mode of operation may affect both

hardware and test bench components.

 For example, consider a PCI-Express based end-point device IP. The Link Training and Status State Machine

(LTSSM) in the PCIe logical physical layer controls access to the link for data transmission and reception. Low

power is one feature that affects a significant portion of both the hardware and test bench. The low power mode,

when supported, is often chosen at hardware reset-time and/or simulation time zero.

 The PCIe Generation 3 standard identifies three active state power management (ASPM) options: L0s, L1, and

L1PM-substates (there are other PCIe low power, but we will focus only on these) [1]. A PCIe IP may support

either no low power or a combination of low power options. When low power is enabled in a specific mode at

runtime it has bearing on the testing coverage. In other words, it is not sufficient to ask: “have I covered all LTSSM

states in testing?” Instead, the question should be posed in the context of the low power capability and mode of

operation selection.

 Consider when a PCIe IP does not support low power. Then the low power LTSSM states are not applicable and

require no functional coverage. The context of “no low power support” dictates that no low power coverage is

necessary. Now consider when a PCIe IP supports any combination of low power but these are all disabled. Then

an error should be reported if the IP enters any low power LTSSM state. Functional coverage for the context of

“low power disabled” mode-of-operation should not include the arc from the LTSSM active state, L0, to a low

power state, L0s or L1. Doing so skews the overall coverage score.

 For example, consider some LTSSM state functional coverage reporting the following transitions:

 { detect → polling, polling → configuration, configuration → L0, L0 → Recovery, L0 → L0s, L0 → L1}.

Suppose, too, that low power is supported (L0s and L1 included) but always disabled at simulation time zero. First,

there is no set of tests to fully cover the indicated transition space. The achievable group coverage score in this

mode is 4/6 transitions, or 66.67%, dragging down the overall coverage score (false-negative coverage).
1
 Second, if

a transition to L0s or L1 does occur, and the functional coverage reporting is not excluded, then the achieved

coverage score is 5/6 transitions, or 83.33%, pulling up the overall achievable coverage score (false-positive

coverage). Instead, when the “low power disabled” context is applied, then low power transitions must be excluded.

1
 We acknowledge that it may be possible to properly weight or waive transitions for this mode-of-operation, but we

assert that this hand-tuning is not ideal.

 For low power, instead of reporting functional coverage for all low power LTSSM states, and weighting or

waiving later, we wish to report that all applicable low power LTSSM states have been covered. In other words,

functional coverage must consider:

 Overall low power support,

 L0s support,

 L1 support,

 L1PM-substates support,

 Overall low power enabled,

 L0s enabled,

 L1 enabled, and

 L1PM-substates enabled.

The PCIe standard reflects this dichotomy with capability registers (support) and control registers (enable/disable).

Considering just LTSSM state coverage, writing and maintaining individual functional cover models for each

customer could become a time consuming task.

 Moving beyond LTSSM state coverage, low power support may have bearing on other components of the

verification environment, too. Therefore, low power coverage should not simply be modeled as a single cover

group. Instead, low power capability and control may be incorporated into all applicable cover groups in the

functional coverage model by crossing the bins in an applicable cover group with the low power bins.

Fig. 1: Low Power root-level coverage points may have bearing on other cover groups dependent on the selection. A root-level

point bin value may have a direct effect on cover groups (i.e. is crossed), indirect (i.e. conditionally crossed), or no affect.

 In Fig. 1, we have identified Low Power as a root-level coverage point. That is, the cover groups beneath the root

are all covered “in the context of” the root-level point. This correlation may be direct, indirect, or no correlation

(unaffected). A direct correlation applies when the points in a cover group are crossed with the root-level coverage

point. In Fig. 1, none and L0s are two bins for the Low Power cover point. A directly affected cover group crosses

its points with Low Power bin none and Low Power bin L0s, separately. A directly affected cover group would

abstractly exist in both solid sections of the triangles in Fig. 1, indicating its crosses are applicable to both mode

values separately. An indirect correlation implies that the cover group is conditionally crossed or crossed with a

with a subset of the root-level bin values. For example, a cover group that monitors any lower power mode active

has an indirect correlation. Finally, unaffected cover groups are outside of the scope of the root-level coverage

point. These cover groups are not crossed with the root level point (or a cross with all values in a single bin).

 Now suppose that the IP design supports all four potential low power options: none, L0s, L1, and L1PM-

substates. If some customer selects only low power disabled and L0s, then the functional coverage model may

undergo a transformation. In Fig. 2-A, the Low Power configuration option has the full range of values. The

customer supported model, in Fig. 2-B, indicates only off (i.e. none or none enabled) and L0s is available.

Fig. 2: Static configuration options (A) become runtime configurations (B) after passing through the customer requirements filter.

 From a static configuration perspective, any functional coverage point or cross that includes low power options

L1 (green triangle) and L1PM-substates (purple triangle) is no longer applicable. However, in a constrained random

verification environment separation of the valid and invalid cover points or crosses may be difficult. As such, all

points and crosses related to IP customer-unsupported low power options would need to be waived. Or, as in our

approach, the functional coverage model itself may be transformed, referring again to Fig. 2, such that L1 and

L1PM-substates cover point bin values no longer exist.

