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1 Introduction:
UVM’s register model is a powerful tool for verifying various register designs. Simple register designs can be 

verified with the basic features of the register model. More complex register designs often require the use of the 

register model’s hooks and/or callbacks. A large amount of information regarding advanced register verification 

techniques can be found in industry literature including [4] and [5]. However, documentation regarding verification 

techniques for hierarchical registers seems lacking despite being a fairly common architecture. 

 

This paper will describe what is meant by “hierarchical registers” and a solution to create and integrate a UVM 

register model for them. Verification engineers can then create UVM sequences and analysis components that 

manipulate and verify these types of registers. 

 

This paper assumes the reader is familiar with UVM and its register model. Information on these base topics is 

widely available including [1], [2], and [3]. 

2 Hierarchical Registers: 
This paper defines Hierarchical Registers as registers that meet the following conditions: 

• Registers are replicated multiple times per the design hierarchy. 

• Each copy of a register is referenced by the same address. 

• Individual register copies are enabled/disabled at a higher level of hierarchy. 

• Any combination of enables is allowed. 

 

 
Figure 1 - DUT with hierarchical registers 
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This paper refers to these registers as ‘enabled’ and ‘enabler’ registers. With multiple levels of hierarchy, it is 

possible that some registers will qualify as both an ‘enabled’ and ‘enabler’ register. The ‘enabled’ registers are also 

often referred to as ‘replicated’ registers. 

 

Hierarchical registers reduce the number of required register addresses and allow parallel access of lower levels of 

hierarchy. This maximizes system bandwidth when lower levels of hierarchy must be manipulated in an identical 

manner (e.g. broadcast writes). Note that system bandwidth is reduced when lower levels of hierarchy must be 

uniquely manipulated because users must first execute an operation to enable a unique lower level before 

manipulating it. Designers must weigh these pros and cons when considering hierarchical registers. 

 

3 UVM Register Model Challenge 
Hierarchical registers use an enabling scheme, and methods to verify enabled registers are described in industry 

literature. For example, see section III.B of [4]. However, hierarchical registers also present the challenge of having 

multiple unique registers that exist at the same address and can be accessed in parallel. This paper will discuss these 

challenges in further detail. 
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4 UVM Register Model Solution 
This paper presents a solution that involves some advanced UVM Register Model techniques. The highlights of the 

necessary customizations are listed here and then discussed in further detail. 

 

• Create a unique uvm_reg instance in the UVM register model for each design register instance. 

• Create a field in the enabler registers for each lower level of hierarchy. 

• Use addresses outside the design’s address range for the replicated registers in the design. This avoids the 

problem of multiple uvm_reg instances with the same address. 

• Ensure the sequence item address size matches the register model address size. 

• Ensure the driver or BFM address size matches the DUT’s address size. 

• Extend the uvm_reg_predictor to predict the multiple copies of the enabled registers. 

• Use callbacks to implement the behavior of the enabled and enabler registers. E.g. a register’s mirrored value is 

only updated when the register is selected. 

4.1 Create Unique uvm_reg Instances 

For each replicated enabled register in the design we have a corresponding unique instance of uvm_reg (actually, the 

register’s extension of uvm_reg) in our register model. This way each design register can benefit from the features of 

UVM’s Register Model such as mirrored values and peek/poke ability. We accomplish this by creating a hierarchy of 

register blocks that mimics the DUT design to give us a unique register block for each replicated section or module 

of the DUT. The unique register blocks will often be implemented as arrays of register blocks in a higher level 

register block(s). 

4.2 Create Enabler Register Fields 

Many DUT designs will likely have enabler registers where each bit of the register selects (enables) one replicated 

lower level of hierarchy. In this case we must create a uvm_reg_field for each bit of the enabler register(s). These 

individual fields will be used to properly predict the enabled registers as discussed later. 

4.3 Register Model Addresses 

UVM register models require each register instance to have a unique address. This presents a challenge because each 

replicated DUT register utilizes the same address. Therefore, we must assign addresses to these registers that do not 

match their DUT address. A simple way to overcome this is for our register model to use an address space that is 

larger than the DUTs.  

