

1

Modelling Finite-State Machines in the
Verification Environment using Software Design

Patterns

Darko M. Tomušilović, Veriest Vtool, Belgrade, Serbia (darkot@thevtool.com)

Mihajlo Z. Minović, Veriest Vtool, Belgrade, Serbia (mihajlom@thevtool.com)

Abstract—Software design pattern is a software development technique representing a solution to a typical problem

repeatedly found over a development cycle. This paper shows how State, Singleton, Mediator and Template method

design patterns can be utilized to efficiently model Finite-State Machines in the Verification environment. The proposed

implementation improves code readability and reusability on both active generation side and passive checking and

coverage collection side. It also facilitates the maintainability, by localizing the changes upon the addition of ne w FSM

states.

Keywords—FSM, UVM, Design patterns

I. INTRODUCTION

A finite-state machine (FSM) or simply a state machine, is an abstract machine that consists of a list of states

it can be in, including the initial state, and the conditions for the transition between the states, according to the

input stimulus. Each state is characterized by a set of corresponding outputs.

Accomplishing the task of FSM verification, as a part of the electronic system functional verification process,

assumes leading the state machine between the possible states using the proper input stimulus and checking that

the output signals are properly driven. Finally, it is necessary to collect coverage on all states and state transitions,

but as well as on high level scenarios, for which the coverage is not built-in. To achieve all that, one common

approach verification engineers might opt for is develop a DUT reference model within the verification

environment. However, as the project cycle is shortened whereas the design complexity increases, verification

engineers face several typical challenges. To reduce the effort, it is critical to have reusability in mind, as well as

to provide an easily modifiable solution, with a view to facilitate addition or removal of certain features.

The UVM methodology[1] is introduced with the goal to help overcoming some of these challenges. It defines

a framework comprising a set of components, which have a consistent role in attaining the requirements posed by

Metric-Driven Verification principles. Main considered concepts are reusable constrained random stimulus

generation, automated self-checking environment and functional coverage model. By using the most widespread

implementation of the methodology, in SystemVerilog language, the developer is provided with the language

constructs dedicated to the functional verification, such as assertions and covergroups. But since SystemVerilog is

in essence an object oriented language, it also lends itself for application of design patterns as a well-established

technique from the software development field, as it will be shown in this paper.

II. FSM IMPLEMENTATION

Two possible FSM implementations will be shown using the example state machine presented in Figure 1. After

the power-on reset is released, the device goes through the initialization stage, whose completion is marked by a
dedicated counter expiration. After the initialization is performed, the device operates in the run mode. Using a
software switch, implemented as a register field, the device can be lead into the clock gating state, in which the

configuration clock is not provided to certain functional blocks. The device exits the clock gating state upon an
issued interrupt request. Using a hardware switch, the device can be put into switch-off sleep mode. After the

switch is on, the device needs to go through the initialization state before being operational again.

mailto:darkot@thevtool.com
mailto:mihajlom@thevtool.com

2

Figure 1. Modelled device state machine

A. Tightly coupled FSM implementation

When modelling the FSM, one typical implementation is the most obvious one: enumerating the states and

using a simple variable to represent the current state. All the logic that performs actions corresponding to a certain

state and updates the variable which denotes the current state is typically placed within a huge “if” or “switch/case”

statement, conditioned by the current state. The principle is illustrated by a code excerpt shown in Figure 2.

 This approach suffers from a key drawback that several independent tasks are coupled together. The same piece

of code represents the FSM static structure, its general behavior reliant upon the current state, as well as its dynamic

part. Even in the lower-level language, such as VHDL, these tasks are separated into multiple processes. Without

proper role-splitting, the code quality is affected in terms that the same logic is not straightforward to be

incorporated into a new project. Also, as the code complexity grows, the solution is prone to the code duplication.