 From a mode of operation perspective, any point or cross covered in simulation when low power was disabled (at

time simulation time zero) makes no coverage statement of that same point or cross when low power L0s is enabled.

In a constrained random verification environment, it may not be clear how to differentiate such coverage. Or, as in

our approach, the functional coverage model itself may be transformed, referring again to Fig. 2, such that

applicable cover point bins are crossed with the applicable low power mode of operation point bin values.

 The remainder of this paper presents our approach to molding a hierarchical functional coverage model for highly

configurable IP via script automation. In section II, we compare where our work fits with related functional

coverage work. In section III we discuss the cover model architecture while in section IV we dig into a few

important implementation details and cover model optimizations. We discuss our current experience and some

limitations with the work in section V. Finally, we conclude in section VI.

II. RELATED WORK

 It is well known that coverage-driven constrained random verification is effective in measuring progress and

providing confidence in both the hardware and verification quality [2], [3], [4]. Motivations behind the functional

coverage model and guidance on its development and reporting structure are described in [5] and [3]. However, few

guidelines currently exist that target highly configurable IP designs with potentially disjoint functional coverage

spaces. Furthermore, while all major simulator vendors provide verification planning tools, [6], [7], [8], these are

insufficient for fine grain cover group planning (point bins, crosses) and hierarchical model reuse.

 Current runtime approaches to coverage-driven verification look to balance testing stimulus generation based on

cover groups and parameter-domains [9]. Alternatively, they may combine the coverage model and constraints to

build a coverage driven random distribution [10]. Formal analysis also work with existing coverage to classify [11],

analyze [12], [13], and/or iteratively guide test stimulus [14], [15], [16]. With the exception of [10], these

techniques focus on post-simulation analysis to produce more concise coverage reports and/or to guide test stimulus

in the next iteration. They all assume a suitable functional coverage model is readily available.

 The approach we present here is targeted specifically to planning functional coverage in a hierarchical manner

(enabling reuse) and automatically including or excluding entire branches of the model depending on the capabilities

of the design. As we focus the functional coverage model itself, it is compatible with runtime approaches to achieve

desired coverage driven verification goals.

III. HIERARCHICAL ABSTRACT FUNCTIONAL COVERAGE MODEL

 Design IP configuration variables root our abstract functional coverage model. In Fig. 1 and Fig. 2, specific bin

values of the configuration cover point, Low Power, root each model. The generalized form, as depicted in Fig. 3, is

a tree composed of cover blocks. The root block of the tree is the top-most cover block, while the leaf blocks have

no descendants. Functional coverage is organized in cover blocks as a related collection of cover groups and child

cover blocks. There is no limit to the depth of the tree and cover blocks may have multiple parents. The implication

Fig. 3: Hierarchical functional coverage model represented as an abstract tree. Arrows point from the parent block(s) to its(their) descendants.

with block 2_2 is that its cover groups is related to both parents, block 2 and block 3. A block model is the sub-tree

starting from some cover block to all child leaf blocks. The block model defines a cone of functionality to cover in

simulation. When the top-most block in a block model indicates complete coverage then the entire cone has been

one hundred percent covered. The cover model, therefore, is the block model starting at the root block.

Verification concludes when the cover model is completely covered.

 The abstract hierarchical functional cover model is extensible and reusable. The tree can be extended at the root,

the leaf, or in-between. Blocks can be added to leaves to further refine the functionality cone. Within the tree, new

parent-child relationships can be established by inserting blocks. Finally, a new root may be established. For

example, a cover model for an IP may be imported into a cover model for a subsystem instantiating that IP. The IP-

level root block simply becomes a subsystem-level cover block in a tree with a new root.

 Similarly, the abstract functional cover model may be transformed. Given an IP-level functional coverage model,

such as Fig. 2, we may apply values to configuration variables that result in a model subset. The resultant subset is

also a cover model, but tailored to a specific configuration of the IP.

A. Cover Variables

 The basic element of a SystemVerilog functional coverage group is the cover point and its value bins. The cover

point is bound to a test bench variable or device under test (DUT) signal as a point of observation; a monitor. The

set of bins in the cover point define the values that must be observed in simulation on the bound variable or signal

during the course of verification. Cover point bin values are usually instantaneous (e.g., 32’h1 or [2’b00:2’b11]),

but temporal values are supported and indicated with an arrow (e.g., 2’h0 → 2’h3). With temporal values, the bin is

covered when the sequence of values are observed in-order during simulation.

 We abstract the cover point as a cover variable. Every SystemVerilog cover point becomes a type of cover

variable in our model. Similar to a SystemVerilog cover point, the cover variable has some symbol name and a

range of expected values. However, as depicted in TABLE 1, cover variables offer some flexibility. Variables may

be defined in order to classify specific values. For example, ltssm_detect in TABLE 1 defines LTSSM state

enumeration values for the detect states. This variable is not bound to any class member or DUT signal. Instead, the

cover variable may be used to build other cover variables and again directly within a cover group to for a specific

kind of cross. The ltssm_state cover variable, in TABLE 1, incorporates all the ltssm_detect variable values (the

dollar-sign indicates another variable should be used with its values substituted). In this manner we achieve two

goals: (1) provide a focus on planning instead of implementation (yet) and (2) encourage cover variable reuse. The

cover variable is defined separate from any cover group. Then, when a cover variable is instantiated in a cover

group it becomes a SystemVerilog cover point.