 

For example, suppose we have a DUT that uses 16 bits of address and has a set of hierarchical registers that are 

replicated 4 times. In that case our register model can use 18 bits of address and bits [17:16] can be used to identify 

each unique replicated register. This way, the 16 LSBs of the replicated register addresses are identical and match 

the address used by the DUT. As we will see, this type of register model addressing scheme becomes useful when we 

predict our register values and perform frontdoor operations. 

4.4 Sequence Item Address Size 

As with many UVM Register Model implementations, our register model will be connected to an agent and use 

explicit prediction. Therefore, we must ensure that the address in our sequence item class used by the adaptor and 

predictor is large enough to match the address size of our register model. It is not sufficient for the sequence item’s 

address size to be large enough to match the DUT’s address size. This will become clear when we discuss extending 

the uvm_reg_predictor. 

4.5 Driver/BFM Address Size 

If the register model addresses are assigned as discussed above, then their sizes do not match the DUT’s address 

size. Therefore, the driver or BFM must ignore the MSBs of the address in the sequence item when presenting 

transactions to the DUT. 
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This allows sequences to perform frontdoor register operations on any of the registers in the register model despite 

the fact that their addresses sizes do not match the corresponding DUT address size. Note that frontdoor operations 

will affect only the DUT registers which are selected. Therefore, if a sequence performs a frontdoor operation on a 

replicated register then the corresponding DUT register may not be exercised and/or other replicated registers may 

be exercised. 

 

If backdoor paths are utilized, then sequences and analysis components can use peek and poke operations to 

manipulate each register copy individually.  

4.6 Extend uvm_reg_predictor 

A single frontdoor operation to a DUT address corresponding to replicated registers will exercise zero, one, or many 

of the DUT’s register replications depending on current state of the enabler registers. Therefore, our register model 

must execute prediction for multiple registers despite only one frontdoor operation with a single address. We 

accomplish this by extending the uvm_reg_predictor. 

 

Our extended uvm_reg_predictor makes multiple predict calls, one to each replicated register, whenever our monitor 

writes a transaction to the predictor with an address that corresponds to replicated registers. It does this by overriding 

the base predictor’s write task to call super.write multiple times, each time with a new address corresponding to a 

different register copy. It is for this reason that the sequence item’s address size must be large enough to match the 

address size in our register model. 

4.7 Implement Enabled Register Prediction 

Our enabled registers must be predicted appropriately based on the state of the enabler registers. We implement 

enabled register behavior using the post_predict callback. We borrow the technique discussed in section III.B.2 of 

[4] regarding Locked/Protected Fields (referred to as enabler/enabled fields in this paper) and make some 

modifications to address additional challenges. 

 

The first challenge is that with multiple levels of hierarchy, our enabled fields may need to consider multiple enabler 

fields. Therefore, we pass a queue of enabler fields to the callback’s constructor and the callback checks all enabler 

fields in the post_predict function. 

 

The second challenge regards frontdoor read operations because the values in the DUT’s register copies may be 

different. Therefore, the DUT’s behavior for reads when multiple registers are selected must be considered. A 

common behavior is for the DUT to perform a bitwise OR or AND of all selected registers during a read. With 

behaviors like this, we should not update the mirrored value of registers during frontoor read operations because it 

cannot be known which registers have which values. The exception, of course, is when only one of the enabled 

register copies is selected. In that case we can safely update the mirrored value of the selected register. 

 

The post_predict callback needs information in addition to its enabler fields to check if the enabled register is the 

only one selected. It also needs to know the state of the other enabler fields that correspond to the other enabled 

registers in the other register blocks. Therefore, we pass a queue of the non-corresponding enabler fields to the 

callback’s constructor and the callback checks the corresponding and non-corresopnding enabler fields in the 

post_predict function. 
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5 Example – 3 Levels of Hierarchy: 
A simple design example is a DUT with 3 levels of hierarchy: high, medium, and low. A RW debug register exits at 

each copy of each level of hierarchy. Enabler registers exist at the higher levels of hierarchy to enable the lower 

levels of hierarchy. 