What can be done to achieve the decoupling between the system structure and its behavior is use State design

pattern.

class FSMExample;
 local fsm_t currentState;

 function new(fsm_t initState); currentState = initState; endfunction

 function void doAction(Input inputs);
 case (currentState)

 fsm_reset: begin
 doActionForState_reset(inputs);
 currentState = calculateNewState(currentState, inputs); end

 fsm_init: begin
 doActionForState_init(inputs);

 currentState = calculateNewState(currentState, inputs); end
 …
 endcase

 endfunction

 protected function void doActionForState_reset(Input inputs); endfunction

 protected function void doActionForState_init(Input inputs); endfunction
 …

 local function fsm_t calculateNewState(fsm_t currentState, Input inputs); endfunction
endclass

Figure 2. Tightly coupled FSM implementation

3

B. Loosely coupled FSM implemenation based on the State design pattern

Design patterns [2] define a set of classes and relations between them, which interact in order to resolve a

common problem faced during software development. They target system creation, structure and its behavior.

In Object-oriented programming terminology, the State pattern[2] is a behavioral software design pattern, used

to model finite-state machines, decouple them from the rest of the system and provide simple interface to them.

The overall block diagram is shown in Figure 3, while the UML class diagram displayed in Figure 4 demonstrates

a more detailed view of the necessary classes.

Figure 3. State design pattern - Overall block diagram

 The state machine model is encapsulated within a context class, through which the communication with the

rest of the verification environment is supposed to be performed. In the environment developed according to the

UVM methodology, the context class is to be instantiated within the UVM monitor class, who provides it with

values of observed state machine input signals and represents its client, using the method doAction().

Every state of a state machine contains a set of common features and actions. Abstract base class State defines

these common operations. As some of them, such us updating the expected values of the output signals and

calculation of the next state, appear in a well-defined order, they are appropriate to be modelled using Template

method design pattern[2]. The doAction method of the abstract State class is a Template method - a concrete method

that defines the sequence of operations, some of which can be abstract - left to be implemented in the concrete

derived classes. The abstract State class is shown in Figure 6. It is referenced in the context class.

Different states of the state machine are modelled as classes derived from the State base class. They provide

implementation to the abstract operations defined in the abstract class, defining a state-specific behavior. As one

object is sufficient to represent each state, the derived states are implemented as singletons - classes that can have

only one instance object[2]. The implementation of the concrete classes is presented in Figure 7.

Finally, it is necessary to create a logic for changing the current state, updating the reference within the context

class. The place where the state transitions should be defined are out of scope of the State pattern. Defining it in

the context class is not the optimal solution because the intent is to decouple it from the system behavior. Defining

it in the State base class is not a good option either, because in that case the base class would have to be aware of

all its derived classes. By defining it in each State derived classes, the context class is decoupled from the state

transition logic and the new State subclasses can be easily added. The disadvantage is that each State derived class

has coupling to its siblings, which introduces undesired dependencies between subclasses.

Taking all of the above into account, the authors suggest the state transition logic be defined in a separate

utility class. This will not remove the need for the awareness of all possible derived states, but will localize the

transition logic and decouple the rest of the system from it. The solution closely resembles Mediator pattern[2],

4

which defines a centralized mediator object through which the classes communicate, rather than interact among

themselves. The usage of a mediator object loosens the coupling between the classes and therefore improves the

code maintainability. The mediator utility class responsible for determining the state transitions, based on the

current state and the input stimulus, is shown in Figure 8.

Figure 4. State design pattern – UML class diagram

Figure 5. State design pattern based FSM implementation - Context class

 class FSMContext;
 local State currentState;

 function new(State initialState);
 currentState = initialState;

 endfunction

 function void setState(State s);
 currentState = s;
 endfunction

 function void doAction(Input inputs);
 currentState.doAction(this, inputs);

 endfunction

 endclass

5

Figure 6. State design pattern based FSM implementation - Abstract State class

Figure 7. State design pattern based FSM implementation - Concrete State classes

 virtual class State;
 function void doAction(FSMContext cntxt, Input inputs);