 Two Low Power variables are defined in TABLE 1, a configuration-type cover variable, and a mode-type variable.

The configuration variable defines the full range of values the IP design can support. Configuration variables, are

static (compile-time, `define) options. Just as the SystemVerilog pre-processor eliminates `define macros (by macro

expansion), the configuration variables of the abstract functional coverage model are eliminated during script pre-

processing. The result is a collection of mode variables with customer-specific values. As mode variables are

instantiated in cover groups, they automatically inherit the bound signal.

TABLE 1

PHYSICAL LOGIC LAYER COVER VARIABLES

Name Range Signal Description

C_lowpower off, L0s_en, L1_en, L1PMss_en Low Power Configuration

M_lowpower $C_lowpower CFG::LP
Low Power Mode of Operation.

Bound to global static variable.

ltssm_detect detect_quiet, detect_active Enumeration of detect states

…

… other LTSSM state enumerations

ltssm_L0s_RX L0s_rx_entry, L0s_rx_idle, L0s_rx_FTS Enumeration of receiver L0s states

ltssm_state $ltssm_detect, …, L0, $ltssm_L0s, … tb.ltssm_o
Enumeration of all LTSSM states

possible. Bound to DUT output.

ltssm_l0s_rx_trans L0 → L0s_rx_entry, L0s_rx_FTS → L0 tb.ltssm_o Single low power transitions.

Fig. 4: Functional coverage on receive data path. Monitor_a provides no context; there is no correlation

between the signals. Monitor_b is over contextualized; the correlation includes invalid bins.

B. Cover Groups

 The cover group collects correlated cover points while cover point bin values are crossed to provide meaning to

the coverage. It is not enough to simply instantiate cover points within a cover group. Instead, context to the

coverage is achieved by crossing relevant cover points values. For example, consider a data path with both control

and data characters, such as an 8b/10b encoded data stream, Fig. 4. Received control characters are indicated when

the ctrl signal is asserted, otherwise the bus indicates a data character. The cover points in MonitorA have no

correlation; there is no way to discern control character coverage even if both cover points are completely covered.

The opposite is MonitorB which simply crosses everything. Even if both cover points are completely covered there

is no way for complete coverage on the cross because many invalid control characters are expected. Instead, the

cover group should be refined to exactly the coverage required.

TABLE 2

COVER VARIABLE DEFINITION FOR CONTROL CHARACTER MONITOR

Name Range Signal Description

Data [8’h00:8’hff] data Decoded data bus from DUT

Control 0, 1 ctrl Control character indication

COM 8’hBC Comma control character, K28.5

STP 8’hFB Start transport packet, K27.7

SDP 8’h5C Start data-link packet, K28.2

END 8’hFD End of Packet, K29.7

ControlChars $COM, $STP, $SDP, $END Decoded control characters

 In our functional coverage architecture, each point is first defined as a cover variable. In TABLE 2, the Data and

Control variables are, by default, bound to the class members data and ctrl, respectively. We have further defined

some variable aliases for describing specific control characters, COM, STP, SDP, and END. These are not bound to

any signal or class member as they are only used within coverage model.

 The cover group is defined as a table, refer to TABLE 3, and in a similar manner as described by [5]. Each cover

group has a name and declares the cover variables to instantiate (rows 1-2). Each of the remaining rows of the cover

group (rows 3-8) defines a single cross (or group of crosses) of cover point bin values. Blank cells on a row indicate

no correlation (i.e., not crossed); the wild card, ‘*’, indicates complete correlation (i.e., cross all values); otherwise,

the cross correlation is described. For example, MonitorA is sufficiently described by rows 3 and 4. There is no

correlation between the cover variables Data and Control and, thus, the cover group contains only cover points and

no crosses. MonitorB is sufficiently described by row 5; two cover points and a complete cross, including invalid

control characters. A more refined cover group for the receive data path in Fig. 4 covering only the interesting

control characters in TABLE 2 is described by row 6. The equivalent Boolean formula for row 6 is

 any_ctrl_cross ↔ (Data == 8’hBC || Data == 8’FB || Data == 8’h5C || Data == 8’hFD) && ctrl == 1’b1. (1)

 Now coverage is limited only to interesting control characters but they are not all valid in all LTSSM states.