 

Our example design has 4 medium levels of hierarchy and 4 low levels of hierarchy in each medium level. The high-

level module contains a ‘medium-level enable’ register at address 0x2. The ‘medium-level enable’ register is 4 bits 

wide and each bit selects (enables) one of the medium-level modules. Each medium-level module contains a ‘debug’ 

register at address 0x100 and a ‘low-level enable’ register at address 0x102. Each ‘low-level enable’ register is 4 bits 

wide and each bit selects (enables) one of the low-level modules in the medium-level module. Each low-level module 

contains a ‘debug’ register at address 0x1000. See Figure 2 for a block diagram of the design. 

 
Figure 2 - Sample Design 

 

Our example design implements a bitwise OR of all selected registers (registers that have their corresponding enabler 

bit(s) set) when the host performs a read. 

 

Our example design uses 16 bits of address (0x0 – 0xFFFF). This becomes important when we assign our register 

model addresses. 
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Address Register Notes 

0x0 HI_LVL_DBG Debug register to test reads/writes. 

0x2 MED_LVL_EN 4-bit register. Each bit enables/disables one copy of the lower level registers. 

0x100 MED_LVL_DBG Debug register to test reads/writes. 

This register is replicated in the design 4 times. 

Each replication responds to the address if selected by MED_LVL_EN at address 

0x2. 

0x102 LOW_LVL_EN 4-bit register. Each bit enables/disables one copy of the lower level registers in the 

medium-level module. 

0x1000 LOW_LVL_DBG Debug register to test reads/writes. 

This register is replicated in the design 4 times for each medium level module. 

Each replication responds to the address if selected by MED_LVL_EN at address 

0x2 and the corresponding LOW_LVL_EN at address 0x102. 

Table 5-1 - Example Design Registers 

 

Note that both the corresponding MED_LVL_EN bit and LOW_LVL_EN bit must be set for a LOW_LVL_DBG 

register instance to respond to reads and writes. 

 

The following sections illustrate each step of the register model solution. 

5.1 Create Unique uvm_reg Instances 

We create a register model with a hierarchy of register blocks that mimics the hierarchy of modules in the DUT.  

 

Block Block Component Address Block 

Instance 

Dimension 

Block 

Replication 

Offset 

hi_lvl_reg_block hi_lvl_dbg_reg 0x0   

hi_lvl_reg_block med_lvl_en_reg 0x2   

hi_lvl_reg_block med_lvl_reg_block Registers in this block start at 0x100 4 0x1_0000 

med_lvl_reg_block med_lvl_dbg_reg 0x0   

med_lvl_reg_block low_lvl_en_reg 0x2   

med_lvl_reg_block low_lvl_reg_block Registers in this block start at 0x1000 4 0x10_0000 

low_lvl_reg_block low_lvl_dbg_reg 0x0   

Table 5-2 - Register Model Structure 

 

Table 5-2 - Register Model Structure contains 21 total register blocks (1 hi_lvl_reg_block + 4 med_lvl_reg_block + 

4 low_lvl_reg_block/med_lvl_reg_block) and 26 total registers (2 reg in hi_lvl_reg_block + 2 

reg/med_lvl_reg_block + 1 reg/low_lvl_reg_block).  

 

If we implement Table 5-2 correctly, then the low_lvl_dbg_reg instances will have addresses as shown in Table 5-3. 
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Register Address 

hi_lvl_reg_block.med_lvl_reg_block[0].low_lvl_reg_block[0].low_lvl_dbg_reg 0x00_1000 

hi_lvl_reg_block.med_lvl_reg_block[0].low_lvl_reg_block[1].low_lvl_dbg_reg 0x10_1000 

hi_lvl_reg_block.med_lvl_reg_block[0].low_lvl_reg_block[2].low_lvl_dbg_reg 0x20_1000 

