

1

Model Extraction for designs based on switches

for Formal Verification

Amar Patel, Lead Member Technical Staff, Mentor Graphics Corporation, Noida, India

(amar_patel@mentor.com)

Naman Jain, Senior Engineering Manager, Mentor Graphics Corporation, Noida, India

(naman_jain@mentor.com)

Gate-level designs often are described at the switch level, but these constructs typically are not handled well by

formal tools. This paper focusses on extracting “formal-friendly” models for designs that use switches, particularly

bidirectional ones. We take a basic example of a gate implemented using bidirectional switches and show how to

extract its formal model. We detail strategies to optimize bidirectional switches in the design and showcase results we

achieved with a customer’s design. This work targets extracting a formal friendly model for a specific design. But this

is a generic solution—for a customer’s real designs. These “formal-friendly” extracted models can be used for both

formal verification as well as equivalence checking.

Keywords— Verification, Designs, Formal Verification, Switches, Tran.

I. INTRODUCTION

 Technology is advancing at an astounding pace. Designs inch towards multi-billion-gate sizes and verification

tools and methodologies must continuously evolve to cater to these ever-increasing design sizes. Algorithms also

must evolve to handle increasingly-complex designs. Now, formal analysis has a very important role in design

verification. Its use is gaining momentum, not only for block-level designs but also for SoCs. Various

sophisticated formal analysis solutions, such a security and connectivity formal property checks are performed

from block-level design creation through block integration. These advances require formal verification not only

of RTL blocks but also of designs having gate-level portions.

 Switch-based designs—usually with gate-level module descriptions—exist in many design flows where

formal verification would be helpful. Such designs get these gate-level models from pre-defined libraries

(provided by fabricators or pertaining to particular technologies) and they also can be generated by design

verification tools.

 Traditionally, to verify such designs with formal analysis, the verification engineer somehow provides the

tools with “formal-friendly” models for library cells. Major issues with such a methodology are: these models

often are not available and if they are, they are designed specifically for formal verification. These “formal-

friendly” models are not related to the real design logic, so the engineer verifies something that does not go into

the actual chip.

 In this paper, we present an automated model extraction capability used for formal verification and

equivalence checking. Our modeling is “formal-friendly,” ensuring optimal performance from formal algorithms.

We have successfully implemented our model extraction capability in various situations using formal methods on

real life designs. The analysis tool used for this process is the Questa® Formal verification platform from Mentor

Graphics Corporation.

 In section II and III, we introduce models extracted for MOS and bidirectional switches and we present

strategies to optimize bidirectional switches in the design. In the subsequent sections we describe some attributes

of extracted models—functional accuracy, formal engine “friendliness” and ease of debugging. We do not need to

consider strength and delay specifications of switches while extracting their models. Models of resistive switches

are equivalent to their non-resistive switches, so, we only address non-resistive switches in the following sections.

mailto:amar_patel@mentor.com
mailto:naman_jain@mentor.com

2

II. MODEL EXTRACTION OF MOS SWITCHES

Switches are SystemVerilog primitives which provide specific functionality to the design. This section will

cover different types of MOS switches available in SystemVerilog LRM (see IEEE Std. 1800-2009, Chapter 28)

and how they can be best modeled in continuous assignment model.

MOS switches are unidirectional. They act as buffers between their input and output pins. Input pin data flows

to the output pin when the switch’s control pin values assumes values that activates (i.e. turn ON) the switch.

When the switch is off, the data signal is not buffered from input to output pin. There are 3 types of

SystemVerilog non-resistive MOS switches – pmos, nmos and cmos. The pmos and nmos switches each have

three terminals - data output, data input and control.