Therefore, rows 7-8 provide additional context to the control character coverage. Packets may only be initiated in

L0 state. Cover variable ltssm_state, from TABLE 1, is also instantiated in the cover group and crossed in row 7 to

indicate packet delimiter coverage, and again in row 8 to indicate low power exit control character coverage. We

have successfully reused the ltssm_state cover variable and bin values in the cover group.

dut

rcvr

9

8
data
ctrl

class MonitorA;

 logic [7:0] data;

 logic ctrl;

 covergroup rx_dp_cg;

 coverpoint data;

 coverpoint ctrl;

 endgroup

endclass

class MonitorB;
 logic [7:0] data;
 logic ctrl;
 covergroup rx_dp_cg;
 coverpoint data;
 coverpoint ctrl;

 cross data, ctrl;
 endgroup
endclass

Receive Data Path

TABLE 3

COVER GROUP EXAMPLE DEFINITION FOR CONTROL CHARACTER MONITORS

1 Covergroup Name rx_datapath_cg

2 Cover Points Data Control ltssm_state Comment

3 data coverpoint * Cover points equivalent to

Fig. 4, MonitorA 4 ctrl coverpoint *

5 data_ctrl_cross * * Coverage as Fig. 4, MonitorB

6 any_ctrl_cross $ControlChars 1 Refined coverage monitor

7 pkt_delim_cross $STP, $SDP, $END 1 L0 Cover packet delimiters

8 L0s_wake_rx_cross $COM 1 L0s_rx_FTS Cover FTS receive

C. Config and Mode Variables

 The L0s_wake_rx_cross at row 8, TABLE 3, is sufficient for the internal PCIe IP design but it now must be waived

for a customer configuration that does not support L0s low power mode. The Boolean formula for row 8 is

 L0s_wake_rx_cross ↔ Data == 5’hBC && ctrl == 1’b1 && ltssm_state == L0s_rx_FTS. (2)

The LTSSM will never enter L0s_rx_FTS when L0s is unsupported. In fact, this is a common occurrence because

when a PCIe device is “operating with separate reference clocks with independent Spread Spectrum Clocking

(SSC), L0s is not supported” [1]. In these configurations, the L0s_wake_rx_cross cannot be covered. We handle

this situation in our coverage flow by introducing the mode and configuration variables, as in TABLE 4.

TABLE 4
REFINED COVER GROUP FOR VALID CONTROL CHARACTER MONITOR, READY FOR TRANSFORMATION

1 Covergroup Name rx_datapath_cg
2 Cover Points Data Control ltssm_state M_lowpower C_lowpower

3 pkt_delim_cross $STP, $SDP, $END 1 L0

4 L0s_wake_rx_cross $COM 1 L0s_rx_FTS L0s_en L0s_en

 A config variable is used similar to a band-pass filter in our coverage flow. Effectively, the config variable

validates the cross scenario. That is: “this cross scenario is valid for the customer configuration when the config

variable range includes the specified value or values.” The whole functional coverage model may be contracted by

restricting configuration variable values.

 Like SystemVerilog compiler directives, config variables are used only by our coverage script; they do not

propagate to generated SystemVerilog cover groups. For example, the C_lowpower config variable is defined in

TABLE 1 with the full range of supported values for the internal IP. Assuming the C_lowpower config variable

range is set, at script-time, to reflect the customer configuration, then it may be used as a filter. As such, our

coverage script allows modification of config variables on the command-line. For some customer that does not

support L0s low power, the C_lowpower config variable would not include the value L0s_en. Then, our coverage

script will not generate the L0s_wake_rx_cross in the resultant SystemVerilog cover group. The cover group in

Listing 1 reflects TABLE 4 when L0s low power is not supported. Notice that the mode variable M_lowpower is not

part of the cover group. The cell entry for pkt_delim_cross is empty to indicate there is no correlation with

M_lowpower, and thus is excluded from the cover group. Also note that data_0, in line 2, defines three bins, one

for each value listed. Therefore, pkt_delim_cross defines three cross bins, one for each data_0 bin.

Listing 1: Generated SystemVerilog cover group from TABLE 4 when L0s low power is not supported.

1 covergroup rx_datapath_cg;

2 coverpoint data { bins data_0[] = { 8’hFB, 8’h5C, 8’hFD }; }

3 coverpoint control { bins control_0 = { 1; }; }

4 coverpoint ltssm_state { bins ltssm_state_0 = { L0 }; } }

5 c_0: cross data, control, ltssm_state {

6 bins pkt_delim_cross = binsof(data.data_0) && binsof(control.control_0) &&

7 binsof(ltssm_state.ltssm_state_0);

8 }

9 endgroup

 A mode variable is employed at simulation time to provide additional context to the cross. The mode variable

expands the overall coverage space for context. For example, assume the customer configuration does support L0s

low power. In this case, C_lowpower includes the value L0s_en in its range and L0s_wake_rx_cross is generated in

the resultant cover group. The generated cover group is shown in Listing 2. The data and ltssm_state cover points

now have additional bins to support L0s_wake_rx_cross.

Listing 2: Generated SystemVerilog cover group from Table 4 when L0s and off low power modes are supported.

 Config and mode variables are defined in a cover block and may be propagated down the tree. Referring to Fig.

3, config and mode variables defined in block 1 affect cover groups in block 1, block 1_1, and block 1_1_1. Config

and mode variables defined in the root block affect all cover groups in the model. TABLE 4 explicitly instantiates the

M_lowpower mode variable. However, had it not done so the coverage script would automatically and in the most

expressive manner (i.e., cross with each value in the mode variable). The implication is that when a mode variable

is not instantiated in a cover group then the group should be covered in all possible modes individually. Similarly,

when a config variable is not instantiated the implication is that the cover group is valid in all possible

configurations. The verification engineer instantiates each explicitly to indicate when the cover group and/or

crosses are applicable.