hi_lvl_reg_block.med_lvl_reg_block[0].low_lvl_reg_block[3].low_lvl_dbg_reg 0x30_1000 

hi_lvl_reg_block.med_lvl_reg_block[1].low_lvl_reg_block[0].low_lvl_dbg_reg 0x01_1000 

hi_lvl_reg_block.med_lvl_reg_block[1].low_lvl_reg_block[1].low_lvl_dbg_reg 0x11_1000 

hi_lvl_reg_block.med_lvl_reg_block[1].low_lvl_reg_block[2].low_lvl_dbg_reg 0x21_1000 

hi_lvl_reg_block.med_lvl_reg_block[1].low_lvl_reg_block[3].low_lvl_dbg_reg 0x31_1000 

hi_lvl_reg_block.med_lvl_reg_block[2].low_lvl_reg_block[0].low_lvl_dbg_reg 0x02_1000 

hi_lvl_reg_block.med_lvl_reg_block[2].low_lvl_reg_block[1].low_lvl_dbg_reg 0x12_1000 

hi_lvl_reg_block.med_lvl_reg_block[2].low_lvl_reg_block[2].low_lvl_dbg_reg 0x22_1000 

hi_lvl_reg_block.med_lvl_reg_block[2].low_lvl_reg_block[3].low_lvl_dbg_reg 0x32_1000 

hi_lvl_reg_block.med_lvl_reg_block[3].low_lvl_reg_block[0].low_lvl_dbg_reg 0x03_1000 

hi_lvl_reg_block.med_lvl_reg_block[3].low_lvl_reg_block[1].low_lvl_dbg_reg 0x13_1000 

hi_lvl_reg_block.med_lvl_reg_block[3].low_lvl_reg_block[2].low_lvl_dbg_reg 0x23_1000 

hi_lvl_reg_block.med_lvl_reg_block[3].low_lvl_reg_block[3].low_lvl_dbg_reg 0x33_1000 

Table 5-3 - low_lvl_dbg_reg Addresses 

5.2 Create Enabler Register Fields 

We create a uvm_reg_field for each bit of the enabler registers. Each field is named according to which DUT module 

the bit enables. The code for the med_lvl_en_reg is illustrated here: 

 
   class med_lvl_en_reg extends uvm_reg; 

      `uvm_object_utils(med_lvl_en_reg) 

 

      rand uvm_reg_field med_lvl03;  

      rand uvm_reg_field med_lvl02;  

      rand uvm_reg_field med_lvl01;  

      rand uvm_reg_field med_lvl00;  

 
 

      function new(string name = "med_lvl_en_reg"); 

         super.new(name, 4, UVM_NO_COVERAGE); 

      endfunction 

 
 

      virtual function void build(); 

         med_lvl03 = uvm_reg_field::type_id::create("med_lvl03"); 

         med_lvl02 = uvm_reg_field::type_id::create("med_lvl02"); 

         med_lvl01 = uvm_reg_field::type_id::create("med_lvl01"); 

         med_lvl00 = uvm_reg_field::type_id::create("med_lvl00"); 

 

         med_lvl03.configure(this, 1, 3, "RW", 0, 1'b0, 1, 1, 0); 

         med_lvl02.configure(this, 1, 2, "RW", 0, 1'b0, 1, 1, 0); 

         med_lvl01.configure(this, 1, 1, "RW", 0, 1'b0, 1, 1, 0); 

         med_lvl00.configure(this, 1, 0, "RW", 0, 1'b0, 1, 1, 0); 

      endfunction 

   endclass 

5.3 Register Model Addresses 

The desired register addresses are illustrated in Table 5-2 and Table 5-3. Note that the register model requires a 22-

bit address space which is larger than the DUT’s 16-bit address space. 

 

We could have chosen different block replication offsets to reduce the required number of address space bits. For 

example, the block replication offset for low_lvl_reg_block could be 0x4_0000 but using 0x10_0000 allows us to 

use the hex digits for bits [21:20] and [19:16] to more easily identify which replication the address corresponds to. 
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The chosen block replication offsets also allow us to more easily increase the number of replications if necessary in 

the future. 