1) PMOS Switch:

Passes the signal from input pin to output pin when control pin is ‘0’, ‘x’ or ‘z’. For the pmos instance pmos

p1 (out, data, control), the equivalent continuous assignment model is:

 ? z : data (1)

2) NMOS Switch

Passes the signal from input pin to output pin when control pin is ‘1’, ‘x’ or ‘z’. For the nmos instance nmos

n1 (out, data, control) the equivalent continuous assignment model is:

 ? z : data (2)

3) CMOS Switch

 Combination of pmos and nmos switches, having four terminals: data output, data input and two control pins

(one for the n-channel and the other for the p-channel). The cmos instance cmos c1 (out, data, nControl,

pControl) is equivalent to the combination of nmos and pmos instances nmos n1 (out, data, nControl) and pmos

p1 (out, data, pControl). Its equivalent continuous assignment model is:

 ? z : data (3)

III. MODEL EXTRACTION OF BIDIRECTIONAL SWITCHES

SystemVerilog has three types of non-resistive bidirectional switches: tran, tranif0 and tranif1. A tran switch

has two inout pins and is always active. Each tranif0 and tranif1 switch has a control pin that determines whether

or not the switch is active: tranif0 is active when control is not 1 and tranif1 is active when control is not 0.

Unlike MOS switches (which have one input pin and one output pin), bidirectional switches have two inout

pins. When a MOS switch is active, data is buffered from input pin to output pin. When bidirectional switch is

TRAN P1 P2

Drivers Drivers

Readers Readers

Figure 1 Bidirectional switch tran (p1, p2)

3

active, data can be conducted in either direction between the inout pins. When it is inactive (i.e., turned OFF),

data is not conducted between the inout pins. Since no definite direction of data flow exists for bidirectional

switches, they are difficult to model in a synthesizable manner. There is no continuous assignment equivalent to a

bidirectional switch. Strength is not taken into consideration, so we assume both signals have same strength and

data conduction direction depends only on whether or not the inout pin has a value assigned to it. To accurately

model bidirectional switches for formal verification, we make the following assumptions:

 Control pin of a bidirectional switch behaves similar to MOS switches. (There is no truth table given for

bidirectional switches in the SystemVerilog LRM.)

 Direction of data conduction is towards the inout pin that has no data assigned to it.

 When more than one signal is assigned to the inout pin signal of a bidirectional switch, the value of that

signal is determined by multiple driver resolution function (MDRF) of the inout pin signal. (In the rest of the

paper we will use MDRF for multiple driver resolution function.)

A. Bidirectional Switch Modeling

An initial model of bidirectional switches would be to use the same approach as for MOS switches. For

example, the model for tranif0 t (p1, p2, control) is:

 ? z : p2 (4)

 ? z : p1 (5)

 But this model creates a cyclic dependency of p1→p2 and p2→p1. To model bidirectional switches properly,

data cannot be assigned from one inout pin to the other inout pin (as was done for MOS switches). To break this

cyclic dependency, the signal assigned to inout pin p1 instead is assigned to inout pin p2 and the signal assigned

to inout pin p2 instead is assigned to inout pin p1.

To explain, consider signals p1 and p2 on which a1 and a2 are assigned respectively. For instance tran t (p1,

p2), the modeling is:

 (6)

 (7)

 Similarly, instance tranif0 t0 (p1, p2, control) is modeled as:

 (8)

 (9)

a1 MDRF a2

p1

a1

p2

a2

readers p1 readers p2

Figure 2 Bidirectional switch model

4

And, instance tranif1 t1 (p1, p2, control) is modeled as:

 (10)

 (11)

 The model is extended for multiple assigns on a signal. Suppose p1 is assigned a11, a12,…, a1m and p2 is

assigned a21, a22,…, a2n then the final value on p1 and p2 (respectively a1 and a2) would be the resolution of

all values assigned to it:

 (12)

 (13)

 When there are multiple drivers on p1 and p2 then in the above tran, tranif0 and tranif1 models (i.e., (6) to

(11)) replace a1 and a2 by the corresponding MDRF value from (12) and (13) respectively.

B. Bidirectional Switches Chain Modeling

Modeling bidirectional switches becomes complex when the signals are connected in a chain through

bidirectional switches. Consider the following two bidirectional switches connected in a chain:

 (14)

 (15)

Here p2 and p3 are not directly connected, but they would impact each other when both t1 and t2 are active.

