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Gate-level designs often are described at the switch level, but these constructs typically are not handled well by 

formal tools. This paper focusses on extracting “formal-friendly” models for designs that use switches, particularly 

bidirectional ones. We take a basic example of a gate implemented using bidirectional switches and show how to 

extract its formal model. We detail strategies to optimize bidirectional switches in the design and showcase results we 

achieved with a customer’s design. This work targets extracting a formal friendly model for a specific design. But this 

is a generic solution—for a customer’s real designs. These “formal-friendly” extracted models can be used for both 

formal verification as well as equivalence checking. 
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I.  INTRODUCTION 

 Technology is advancing at an astounding pace. Designs inch towards multi-billion-gate sizes and verification 

tools and methodologies must continuously evolve to cater to these ever-increasing design sizes. Algorithms also 

must evolve to handle increasingly-complex designs. Now, formal analysis has a very important role in design 

verification. Its use is gaining momentum, not only for block-level designs but also for SoCs. Various 

sophisticated formal analysis solutions, such a security and connectivity formal property checks are performed 

from block-level design creation through block integration. These advances require formal verification not only 

of RTL blocks but also of designs having gate-level portions.  

 Switch-based designs—usually with gate-level module descriptions—exist in many design flows where 

formal verification would be helpful. Such designs get these gate-level models from pre-defined libraries 

(provided by fabricators or pertaining to particular technologies) and they also can be generated by design 

verification tools. 

 Traditionally, to verify such designs with formal analysis, the verification engineer somehow provides the 

tools with “formal-friendly” models for library cells. Major issues with such a methodology are: these models 

often are not available and if they are, they are designed specifically for formal verification. These “formal-

friendly” models are not related to the real design logic, so the engineer verifies something that does not go into 

the actual chip.  

 In this paper, we present an automated model extraction capability used for formal verification and 

equivalence checking. Our modeling is “formal-friendly,” ensuring optimal performance from formal algorithms. 

We have successfully implemented our model extraction capability in various situations using formal methods on 

real life designs. The analysis tool used for this process is the Questa® Formal verification platform from Mentor 

Graphics Corporation. 

 In section II and III, we introduce models extracted for MOS and bidirectional switches and we present 

strategies to optimize bidirectional switches in the design. In the subsequent sections we describe some attributes 

of extracted models—functional accuracy, formal engine “friendliness” and ease of debugging. We do not need to 

consider strength and delay specifications of switches while extracting their models. Models of resistive switches 

are equivalent to their non-resistive switches, so, we only address non-resistive switches in the following sections. 
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II. MODEL EXTRACTION OF MOS SWITCHES 

Switches are SystemVerilog primitives which provide specific functionality to the design. This section will 

cover different types of MOS switches available in SystemVerilog LRM (see IEEE Std. 1800-2009, Chapter 28) 

and how they can be best modeled in continuous assignment model.  

 

MOS switches are unidirectional. They act as buffers between their input and output pins. Input pin data flows 

to the output pin when the switch’s control pin values assumes values that activates (i.e. turn ON) the switch. 

When the switch is off, the data signal is not buffered from input to output pin. There are 3 types of 

SystemVerilog non-resistive MOS switches – pmos, nmos and cmos. The pmos and nmos switches each have 

three terminals - data output, data input and control. 

1) PMOS Switch: 

Passes the signal from input pin to output pin when control pin is ‘0’, ‘x’ or ‘z’. For the pmos instance pmos 

p1 (out, data, control), the equivalent continuous assignment model is: 

                  ? z : data (1) 

2) NMOS Switch 

Passes the signal from input pin to output pin when control pin is ‘1’, ‘x’ or ‘z’. For the nmos instance nmos 

n1 (out, data, control) the equivalent continuous assignment model is: 

                  ? z : data (2) 

3) CMOS Switch 

 Combination of pmos and nmos switches, having four terminals: data output, data input and two control pins 

(one for the n-channel and the other for the p-channel). The cmos instance cmos c1 (out, data, nControl, 

pControl) is equivalent to the combination of nmos and pmos instances nmos n1 (out, data, nControl) and pmos 

p1 (out, data, pControl). Its equivalent continuous assignment model is: 

                                            ? z : data (3) 

  

III. MODEL EXTRACTION OF BIDIRECTIONAL SWITCHES 

 

SystemVerilog has three types of non-resistive bidirectional switches: tran, tranif0 and tranif1. A tran switch 

has two inout pins and is always active. Each tranif0 and tranif1 switch has a control pin that determines whether 

or not the switch is active: tranif0 is active when control is not 1 and tranif1 is active when control is not 0. 