 

We are careful to properly set the address offsets of our uvm_reg_map instances for our register blocks as shown 

here: 

 
   class hi_lvl_reg_block extends uvm_reg_block; 

      ... 

      rand med_lvl_reg_block med_lvl_reg_block_h[4]; 

      uvm_reg_map HI_LVL_MAP;  

      ... 

      virtual function void build(); 

         ... 

         HI_LVL_MAP = create_map("HI_LVL_MAP", 'h0, 2, UVM_LITTLE_ENDIAN, 1); 

         default_map = HI_LVL_MAP; 
 

         foreach(med_lvl_reg_block_h[i]) begin 

            HI_LVL_MAP.add_submap(med_lvl_reg_block_h[i].MED_LVL_MAP, (i * ('h10000)) + ('h100)); 

         end 

         ... 

      endfunction 

   endclass          

 

 

   class med_lvl_reg_block extends uvm_reg_block; 

      ... 

      rand low_lvl_reg_block low_lvl_reg_block_h[4]; 

      uvm_reg_map MED_LVL_MAP;  

      ... 

      virtual function void build(); 

         ... 

         MED_LVL_MAP = create_map("MED_LVL_MAP", 'h0, 2, UVM_LITTLE_ENDIAN, 1); 

         default_map = MED_LVL_MAP; 
 

         foreach(low_lvl_reg_block_h[i]) begin 

            MED_LVL_MAP.add_submap(low_lvl_reg_block_h[i].LOW_LVL_MAP, (i*('h10_0000))+('hf00)); 

         end 

         ... 

      endfunction 

   endclass          

 

Some readers may use a tool from their EDA vendor which automatically generates register model code from a 

spreadsheet or other entry from. When using such a tool, the same care must be taken to ensure the address offsets 

are correct. 

5.4 Sequence Item Address Size 

Our register model design requires the address in our sequence item to be at least 22 bits wide. 

5.5 Driver/BFM Address Size 

Our DUT uses a 16-bit address space. Therefore, our driver or BFM must ignore the 6 MSBs of the address in the 

sequence item when presenting transactions to the DUT. 

 

Reads and writes to any one of the replicated registers will cause the same operation on the interface/BFM connected 

to the DUT. For example, a write to 

hi_lvl_reg_block.med_lvl_reg_block[2].low_lvl_reg_block[3].low_lvl_dbg_reg 

will cause the interface/BFM to send a write operation to the DUT with an address of 0x1000 (not 0x32_1000). 
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5.6 Extend uvm_reg_predictor 

Our register predictor checks each transaction to see if it corresponds to a replicated register. If so, it makes a predict 

call for each replicated register with the appropriate address. The code for our predictor is illustrated here: 

 
class enabled_reg_pred #(type BUSTYPE) extends uvm_reg_predictor #(BUSTYPE); 

   `uvm_component_param_utils(enabled_reg_pred#(BUSTYPE)) 

 

   function new (string name = "enabled_reg_pred", uvm_component parent); 

      super.new(name, parent); 

   endfunction : new 

 
 

   function void write(BUSTYPE tr); 

      // If we are accessing a hi level register, then we predict as normal 

      if (tr.adr < ‘h100) begin 

            super.write(tr); 

 
      // If we are accessing a lower level register, then we predict for each copy. 
      // We will use a register callback to determine if we should ignore the predict 
      // operation based on the Enabler regiser(s) 

      end else begin 

         int unsigned low_lvl_loop_max = 1; 

 

         for (int med_lvl_index = 0; med_lvl_index < 4; med_lvl_index++) begin 

            if (tr.adr[15:0] >= ‘h1000) begin 

               low_lvl_loop_max = 4; 

            end 

                

            for (int low_lvl_index = 0; low_lvl_index < low_lvl_loop_max; low_lvl_index++) begin 

               // Call base predictor write function 
               tr.adr = tr.adr[15:0] + (med_lvl_index * 'h1_0000) + (low_lvl_index * 'h10_0000); 

               super.write(tr); 

            end 

         end 

      end 

   endfunction : write 

 

endclass : enabled_reg_pred 
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5.7 Implement Enabled Register Prediction 

We register a post_predict callback for each field of each enabled register in our register model. During reads, our 

DUT performs a bitwise OR of all selected registers. Therefore, we cannot accurately update the mirrored value for 

our registers unless only one register is selected so our callback receives the two register field queues discussed 

earlier. 