IV. IMPLEMENTATION

 We implemented an object-oriented script in Perl5 [17] to process and transform the internal IP design functional

coverage model into customer-specific SystemVerilog functional coverage (the orange filter in Fig. 2). Each block

in the hierarchical model, Fig. 3, was physically a file system directory. Child blocks, then, were sub-directories

therein. Multiple parent relationships were established with symbolic links.

 Every block directory contained a Microsoft Excel [18] spread sheet workbook, Cover.xlsx, hereafter called

coversheet. Coverage variables were defined in worksheets within, one tab for each type of variable: config, mode,

and cover. The variable definition style was as indicated in TABLE 1 and TABLE 2, allowing multiple variables

defined on one worksheet. Cover groups were also defined in worksheets within the coversheet, in the group tab,

and in the style indicated from TABLE 3 and TABLE 4, in the manner described in [5]. Multiple cover groups may be

defined on one or multiple worksheets (include one worksheet tab in another).

Fig. 5: Coversheet (xlsx) input, script processing block diagram, and output (generally SystemVerilog cover groups).

 1 covergroup rx_datapath_cg;

 2 coverpoint data { bins data_0[] = { 8’hFB, 8’h5C, 8’hFD };

 3 bins data_1 = { 5’hBC }; }

 4 coverpoint control { bins control_0 = { 1 }; }

 5 coverpoint ltssm_state { bins ltssm_state_0 = { L0 }; }

 6 bins ltssm_state_1 = { L0s_rx_FTS }; }

 7 M_lowpower: coverpoint CFG::LP { bins M_lowpower_0 = { L0s_en }; }

 8 c_0: cross data, control, ltssm_state {

 9 bins pkt_delim_cross = binsof(data.data_0) && binsof(control.control_0) &&

10 binsof(ltssm_state.ltssm_state_0);

11 }

12 c_1: cross data, control, ltssm_state, M_lowpower {

13 bins l0s_wake_rx_cross = binsof(data.data_1) && binsof(control.control_0) &&

14 binsof(ltssm_state.ltssm_state_1) &&

15 binsof(M_lowpower.M_lowpower_0);

16 }

17 endgroup

 Processing of all coversheets, as in Fig. 5, traversed the entire directory tree in a depth-first fashion . A free

XLSX reader [19] was employed in the XLSX Parser block to open and parse MS Excel workbooks. The config,

mode, and cover variable worksheets were parsed first, and in that order, and then decorated to resolve reference

bindings. Referenced variables, as those with a dollar-sign prefixed in TABLE 1 and TABLE 2, were considered “in-

scope,” and thus resolved, if they had been defined in the same coversheet or any direct lineage parent block

coversheet.
TABLE 5

VARIABLE / POINT RANGE GRAMMAR

start_variable_range := term terms | range := [item : item]

start_point_range := term terms | * | item := enum | value | var

terms := , term enum := SystemVerilog identifier

term := list | range | item value := SystemVerilog value

list := { term list_items } var := $string variable symbol name

list_items := , term list_items |

 Cover variables defined ranges while instantiated cover points employed those ranges, or subsets thereof. Cover

variable range values, and their corresponding cover group point values, were read by the Perl-based Value Parser

implementing the grammar in TABLE 5. Cover variable production rules start with “start_variable_range”, while

cover point production rules start with “start_point_range”. Symbols in bold red are tokens within the syntax and

treated as-is within the range, while the pipe ‘|’ indicates an alternative. Leaf value terms were items from the

grammar that resolve to a numeric value or enumeration. Numbers conformed to either C- or SystemVerilog-syntax

and could be arbitrary length bit or logic vectors, represented in Perl by [20] and [21]. Enumeration values are not

specifically interpreted by the script, as shown in Listing 1 and Listing 2; their resolution was handled by the

hardware compiler. Unique instances of terms across the cover model were ensured by liberal hashing, tying

references in a globally accessible Term Hash [22]. For example, all uses of the number 16’h42 in the cover model

resolved to the same term instance in script processing. The Term Hash, in Fig. 5, was used when creating terms.

 Processing validated cover point value ranges by ensuring only valid terms from the corresponding variable were

used. A cover point term was deemed valid when either it existed in the variable value range (3), or processing

could ascertain it was a subset of a contiguous range (4).

 ∃𝑡𝑒𝑟𝑚 ∈ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶ 𝑝𝑜𝑖𝑛𝑡_𝑡𝑒𝑟𝑚 = 𝑡𝑒𝑟𝑚 (3)

 ∃𝑟𝑎𝑛𝑔𝑒 ∈ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶ 𝑝𝑜𝑖𝑛𝑡_𝑡𝑒𝑟𝑚 ⊆ 𝑟𝑎𝑛𝑔𝑒 (4)

 Once the internal cover model was built, effectively modeled as a decorated abstract syntax tree, script processing

manipulated it in several ways.

1. Variable/point transformation,

2. Configuration filtering of point and cross coverage, and

3. Minimal group cross coverage expansion.

An output from the model is a set of SystemVerilog cover groups for instantiation in the verification environment.