Suppose the signals assigned to p1, p2, and p3 are a1, a2, and a3 respectively. Then the model is:

 () (16)

 () (17)

 () (18)

Next consider the case where one more bidirectional switch is in the chain along with (14) and (15)

 (19)

p1

a11 a12 …… a1m

a1 = MDRF (a11,a12, …, a1m)

a1 MDRF a2

p2

a21 a22 …… a2n

a2 = MDRF (a21,a22, …, a2n)

readers_p1 readers_p2

Figure 3 Bidirectional switch model with multiple drivers on p1 and p2

5

 Here p1, p2, p3, p4 all are directly or indirectly impacting each other: some pins are directly connected, some

are indirectly connected. Here, if t1 is active then p2 assigns to p1, if t2 is active then p3 assigns to p1 and if t1

and t3 are active then p4 assigns to p1. The final value of p1 is an MDRF of all the assignments on it. The model

for p1, p2, p3 and p4 is:

 () ()

 (20)

 ()

(21)

 ()

(22)

 ()

 (23)

 Adding each new bidirectional switch in the chain increases the possible number of paths and in worst case

can have exponential complexity. Each new bidirectional switch added in the chain should propagate its impact to

all the components in the earlier chain. In order to correctly model a bidirectional switch, the impact from all the

bidirectional switches connected directly and indirectly to it should be taken into account. This is achieved by

doing a traversal over the chain of back to back connected bidirectional switches and evaluating the contribution

for each signal connected to the chain in terms of the other signals in the chain. Fig. 4 shows pseudo code of a

generic traversal on chain of bidirectional switches to extract model for each signal in the chain. The complexity

of extracting model for chain of bidirectional switches depends on how the chain has been designed. The

complexity is of order of number of paths in the chain of switches.

C. Optimizations for Bidirectional Switches

 We have shown that adding each new bidirectional switch in the chain of bidirectional switches makes the

expressions more complex. If a bidirectional switch can be optimized such that it reduces the size of the chain

then it will reduce the effort required in propagation its impact. For bidirectional switches, the following

optimizations are done to determine the direction of conduction and also to reduce the chain of instances to

simple equations.

For a chain of bidirectional switches -
Let N signals are connected in a chain of M switches.

For each bidirectional switch (A, B, control) in M.
{
expr_A = Value(A)
expr_B = Value(B)
propagate(A, expr_B, control)
propagate(B, expr_A, control)
}

propagate(target, source_expr, control)
{
cache - Cache of nodes in current path
Insert(cache, target)
Assign(target, source_expr, control)
propagate_recurse(target, source_expr, control)
}

For non-conditional bidirectional switches control can be
assumed as 1

propagate_recurse(node, source_expr, control)
{
for each switch neighbor (neigh, node, ctrl) of “node”

if (Exists(cache, neigh)) { continue }
else {

new_control = merge(control, ctrl)
Assign(neigh, source_expr, new_control)
Insert(cache, neigh)
propagate_recurse(neigh, source_expr, new_control)
Remove(cache, neigh)

}
}

Assign(target, source_expr, control)
{
target_value_expr = Value(target)
new_target_value_expr = target_value_expr

MDRF
(control === false) ? z : source_expr

}

Figure 4 Pseudo code for model extraction of chain of switches

6

1) When both the inout pins of bidirectional switch are connected to constants then the switch can be

ignored as constants retain their value in design, see Fig. 5, Example 1.

2) When only one of the inout pins in bidirectional switch is constant then it can be optimized to an

assignment of constant pin to non-constant pin, see Fig. 5, Example 2.

3) When one of the inout pins in bidirectional switch doesn’t have any assignment on it then it can be

optimized to an assignement from assigned pin to un-assigned pin, see Fig. 5, Example 3.

4) When there are multiple bidirectional switch instances on same set of signals then it can be optimized to

one instance with control pin as function of control pins of actual instances, see Fig. 5, Example 4.

5) Library cell modules are generated to implement basic gates using bi-directional instances only. Such

cells have only one output port, other ports are of type input port and module definitions consist of bi-directional

instances only. Those cells can be optimized by optimizing bidirectional switch instances invloving input and

output ports of cell. Input ports can treated as read only and output ports as write only in bidirectional switches.