 State nextState;

 doSpecificSeqAction(cntxt, inputs);

 nextState = StateTransitionUtil::calculate(this, inputs);
 cntxt.setState(nextState);
 nextState.doSpecificCombAction(cntxt, inputs);

 endfunction

 pure virtual function void doSpecificCombAction(FSMContext cntxt, Input inputs);
 pure virtual function void doSpecificSeqAction (FSMContext cntxt, Input inputs);

 pure virtual function fsm_t getStateId();
 endclass

 class RunState extends State;

 local static RunState inst = null;

 protected function new(); endfunction

 static function RunState Instance();
 if (inst == null)

 inst = new();
 return inst;

 endfunction

 virtual function void doSpecificCombAction(FSMContext cntxt, Input inputs);

 inputs.vif0.irq <= 0;
 inputs.vif0.iso_expected <= 0;
 inputs.vif0.clkg_expected <= 0;

 endfunction

 virtual function void doSpecificSeqAction(FSMContext cntxt, Input inputs);
 endfunction

 virtual function fsm_t getStateId();
 return fsm_run;
 endfunction

 endclass

 class ResetState extends State;
 class InitState extends State;
 class Clock_GateState extends State;

 class Switch_OffState extends State;
 class ErrorState extends State;

6

Figure 8. State design pattern based FSM implementation - State transition utility

* Checkers
 One of the key tasks in the process of FSM verification is assuring that the correct values are driven at the FSM
output. As shown in Figure 7, each derived state class updates the expected values of relevant output signals,

which facilitates the implementation of the required assertions. As the code which performs the prediction is
encapsulated within a derived class, the addition of a new state is very simplified. Basically, it would be necessary

to provide a set of signal that a certain state has an impact on. Also, the removal of a certain state is straightforward,
as a well-encapsulated and decoupled code does not affect the rest of the verification environment. Examples that
show comparison between the expected and the observed signal values are provided in Figure 9. As part of

checking mechanism, the derived classes can also interact with the UVM register model, updating the expected
values of status registers, which are compared against the values controlled within the DUT upon a read access.

* Functional coverage
The state and state transition coverage is implemented within a covergroup wrapper class, providing coverage

creation on demand. The wrapper class is instantiated within the state transition utility class, where the sampling
is also performed. The covergroup wrapper class is shown in Figure 10. The coverage model can be easily
extended to include additional factors into the coverage metric.

* Generation

On top of giving contribution on the passive checking and collection side, good FSM modelling in the
verification environment can facilitate stimuli generation. In the shown example, each transition between states is
associated with a dedicated uvm_sequence, which provides a convenient way of developing testcases which lead

the state machine from one state to another. In the UVM context, each sequence represents a virtual sequence
which coordinates activity on multiple interfaces – register access, reset pin driving, etc. in order to achieve state

transitions. On top of that, a graph traversing algorithm is utilized do generate random scenarios. As an input, the
user provides a list of states they want to be entered during the testcase and the testcase creates a random sequence
of transitions which eventually lead the state machine into the desired states. This is demonstrated in Figures 11,

12 and 13. Relevant waveform is shown in Figure 14. The developed sequences can also be reused across testcases,
in combination with sequences that target other features to increase the stress which is applied on the DUT.

 class StateTransitionUtil;
 local static State validStateTransitions[State][$];

 local static CovergroupWrapper cgWrapper;

 static function void init();

 validStateTransitions[ResetState::Instance()] = { ResetState::Instance(), InitState::Instance()};
 …
 cgWrapper = new();

 endfunction

 static function State calculate(State currentState, Input inputs);
 State nextState = null;
 State result = null;

 State nextValid[$];

 nextState = calculateNextState(currentState, inputs);

 nextValid = validStateTransitions[currentState].find(x) with (x == nextState);

 if (nextValid.size() != 0) begin
 cgWrapper.sample(currentState.getStateId(), nextState.getStateId());
 return nextState;

 end
 else begin
 return ErrorState::Instance();

 end
 endfunction

 extern static function State calculateNextState(State currentState, Input inputs);
 endclass