 

The callback code is shown here. Notice how the callback checks the field queues as appropriate for the write and 

read operations. The callback contains a uvm_info message that verification engineers may want to use when a read 

is performed with multiple registers selected. Also notice how the enabler queue check is performed for frontdoor 

operations but not backdoor. Therefore, the state of the enabler fields does not affect peeks and pokes of the enabled 

registers. 

 
   class enabled_reg_cbs extends uvm_reg_cbs; 

      // Handle(s) to the field(s) that enable this copy of this enabled field. 

      local uvm_reg_field m_enabler_reg_field_h[$]; 

      // Handle(s) to the field(s) that enable the other copies of this enabled field. 

      local uvm_reg_field m_other_enabler_reg_field_h[$]; 

 

      function new(string name="enabled_reg_cbs", 

                   uvm_reg_field enabler_reg_field_h[$], 

                   uvm_reg_field other_enabler_reg_field_h[$]); 

         super.new(name); 

         m_enabler_reg_field_h = enabler_reg_field_h; 
         m_other_enabler_reg_field_h = other_enabler_reg_field_h; 

      endfunction : new 

 

      virtual function void post_predict( 

         input uvm_reg_field  fld, 

         input uvm_reg_data_t previous, 

         inout uvm_reg_data_t value, 

         input uvm_predict_e  kind, 

         input uvm_path_e     path, 

         input uvm_reg_map    map 

      ); 
         // Reminder! - post_predict is not called if kind is UVM_PREDICT_DIRECT 
 

         if (path inside {UVM_FRONTDOOR, UVM_PREDICT}) begin 

            bit is_enabled = 1; 

 
            // If any enabler field is not set then we do not update the 
            // mirrored value for this enabled field 

            foreach(m_enabler_reg_field_h[i]) begin 

               if (!m_enabler_reg_field_h[i].get_mirrored_value()) begin 

                  value = previous; 
                  is_enabled = 0; 

                  break; 

               end 

            end 

 

            if (kind == UVM_PREDICT_READ) begin 

               // If any enabler field for other copies of this field is set then 
               // we do not update the mirrored value for this enabled field 

               foreach(m_other_enabler_reg_field_h[i]) begin 

                  if (m_other_enabler_reg_field_h[i].get_mirrored_value()) begin 

                     value = previous; 

                     if (is_enabled) begin 

                        `uvm_info("EVENT_REG_CBS", $sformatf("Frontdoor read made with multiple 

                            fields enabled including %s! Mirrored values not updated", 

                            fld.get_full_name()), UVM_LOW) 

                     end 

                     break; 

                  end 

               end 

            end 

         end 

      endfunction : post_predict 

   endclass : enabled_reg_cbs 
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We create the enabler field queues and register the callbacks in the build phase of the test as shown here: 

 
function void build_phase(uvm_phase phase); 

   uvm_reg_field     med_reg_fields_h[$]; 

 
   ... 
   /////////////////////////////////// 
   // build register model 
   /////////////////////////////////// 

   m_hi_lvl_reg_block_h = hi_lvl_reg_block::type_id::create("m_hi_lvl_reg_block_h", this); 

   m_hi_lvl_reg_block_h.build(); 

   m_hi_lvl_reg_block_h.reset();  // Set initial values for all registers 

 

   m_hi_lvl_reg_block_h.med_lvl_en_reg_h.get_fields(med_reg_fields_h); 

   foreach (med_reg_fields_h[f]) begin 

      uvm_reg_field med_enabler_reg_field_h[$]; 

      uvm_reg_field other_med_enabler_reg_field_h[$]; 

      uvm_reg_field low_reg_fields_h[$]; 