A. Variable/Point Transformation

 Cover group point bins drive the overall adaptive functional coverage model. Script processing ensures only

relevant coverage exists in the configuration. Then, by ensuring minimal sets for both point bins and their crosses, a

cover group may be completely covered. Waivers are not required because no holes exist in the final customer-

configuration SystemVerilog cover group. However, it is crucial that transformations on cover point bins do not

disrupt the original coverage intent.

 For config and mode type variables, transformations on their instantiated range value bins are applied

immediately. All other variables are revisited, and transformations applied, during cover group processing. If a

variable is unused in the model (declared but not instantiated as a cover point in any cover group), then it is not

processed.

 The variable and cover point value range contains an array of terms. Each term within the array may be a leaf

term (number, enumeration, or contiguous number range), a list, or variable substitution (e.g., $Data). Within each

list or variable substitution may be a nested list, variable substitution, or leaf term. There is no limit to the depth of

nesting. However, to generate a SystemVerilog cover point, the entire array must be flattened until each term is a

leaf term or a flat list (i.e., a list containing only leaf terms). Transformations are applied to the array until this state

is achieved.

 First, substitution recursively replaces all variable references in the array with actual terms (e.g., {$Data} ⟹

{[8’h00:8’hff]}). Variables may be substituted with a leaf term, a list, a variable reference, or any combination

thereof. Thus, nesting generally increases following substitution. Second, all nested lists are flattened to their

outermost list boundary and redundancies removed. A list of leaf terms is modeled in a SystemVerilog cover point

as a single cover bin (e.g., coverpoint data { bins data_0 = { [8’h00 : 8’hff] }; }). Nested lists, therefore, expand the

values to be covered in that single bin. For example, consider the list term {{1, 2}, 3, {4, 5}}. This term can be

directly read as: either value in the list {1, 2}, or the value 3, or either value in the list {4, 5} satisfies this cover bin.

Of course, that just means the cover bin is satisfied when any value 1–5 is observed. Algorithm 1 is employed to

each term in the variable or cover point range array to flatten all nested lists.

 Algorithm 1 Flatten nested lists in a term

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Require: term
if term.Type = LIST then

 cur_lst ← new List;

 for i = 0 to length(term) do

 lst_elem ← Flatten(term[i]);

 if lst_elem = LIST then

 for j = 0 to length(lst_elem) do

 if lst_elem[j] ⊄ cur_lst then
 cur_lst.append(lst_elem[j])

 end if

 end for

 else if lst_elem ⊄ cur_lst then
 cur_lst.append(lst_elem)

 end if

 end for

 return hash(cur_lst)

else

 return term

end if

PROOF. We must consider three types of terms: not a list, a flat list, and a nested list. If the term under examination

is not a list, then it is already a leaf term because all variable references were removed during substitution.

Therefore, the leaf term, a number, an enumeration, or a contiguous range is returned. A leaf term does not change.

Suppose the term is already a flat list (i.e., each element of the list term is a leaf term). In this case, the recursive

call in line 4 performs no action on each term as they are all leaf terms. The new list is hashed, yielding the same

instance reference as the input, and returned. A flat list does not change. Now suppose the term is a nested list that

contains a single flat list, such that the nest depth is one, and, possibly, other leaf terms. In this case, a new list is

created in line 2 and the flat list term is recursively returned in line 4, unchanged. Then, in lines 5-10, each element

of the flat list is appended to the new list, removing duplicates. The remaining leaf terms are added to the new list in

lines 11-13, removing duplicates. The new list is hashed to ensure unique term instance and returned. Thus, lines 5-

13 remove a single level of nesting. Since each term is recursively flattened in line 4, the algorithm concludes when

all terms within the original list term have been reduced to leaf terms, leaving a single flat list. □

B. Configuration Filtering

 Config cover variables mold a general functional coverage model into a customer-specific coverage

implementation. For verification of a highly configurable IP, the config variables are critical in order to match the

coverage model to the actual IP configuration.

 Config variables are applied as band-pass filters mode variable ranges immediately after transformation. Only

those mode variable bin values that exist in the config variable pass through the filter. In (5), m_var indicates a

mode variable while c_var is its corresponding config variable. The resulting filtered mode variable instance

contains only those terms that match the configuration.

 m_var𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ↔ { ∀𝑖 ∈ m_var ∶ 𝑖 → 𝑖 ∈ c_var } (5)

 Config variables also act as a band-pass filter for cross coverage. During cover group processing, config variables

may be specified explicitly, as in TABLE 4, to further refine the group’s coverage. If no terms exist after filtering the

config variables values, then the whole cross is discarded for that customer-specific functional coverage model.

C. Minimal Cross Coverage Expansion

 Cover group cross coverage is written with clarity in mind. Therefore, processing must perform two levels of

expansion (1) explicitly indicate mode variables and (2) expand crosses into unique permutations. TABLE 3 shows

an example of a leaf cover group with no mode variables. Automation add the mode variables as cover point

columns and includes the entire variable range in each row. Next, each cross is built as a conjunction, as in (6).

𝑐𝑟𝑜𝑠𝑠𝑖 ↔ ⋀ 𝑟𝑎𝑛𝑔𝑒(var𝑗 , 𝑖) ≠ ∅ → 𝑟𝑎𝑛𝑔𝑒(var𝑗 , 𝑖)

max _𝑣𝑎𝑟

𝑗=1

 (6)

The range function returns the cover point value range (a set of one or more bins) for each specified variable var j in

column j for the ith row cross. The final result of (6) is a list, where each element is a conjunct of the cross.

