Modelling Finite-State Machines

in the Verification Environment

using Software Design Patterns
Darko M. TomusSiloviC

¥ viool::..

2017
DViOIN

acce//era

SYSTEMS INITIATIVE

State Machines are everywhere -
And They have to be verified

2017
accellera o DVCON

© Accellera Systems Initiative 2 CONFERENCE AND EXRIBITION
SYSTEMS INITIATIVE

Introduction

FSM verification process

— Achieve state transitions using the proper input stimulus

— Check that the output signals are properly driven

— Collect coverage (state, state transition, coverage on higher-level scenarios)

FSM reference model

Goal: reusable, modifiable solution

Introduce main UVM concepts

Introduce design patterns

2017
accellera o DVCON
© Accellera Systems Initiative 3 CONFERENCE AND EXRIBITION

SYSTEMS INITIATIVE

Example State Machine

rst rst rst

cntr

e
e s expiration

switch_off

Switch_OfF Clock_Gate

- 2017
accellera o VSN
N © Accellera Systems Initiative 4 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

2017

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

© Accellera Systems Initiative

accellera

SYSTEMS INITIATIVE

Tightly coupled FSM implementation
Overview

The most obvious approach

State enumeration

A huge “if” or “switch/case” statement conditioned by the current state
Drawbacks:

— Independent tasks coupled together

— Not straightforward for reuse
— Code duplication

2017
accellera o DVCON
© Accellera Systems Initiative 6 CONFERENCE AND EXRIBITION

SYSTEMS INITIATIVE

Tightly coupled FSM implementation
Code example

class FSMExample; \\‘
local fsm_t currentState;
function void doAction(Input inputs);
case (currentState)
fsm_reset: begin
doActionForState_reset(inputs);

... // checkers, coverage, register model update, etc.o
currentState = calculateNewsState(currentState, inputs); Vﬂ
end \
endcase
endfunction

endclass

2017
accellera o DVCON
© Accellera Systems Initiative 7 CONFERENCE AND EXRIBITION

SYSTEMS INITIATIVE

Example State Machine

rst rst rst

cntr

e
e s expiration

switch_off

Switch_OF Clock_Gate

- 2017
accellera o VSN
P © Accellera Systems Initiative 8 CONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

1vide et Impera

2017
accellera o DVCON
© Accellera Systems Initiative 9 CONFERENCE AND EXRIBITION

SYSTEMS INITIATIVE

Loosely coupled FSM implementation
State design pattern Overview

— Model state machines, decouple them from the rest of the system,
provide simple interface to them

Context class

Abstract State base class
Concrete State classes
State transition logic

2017
accellera - VST
© Accellera Systems Initiative 10 CONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

Context Class

)

Concrete

Verification Env

State #1

Abstract
State

Concrete

State #2

Mediator

Concrete

State #3

© Accellera Systems Initiative

11

2017

DESIGN AND Vi “ICATION™

DV I

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Context Class

|

Verification Env

© Accellera Systems Initiative

12

DV I

CONFERENCE AND EXHIBITION

Loosely coupled FSM implementation
State design pattern Context class

— Model state machines, decouple them from the rest of the system,
provide simple interface to them

Context class

— Communicates with the rest of the Verification environment
— Provided with the observed values of the input signals
Abstract State base class

Concrete State classes

State transition logic

2017
accellera - VLI
© Accellera Systems Initiative 13 CONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

Loosely coupled FSM implementation
Context class - Code example

class FSMContext;
local State currentState;
function new(State initialState);
currentState = initialState; R
endfunction
function void setState(State s);
currentState = s;
endfunction
function void doAction(Input inputs);
currentState.doAction(this, inputs);
endfunction
endclass

2017
accellera . V]
© Accellera Systems Initiative 14 CONFERENCE AND EXRIBITION

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

Context Class

|

Verification Env

© Accellera Systems Initiative

15

DV I

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Context Class

|

Verification Env

Abstract
State

© Accellera Systems Initiative

16

DV I

CONFERENCE AND EXHIBITION

Loosely coupled FSM implementation

State design IOatternAbstract State class

— Model state machines, decouple them from the rest of the system,
provide simple interface to them