 

      int med_lvl_index = med_reg_fields_h[f].get_name().substr(7,8).atoi(); 

 

      foreach (med_reg_fields_h[g]) begin 

         if (f == g) begin 

            med_enabler_reg_field_h.insert(0, med_reg_fields_h[g]); 

         end else begin 

            other_med_enabler_reg_field_h.insert(0, med_reg_fields_h[g]); 

         end 

      end 

 
      // Set up the enabled registers in the med lvl block 
      add_enabled_reg_cbs(m_hi_lvl_reg_block_h.med_lvl_reg_block_h[med_lvl_index], 
                          med_enabler_reg_field_h, other_med_enabler_reg_field_h); 
 
 
      m_hi_lvl_reg_block_h.med_lvl_reg_block_h[med_lvl_index].low_lvl_en_reg_h.get_fields( 
         low_reg_fields_h); 

      foreach (low_reg_fields_h[h]) begin 

         uvm_reg_field low_enabler_reg_field_h[$] = med_enabler_reg_field_h; 
         uvm_reg_field other_low_enabler_reg_field_h[$] = other_med_enabler_reg_field_h; 
 

         int low_lvl_index = low_reg_fields_h[h].get_name().substr(7,8).atoi(); 

 

         foreach (low_reg_fields_h[i]) begin 

            if (h == i) begin 

               low_enabler_reg_field_h.insert(0, low_reg_fields_h[i]); 

            end else begin 

               other_low_enabler_reg_field_h.insert(0, low_reg_fields_h[i]); 

            end 

         end 

 
         // Set up the enabled registers in the low lvl block 
         add_enabled_reg_cbs( 
m_hi_lvl_reg_block_h.med_lvl_reg_block_h[med_lvl_index].low_lvl_reg_block_h[low_lvl_index], 
            low_enabler_reg_field_h, other_low_enabler_reg_field_h); 

      end 

   end 

 
   m_env_cfg_h.hi_lvl_reg_block_h  = m_hi_lvl_reg_block_h; 
 

endfunction : build_phase 
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// This function will attach an instance of the enabled_reg_cbs class to 
// all register fields in the register block. 
// This function assumes the block is an enabled block 

function automatic void add_enabled_reg_cbs( 

   uvm_reg_block uvm_reg_block_h, 

   uvm_reg_field enabler_reg_field_h[$], 

   uvm_reg_field other_enabler_reg_field_h[$]); 

   uvm_reg regs_h[$]; 

    

   uvm_reg_block_h.get_registers(.regs(regs_h), .hier(UVM_NO_HIER)); 

    

   foreach (regs_h[i]) begin 

      uvm_reg_field reg_fields_h[$]; 

    
      regs_h[i].get_fields(reg_fields_h); 
    

      foreach(reg_fields_h[j]) begin 

         string name; 

         enabled_reg_cbs  enabled_reg_cbs_h; 
 

         name = reg_fields_h[j].get_full_name(); 

         enabled_reg_cbs_h = new(.name(name), .enabler_reg_field_h(enabler_reg_field_h), 

                                 .other_enabler_reg_field_h(other_enabler_reg_field_h)); 

         uvm_reg_field_cb::add(reg_fields_h[j], enabled_reg_cbs_h); 

      end 

   end 

endfunction : add_enabled_reg_cbs 

6 Conclusion 
This paper has described a solution to model hierarchal registers using the UVM register model. Perhaps the most 

significant aspect of this solution is creating a unique UVM register instance for each register instance in the DUT 

while the address of these two entities are not identical. This differs from typical UVM register implementations 

where the UVM registers addresses are identical to the DUT addresses. Multiple register instances in a DUT 

implementing hierarchical registers will have the same address, but each UVM register instance must have a unique 

address and this solution allows that rule to be followed. 

 

Hopefully this solution has given readers ideas on how they can model their particular DUT(s) with hierarchical 

registers. Please feel free to contact me with any suggestions on how to improve this paper. 
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