Fig. 6 show an example of 2-Input NAND gate implemented using a library cell of bi-directional switches and

the optimized design after applying the above optimizations on this design. The 2-state truth table of this 2-Input

NAND gate matches with 2-state truth table of optimized output signal, “out”.

IV. FUNCTIONAL ACCURACY OF EXTRACTED MODELS

The models extracted for switches need to be functionally accurate so as to get the desired behavior during

formal verification. We will do a functional equivalence check of both MOS and bidirectional switches with the

models extracted for them for formal verification.

supply0 p1;
supply1 p2;
tran t1 (p1, p2) // optimized away

supply0 p1;
wire p2;
tran t1 (p1, p2) // optimized to p2 = p1

wire p1, p2;
assign p1 = some_signal;
// There is no assignment on p2 in the design
tran t1 (p1, p2) // optimized to p2 =p1

tranif0 t1 (p1, p2, c1) ;
tranif0 t2 (p1, p2, c2);
// optimized to tranif0 t (p1, p2, (c1 || c2)) equivalent

Example 1 Example 2

Example 3 Example 4

Figure 5 Optimization examples for bidirectional switches

Applying optimization 4 on I3 and I4
tranif0 I3_MERGE_I4 (out, vpwr, a1 || a2)

Applying optimization 1 on I1 and I3_MERGE_I4
net1 = (a1 === 0) ? z : vgnd (1)
out = ((a1 === 1) && (a2 === 1)) ? z : vpwr (2)

Applying optimization 5 on I2
out = (a2 === 0) ? z : net1; (3)

Merging (1) and (3)
out = (a2 === 0) ? z : (a1 === 0) ? z : vgnd (4)

Now the cell is optimized to:
out = (((a1 === 1) && (a2 === 1)) ? z : vpwr)

MDRF
((a2 === 0) ? z : (a1 === 0) ? z : vgnd)

module nand2 (out, a1, a2);

output out;

supply1 vpwr;

supply0 vgnd;

input a1, a2;

tranif1 I1 (net1, vgnd, a1);

tranif1 I2 (out, net1, a2);

tranif0 I3 (out, vpwr, a1);

tranif0 I4 (out, vpwr, a2);

endmodule

Figure 6 Optimization examples of cell implemented using bidirectional switches

7

A. MOS Switches

Functional accuracy check for MOS switches is done by comparing the truth table of the extracted model with

the truth table of MOS switches specified in LRM (IEEE Std. 1800-2009, Chapter 28). Fig. 8 shows truth table of

continuous assignment model generated for a pmos instance, “pmos p1 (out, data, control)”. For our

implementation L and H are considered as ‘0’ and ‘1’ respectively. This truth table of the continuous assignments

modeled for pmos is 4-state (‘0’, ’1’, ‘x’ and ‘z’) accurate with the LRM (IEEE Std. 1800-2009, table 28.6) truth

table, Fig. 7. Similar comparisons were done for nmos and cmos switches to check their equivalence with

continuous assignment extracted models (2) and (3) respectively.

B. Bidirectional Pass Switches

The functional accuracy check of bidirectional pass switches is done by comparing simulation results of

design with the formal results obtained from implementation of model extraction of switches. Properties were

generated for inout pins of bi-directional switches. These properties are run with the test bench created to provide

all possible values to the pins of bidirectional switches. The same designs are being run with formal tool having

implementation of model extraction of switches. Simulation results are matched with the formal results to check

whether the extracted model is functionally correct or not.

V. FORMAL FRIENDLY MODELING

The model which we have created for switches is formal verification engine friendly. By formal verification

engine friendly we mean that there is no special handling required for switches in verification engine after the

switches are modeled. We have modeled switches to functionally equivalent expressions which formal

verification engine already handles.

VI. DEBUG FRIENDLY MODELING

The continuous assignment model extraction of switches is done by preserving the source of bidirectional

switch instances and maintaining a mapping between the extracted models with the bidirectional switch instances

in the source files. This mapping helps in back annotation of models with the actual source in design and provides

full visibility of the designs and debug utility for switches in the design. Fig. 8 is a snippet of Questa Static

Formal schematic showing bidirectional switch, tranif0 used in design.