Context class

Abstract State base class

— Features and actions common to every state of a state machine
— Main behavior modelled using Template method design pattern
Concrete State classes

State transition logic

2017
accellera - VLI
© Accellera Systems Initiative 17 CONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

Loosely coupled FSM implementation
Abstract State class - Code example

virtual class State;

function void doAction(FSMContext cntxt, Input inputs);
State nextState;
doSpecificSegAction(cntxt, inputs);
nextState = StateTransitionUtil::calculate(this, inputs);
cntxt.setState(nextState);
nextState.doSpecificCombAction(cntxt, inputs);

endfunction

pure virtual function void doSpecificCombAction(FSMContext cntxt, Input inputs);

pure virtual function void doSpecificSeqAction (FSMContext cntxt, Input inputs);
endclass

2017
accellera o DVCON
© Accellera Systems Initiative 18 CONFERENCE AND EXRIBITION

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

Context Class

|

Verification Env

Abstract
State

© Accellera Systems Initiative

19

DV I

CONFERENCE AND EXHIBITION

Context Class

|

Verification Env

Concrete
State #3

Concrete
State #2

Concrete
State #1

acc,lera © Accellera Systems Initiative 20

SYSTEMS INITIATIVE

2017

DESIGN AND Vi “ICATION™

DV I

CONFERENCE AND EXHIBITION

Loosely coupled FSM implementation

State design IOatterrgioncrete State class

— Model state machines, decouple them from the rest of the system,
provide simple interface to them

Context class

Abstract State base class

Concrete State classes

— Define a state-specific behavior

— Modelled using Singleton design pattern
State transition logic

2017
accellera - oV
© Accellera Systems Initiative 21 CONFERENCE AND EXHISITION
SYSTEMS INITIATIVE

Loosely coupled FSM implementation
Concrete State class - Code example

class RunState extends State;
local static RunState inst = null;
protected function new(); endfunction
static function RunState Instance();
if (inst == null)
inst = new();
return inst;
endfunction
virtual function void doSpecificCombAction(FSMContext cntxt, Input inputs);
inputs.vif0.iso_expected <= 0;
endfunction
virtual function void doSpecificSeqAction(FSMContext cntxt, Input inputs); endfunction
endclass

ceconanoe a7
accellera N T T

© Accellera Systems Initiative 22 CONFERENCE AND EXRIBITION
SYSTEMS INITIATIVE

Context Class

|

Verification Env

Concrete
State #3

Concrete
State #2

Concrete
State #1

acc,lera © Accellera Systems Initiative 23

SYSTEMS INITIATIVE

2017

DESIGN AND Vi “ICATION™

DV I

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Context Class

)

Concrete

Verification Env

State #1

Abstract
State

Concrete

State #2

Mediator

Concrete

State #3

© Accellera Systems Initiative

24

2017

DESIGN AND Vi “ICATION™

DV I

CONFERENCE AND EXHIBITION

Loosely coupled FSM implementation
State design pattern Mediator class

— Model state machines, decouple them from the rest of the system,
provide simple interface to them

Context class

Abstract State base class

Concrete State classes

State transition logic

— Modelled using Mediator design pattern

— Mediator utility class

— Localization, decoupling, improved code maintainability

2017
accellera - VLI
© Accellera Systems Initiative 25 CONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

Loosely coupled FSM implementation
Mediator class - Code example

class StateTransitionUtil;
local static State validStateTransitions[State][S];
static function void init();

validStateTransitions[ResetState::Instance()] = { ResetState::Instance(),
InitState::Instance()};

endfunction
static function State calculate(State currentState, Input inputs);

nextState = calculateNextState(currentState, inputs);
... |/ Check whether the transition is valid
return nextState;

endfunction
endclass

2017
accellera o DVCON
© Accellera Systems Initiative 26 CONFERENCE AND EXRIBITION