 Each element term in crossi may be a leaf term, a contiguous range, or a flat list (Algorithm 1 guarantees no

nested lists). The next automation step expands crossi to one or more lists such that each list contains only leaf

terms or contiguous ranges. The number of lists can crossi maximally expand to is equivalent to the product of each

element term’s list length, (7).

𝑙𝑒𝑛𝑔𝑡ℎ (𝑐𝑟𝑜𝑠𝑠𝑖𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑
) = ∏ 𝑙𝑒𝑛𝑔𝑡ℎ(term𝑗)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑟𝑜𝑠𝑠𝑖)

𝑗

 (7)

However, to ensure a minimal number of crosses in a cover group, each expanded cross is hash such that only

unique crosses are kept. Because each cross is also represented as a list, the list’s instance reference is trivially used

for hashing. Therefore, even when the same cover point cross is indicated in multiple rows, automation only

generates a minimal set in the SystemVerilog cover group.

D. Minimal Cover Point Bins

 Point coverage will likely indicate the same bin value in multiple rows of a cover group table. For example, in

TABLE 4, the control cover point uses the bin value 1 for both pkt_delim_cross and L0s_wake_rx_cross. After

minimal cross coverage expansion, section III-C, cover point bin values are collected for SystemVerilog cover

points. For example, in Fig. 6, two variables are crossed in a cover group.

Fig. 6: Relationship of cover variables to cover points and within a group.

A minimal set of cover points collected from a minimal set of cross coverage is depicted in Fig. 6-(A). Here, the

antecedent in (6) never evaluates to true because bin values from variable 1 are always crossed with bin values from

variable 2. Only the cover point bins used in the cover group are collected. For Fig. 6-(B), however, some bin

values from both variable 1 and variable 2 are crossed with the empty set (i.e., a cell in the row is left empty).

 Each bin value is represented as a unique hashed term in the cover model. As such, a minimal set of cover point

bins is collected trivially by inspecting the term reference and disallowing duplicates.

E. Cover Group Generation

 Once both a minimal set of cross coverage and cover point bins have been achieved, the SystemVerilog cover

group can be generated, as in Listing 1 and Listing 2.

V. EXPERIENCE AND LIMITATIONS

 We have employed this functional coverage framework and script processing two PCI-Express projects, one as an

IP and one as a subsystem incorporating other IP. Each project supports multiple simultaneous customer programs.

The IP design implemented thirty unique customizations for the customer to select. For example, the IP may

support 1, 2, 4, or 8 lanes of transmission, with or without IO-virtualization, and with or without low power support,

including supporting a subset of low power options. TABLE 6 compares the total number of crosses in differing

customer configurations, all PCIe end-point devices. Configuration 1 (C1) is a two lane device supporting L0s;

configuration 2 is a four lane device supporting IO-virtualization and low power L1PM-substates. Configuration 3

is a four lane device with no low power. Example Perl script runtime and memory footprint required to process the

super-set coverage model is indicated, as reference, per configuration executing on a shared Linux machine with 40

CPU cores and 264 GB of memory. The PCIe subsystem included a subset of the same options as the PCIe IP since

it was instantiated within. A subset of the same cover groups were incorporated in the subsystem functional

coverage model, too.

TABLE 6

CUSTOMER-SPECIFIC MODEL SIZE COMPARISONS AND SCRIPT PROCESSING METRICS.

 Sample Config Variable Options Total SV Script Processing

 Link Width IO-Virtualization Low Power Crosses Time (s) Mem (MB)

C1 x2 no off, L0s, L1 88,975 801 2,588

C2 x4 yes off, L0s, L1, L1ss 126,496 1,182 3,632

C3 x4 no off 128,514 1,175 3,689

 We encountered three stumbling blocks, and one reporting opportunity, early in the IP program. First, it was

difficult to accurately visualize the effect of cover point bin crosses, mode variables, and configuration variables on

the generated SystemVerilog cover groups. However, because the coverage model is converted to an internal

abstract syntax tree within the script, we were easily able to output, post transformations, a spreadsheet. We

employed an XLSX writer [23] to generate the customer-specific coversheets, as per Fig. 7. This enabled a

recursive refinement to the model: write a cover group coversheet, generate an output coversheet, refine.

 Second, it was our tendency to cross everything and everywhere. While the resultant cover model contained valid

bins, they were not always valid within the context of the cover group. Third, we declared too many root block

mode variables each with term many terms. For each cross in each cover group, the mode variable has an

exponential affect. These two issues resulted in a cross coverage explosion, one that could not be covered within a

single project verification cycle. Therefore we developed some guidelines:

GUIDELINE 1. Only cross variables that are actually necessary.

GUIDELINE 2. Only cross term bins that are necessary to show that the desired testing scenario is covered.

GUIDELINE 3. Minimize the number of mode variables and the number of bins in their terms.

After enacting these guidelines, our functional coverage models were much more feasible.