7

Figure 10. State and state transition coverage

Figure 11. A uvm_sequence corresponding to a state transition

 class CovergroupWrapper;

 fsm_t currentStateId;
 fsm_t nextStateId;

 covergroup state_cg();
 coverpoint currentStateId { ignore_bins ignore_val = { ErrorState::Instance().getStateId() }; }

 coverpoint nextStateId { ignore_bins ignore_val = { ErrorState::Instance().getStateId() }; }

 cross currentStateId, nextStateId {

 ignore_bins reset_ignore = binsof(currentStateId) intersect { ResetState::Instance().getStateId() } &&
 binsof(nextStateId) intersect { RunState::Instance().getStateId(),
 Clock_GateState::Instance().getStateId(),

 Switch_OffState::Instance().getStateId() } ;
 … }

 endgroup

 function new(); state_cg = new(); endfunction

 virtual function void sample(fsm_t currentStateId, fsm_t nextStateId);
 this.currentStateId = currentStateId;

 this.nextStateId = nextStateId;
 state_cg.sample();

 endfunction
 endclass

 class run_to_reset_sequence extends uvm_sequence;
 `uvm_object_utils(run_to_reset_sequence)
 `uvm_declare_p_sequencer(virtual_sequencer)

 drive_reset_sequence reset_seq;

 function new(string name="run_to_reset_sequence");
 super.new(name);

 endfunction

 virtual task body();

 `uvm_do(drive_reset_seq)
 endtask
 endclass

 logic iso_observed, iso_expected;

 logic clkg_observed, clkg_expected;

 property iso;
 @(posedge clock) iso_observed == iso_expected;
 endproperty

 assert property (iso);

 property clkg;

 @(posedge clock) clkg_observed == clkg_expected;
 endproperty

 assert property (clkg);

Figure 9. Implemented SystemVerilog assertions

8

Figure 12. A testcase developer-defined sequence of states to be entered during a testcase

Figure 13. A random generated sequence of states eventually entering the defined sequence of states – log output

Figure 14. A random generated sequence of states eventually entering the defined sequence of states - waveform

III. SUMMARY

The solution natively developed for the software modelling, can easily be integrated within a UVM

environment, offering the verification engineers a powerful way of verifying FSMs. On the generation side, the

relevant tasks can be provided to invoke UVM sequences leading the FSM from one state to another. What’s

more, the methodology is very beneficial on the passive side. SystemVerilog assertions developed to check the

output signals values are not polluted by the information about the current state and can, therefore, be reused

across several projects. The logic to calculate the expected values of the output signals is localized within the

derived states and can also be reused. The state transition utility class can be extended to perform the transition

coverage collection. The ability to add or remove a state without significant code change, also giving valuable

contribution to the code reusability, is one more argument in favor of using the aforementioned implementation

for the FSM verification. Due to its scalability, the solution especially gains advantage over the classic “case

enum” solution in the process of verification of large scale systems with complex state machines. The solution

also typically better scales than formal FSM analysis techniques, which provide exhaustive verification based on

the set of formal properties to be satisfied, but are mainly applicable to smaller safety-critical systems as they are

prone to state space explosion with the number of state variables increasing.

ACKNOWLEDGMENT

The authors would like to thank Hagai Arbel of Veriest Vtool organization for his support during the

implementation of the aforementioned solutions.

REFERENCES

[1] http://accellera.org/downloads/standards/uvm

[2] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of Reusable Object-Oriented Software” Addison-

Wesley, 1994.

 State enterState[$] = { Clock_GateState::Instance(), InitState::Instance(), Switch_OffState::Instance() };

Transition from Reset to Init
Transition from Init to Reset
Transition from Reset to Init

Transition from Init to Run
Transition from Run to Clock_Gate
Transition from Clock_Gate to Reset

Transition from Reset to Init
Transition from Init to Run

Transition from Run to Reset
Transition from Reset to Init
Transition from Init to Run

Transition from Run to Clock_Gate
Transition from Clock_Gate to Reset
Transition from Reset to Init

Transition from Init to Run
Transition from Run to Switch_Off

http://accellera.org/downloads/standards/uvm