SYSTEMS INITIATIVE

Loosely coupled FSM implementation
State design pattern Summary

— Model state machines, decouple them from the rest of the system,
provide simple interface to them

Context class

Abstract State base class
Derived state classes
State transition logic

2017
accellera - VST
© Accellera Systems Initiative 27 CONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

Context Class

)

Concrete

Verification Env

State #1

Abstract
State

Concrete

State #2

Mediator

Concrete

State #3

© Accellera Systems Initiative

28

2017

DESIGN AND Vi “ICATION™

DV I

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Loosely coupled FSM implementation

UML class diagram

StateTransitionUtil

-validstateTransitions

+calculatel)

FSMDemo
¥
FSMContext Stare
-currentState
-currentState (- = F-mem e mmmeaae o T
+5et5tate() +doAction()
+doAction() #doSpecificAction()
State1 State2
#doSpecificaction() #doSpecificaction()

© Accellera Systems Initiative

29

2017

DESIGN AND VERIFICATION™

DV I

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

& vtool ..

g ————
H —— e——

B c—

© Accellera Systems Initiative

30

| C——»
o0

~ 5
) -

a

\&

DESIGN AND VERIFICATION™

DVI:I:IN

CONFERENCE AND EXHISITION

Loosely coupled FSM implementation
Checkers implementation

logic iso_observed, iso_expected;
logic clkg_observed, clkg_expected;

property iso;

@ (posedge clock) iso_observed == iso_expected; // FSM output vs FSM reference model output
endproperty
assert property (iso);

property clkg;

@(posedge clock) clkg_observed == clkg_expected;
endproperty
assert property (clkg);

2017
accellera . V]
© Accellera Systems Initiative 31 EENFERENCE AND ExuSTIoN
SYSTEMS INITIATIVE

Loosely coupled FSM implementation
Functional coverage considerations

covergroup state_cg();
coverpoint currentStateld { ignore_bins ignore_val = { ErrorState::Instance().getStateld() }; }
coverpoint nextStateld {ignore_bins ignore_val = { ErrorState::Instance().getStateld() }; }

cross currentStateld, nextStateld {

ignore_bins reset_ignore = binsof(currentStateld) intersect {ResetState::Instance().getStateld() } &&
binsof(nextStateld) intersect { RunState::Instance().getStateld(),

Clock_GateState::Instance().getStateld(),
Switch_OffState::Instance().getStateld()
7
.}

endgroup
ER%TIOJ'ZN

accellera o DVCON
© Accellera Systems Initiative 32 CONFERENCE AND EXRIBITION

SYSTEMS INITIATIVE

Loosely coupled FSM implementation

Generation side

* A dedicated uvm sequence associated with each state transition
* Graph traversing algorithm to generate random scenarios

* Input: user-provided list of states to be entered during a testcase

State enterState[S] = { Clock_GateState::Instance(),
InitState::Instance(),
Switch_OffState::Instance() };

* Qutput: a random sequence of transitions leading the state machine
into the desired states

 The developed sequences can be reused across the testcases, to stress
the designed logic

2017
accellera o DVCON
© Accellera Systems Initiative 33 CONFERENCE AND EXRIBITION

SSSSSSSSSSSSSSSSS

Summary

* The solution beneficial on active (generation) and passive (checking and
coverage collection) side

* Improves the code quality

* More scalable solution compared to other common approaches (“case
enum”, formal FSM analysis techniques)

2017
accellera o DVCON
© Accellera Systems Initiative 34 CONFERENCE AND EXRIBITION

SYSTEMS INITIATIVE

2017

(accellera o VST
N © Accellera Systems Initiative 35 POFEEeNCE ann e mon

SYSTEMS INITIATIVE

Questions?

Thanks!

ﬁ-»-.\ .
DESIGN AND vEn?FQJLN-
S — ’ CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE HYI=TJ3