 Finally, as we had already generated SystemVerilog cover groups and generated transformed XLSX coversheets,

Fig. 7, we were able to also extend the script to generate a hierarchical Synopsys compatible Verification Planner

XML file [8]. Each cover group defined in a coversheet was modified to include an instance path (multiple paths

were supported), as reported by Synopsys Unified Reporting Generator (urg) [24]. Then, following regression, the

Verification Planner XML file was back-annotated with functional coverage results to report the final cover score.

Fig. 7: Usage model for functional coverage automation flow.

VI. CONCLUSIONS

 Effectively handling a functional coverage model for highly configurable IP designs is not straightforward. For

each customer program, differing options lead to potentially disjoint coverage requirements. As such, it is easy end

up with the functional coverage heavily relying on waivers to achieve goals. Instead, we offered an adaptive

hierarchical model that, with a script, may be transformed upfront for each customer configuration. The resultant set

of SystemVerilog cover groups do not require an extensive set of waivers as they have already been tailored to the

customer’s requirements. Furthermore, because our tool builds an internal model to operate on, it is possible to

generate not only SystemVerilog but also the reporting structure (e.g., Synopsys VPlanner). Finally, once our flow

was in place for our PCIe IP design, we were easily able to adapt the coverage model to a new customer program,

and reuse with another project. Most importantly, we were able to juggle the coverage requirements in multiple

customer programs simultaneously. Verification sign-off regarding functional coverage become straightforward.

REFERENCES

[1] PCI-SIG, PCI Express Base Specification Revision 3.1, 2013.

[2] J. Bergeron, Writing Testbenches using SystemVerilog, Springer Science+Business Media, 2006.

[3] P. James, Verification Plans: The Five-Day Verification Strategy for Modern Hardware Verification

Languages, Kluwer Academic Publishers, 2004.

[4] L.-T. Wang, Y.-W. Chang and K.-T. Cheng, Electronic Design Automation, Morgan Kaufmann, 2009.

[5] A. Piziali, Functional Verification Coverage Measurement and Analysis, Springer, 2008.

[6] Cadence Design Systems, Inc., "Incisive© Enterprise Manager Verification Planning," 2014.

[7] Mentor Graphics Corp., "Questa© SIM Verification Management User's Manual," 2014.

[8] Synopsys, Inc., "Verification Planner User's Guide," 2014.

[9] C. I. Castro, M. Strum and J. C. Wang, "Automatic Generation of a Parameter-Domain-Based Functional Input

Coverage Model," in LATW2010, 11th Latin-American Test Workshop, 2010.

[10] M. Teplitsky, A. Metodi and R. Azaria, "Coverage Driven Distribution of Constrained Random Stimuli," in

Design and Verification Conference (DVCon), USA, 2015.

[11] A. Krupp and W. Mueller, "Classification Trees for Random Tests and Functional Coverage," in Design,

Automation, and Test in Europe (DATE), 2006.

[12] S. Asaf, E. Marcus and A. Ziv, "Defining Coverage Views to Improve Functional Coverage Analysis," in

Proceedings of the 41st Design Automation Conference, San Diego, 2004.

[13] H. Azatchi, L. Fournier, E. Marcus, S. Ur, A. Ziv and K. Zohar, "Advanced Analysis Techniques for Cross-

Product Coverage," IEE Transactions on Computing, vol. 55, no. 11, pp. 1367-1379, 2006.

[14] D. Große, U. Kühne and R. Drechsler, "Analyzing Functional Coverage in Bounded Model Checking," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 7, pp. 1305-1314,

2008.

[15] H.-H. Yeh and S.-L. Haung, "Automatic Constraint Generation for Guided Random Simulation," in Design

Automation Conference Asia and South Pacific (ASP-DAC), 2010.

[16] A.-C. Cheng, C.-C. Yen and J.-Y. Jou, "A Formal Method to Improve SystemVerilog Functional Coverage," in

IEEE International High Level Design Validation and Test Workshop (HLDVT), 2012.

[17] L. Wall, "The Perl Programming Language," 2006.

[18] Microsoft Corporation, Inc., Microsoft Excel, 2010.

[19] D. Ovsyanko, Spreadsheet::xlsx -- perl extension for reading MS Excell 2007 files, Rev 0.13, 2010.

[20] P. J. Acklam, M. Biggar, I. Zakharevich and Tels, Math::BigInt -- Arbitrary size integer/float math package,

Rev 1.997, 2011.

[21] T. Granlund and et al., The GNU Multiple Precision Arithmetic Library, 2012.

[22] G. Sarathy, Tie::Refhash -- Use references as hash keys, Rev 1.32, 2011.

[23] J. McNamara, Excel::Writer::XLSX -- Create a new file in Excel 2007+ XLSX format, Rev 0.77, 2014.

[24] Synopsys, Inc., "Coverage Technology User Guide," 2014.

	I. Introduction
	II. Related Work
	III. Hierarchical Abstract Functional Coverage Model
	A. Cover Variables
	B. Cover Groups
	C. Config and Mode Variables

	IV. Implementation
	A. Variable/Point Transformation
	B. Configuration Filtering
	C. Minimal Cross Coverage Expansion
	D. Minimal Cover Point Bins
	E. Cover Group Generation

	V. Experience and Limitations
	VI. Conclusions
	References