Symbol L represents a result that has value 0 or z

Symbol H represents a result that has value 1 or z

 ? `z : data

Figure 9 Snippet of tranif0 instance in QFormal Schematic

Figure 7 1800-2009 IEEE Std. pmos truth table Figure 8 pmos continuous assignment model truth table

8

VII. APPLICATION OF MODELING

This model extraction done for designs based on switches for formal verification can be applied to

applications based on formal verification, some of which are:

A. RTL vs Gate verification,

B. RTL level model checking when parts of the design are gate-level or IP blocks and

C. SoC level verification which uses formal based application for various verifications paradigms like

1) Connectivity checks

2) Security checks

3) X checks

4) Power checks

5) DFT checks

VIII. RESULTS

We internally validate our extracted models for functional correctness against simulation results of the

original description. We have been able to run various real life designs through this flow and successfully apply

formal techniques for verification. Table I, Design1 is an example of how modeling affects formal verification

results; There were earlier incorrect firings in the design which after modeling are correctly proven by formal

verification. We have been able to run a design, Table II, Design2 with around 3500 bidirectional switches in

RTL and 5 million bidirectional switches after design is flattened. There was back to back chain of bidirectional

switches involving around 50 signals. The reason behind such a huge use of bidirectional switches was because

primary gates were implemented using switches. Table III, Design3 is an example of time taken in modeling of

design with and without optimizations.

Table I. Results for design with and without model extraction of switches

Design Without Modeling With Modeling

Name No. of

bidirectional

switches

No. of black-boxed

modules

Properties
No. of black-boxed

modules

Properties

Proven Fired Proven Fired

Design1 3 1 0 3 0 3 0

Table II. Results for design with and without model extraction of switches

Design Without Modeling With Modeling

Name No. of

bidirectional

switches

No. of black-boxed

modules

Coverage

Exclusions

No. of black-boxed

modules

Coverage

Exclusions

Design2 3529 679 154 52 1237

Table III. Time taken in modeling with and without optimizations

Design Time taken in modeling (seconds)

Name No. of bidirectional switches Without Optimizations With Optimizations

Design3 38 60 2

IX. SUMMARY AND FUTURE WORK

In this paper, we propose a methodology to extract “formal-friendly” model for switch based circuit

descriptions. We perform model extraction for various switches - tran, pmos, nmos and cmos. We describe some

context based situations that lead to optimized models. As an example, we showed a complex network of

bidirectional switches representing a NAND gate that is eventually extracted to a continuous assignment model

representing the same functionality. Our models are efficient for formal usage and preserve the debug information

9

to back-annotate the results to original description. This allows verification of switch-based designs through our

formal tool natively, without any specific setup requirements at the designers end.

In the future, various challenges can be addressed. Bidirectional switches make a design more complex when

the switch signals are connected to pullp-pulldown sources. How can it be determined whether to propagate the

first pullup-pulldown value to the other signal via the switch or to first switch the value and then propagate the

source to the signal? Also, recall that in our continuous assignment modeling approach, our focus was primarily

functionality where strength and delay specifications of switches were not taken into consideration. It would be

interesting to study whether these specifications can impact the functionality of design.

X. ACKNOWLEDGEMENTS

We thank Arindam Chakrabarty and Yogesh Badaya, our colleagues at Mentor Graphics Corporation, India

for their guidance and thoughts in discussions on extracting functionally-accurate models for switches.

XI. REFERENCES

[1] 1800-2009 - IEEE Standard for SystemVerilog -- Unified Hardware Design, Specification, and Verification Language,

http://standards.ieee.org/findstds/standard/1800-2009.html

[2] 1364.1-2002 – IEEE Standard for Verilog Register Transfer Level Synthesis, http://standards.ieee.org/findstds/standard/1364.1-

2002.html

[3] J. Moondanos et al., “VERTEX: Verification of transistor-level circuits based on model extraction”, Design Automation, 1993, with

the European Event in ASIC Design.

http://standards.ieee.org/findstds/standard/1800-2009.html
http://standards.ieee.org/findstds/standard/1364.1-2002.html
http://standards.ieee.org/findstds/standard/1364.1-2002.html