 

Unlike MOS switches (which have one input pin and one output pin), bidirectional switches have two inout 

pins. When a MOS switch is active, data is buffered from input pin to output pin. When bidirectional switch is 

 

TRAN P1 P2 

Drivers Drivers 

Readers Readers 

Figure 1 Bidirectional switch tran (p1, p2) 
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active, data can be conducted in either direction between the inout pins. When it is inactive (i.e., turned OFF), 

data is not conducted between the inout pins. Since no definite direction of data flow exists for bidirectional 

switches, they are difficult to model in a synthesizable manner. There is no continuous assignment equivalent to a 

bidirectional switch. Strength is not taken into consideration, so we assume both signals have same strength and 

data conduction direction depends only on whether or not the inout pin has a value assigned to it. To accurately 

model bidirectional switches for formal verification, we make the following assumptions:  

 Control pin of a bidirectional switch behaves similar to MOS switches. (There is no truth table given for 

bidirectional switches in the SystemVerilog LRM.) 

 Direction of data conduction is towards the inout pin that has no data assigned to it. 

 When more than one signal is assigned to the inout pin signal of a bidirectional switch, the value of that 

signal is determined by multiple driver resolution function (MDRF) of the inout pin signal. (In the rest of the 

paper we will use MDRF for multiple driver resolution function.) 

 

A. Bidirectional Switch Modeling 

An initial model of bidirectional switches would be to use the same approach as for MOS switches. For 

example, the model for tranif0 t (p1, p2, control) is:  

                 ? z : p2 (4) 

                 ? z : p1 (5) 

 But this model creates a cyclic dependency of p1→p2 and p2→p1. To model bidirectional switches properly, 

data cannot be assigned from one inout pin to the other inout pin (as was done for MOS switches). To break this 

cyclic dependency, the signal assigned to inout pin p1 instead is assigned to inout pin p2 and the signal assigned 

to inout pin p2 instead is assigned to inout pin p1. 

To explain, consider signals p1 and p2 on which a1 and a2 are assigned respectively. For instance tran t (p1, 

p2), the modeling is: 

              (6) 

              (7) 

 Similarly, instance tranif0 t0 (p1, p2, control) is modeled as: 

                                     (8) 

                                     (9) 

 

 
 

 

 

a1 MDRF a2
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a2

readers p1 readers p2

Figure 2 Bidirectional switch model 
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And, instance tranif1 t1 (p1, p2, control) is modeled as: 

                                     (10) 

                                     (11) 

  

 The model is extended for multiple assigns on a signal. Suppose p1 is assigned a11, a12,…, a1m and p2 is 

assigned a21, a22,…, a2n then the final value on p1 and p2 (respectively a1 and a2) would be the resolution of 

all values assigned to it: 

                                  (12) 

                                  (13) 

 When there are multiple drivers on p1 and p2 then in the above tran, tranif0 and tranif1 models (i.e., (6) to 

(11)) replace a1 and a2 by the corresponding MDRF value from (12) and (13) respectively.  

 

B. Bidirectional Switches Chain Modeling 

Modeling bidirectional switches becomes complex when the signals are connected in a chain through 

bidirectional switches. Consider the following two bidirectional switches connected in a chain: 

                     (14) 

                      (15) 

 

Here p2 and p3 are not directly connected, but they would impact each other when both t1 and t2 are active. 

Suppose the signals assigned to p1, p2, and p3 are a1, a2, and a3 respectively. Then the model is: 

 

           (                 )                                       (16) 

           (                 )                                           (17) 

           (                 )                                           (18) 

  

Next consider the case where one more bidirectional switch is in the chain along with (14) and (15) 

                     (19) 

 
 

 

 

p1

a11   a12  ……   a1m

a1 = MDRF (a11,a12, …, a1m)

a1 MDRF a2

p2

a21   a22  ……   a2n

a2 = MDRF (a21,a22, …, a2n)

readers_p1 readers_p2

Figure 3 Bidirectional switch model with multiple drivers on p1 and p2 
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 Here p1, p2, p3, p4 all are directly or indirectly impacting each other: some pins are directly connected, some 

are indirectly connected. Here, if t1 is active then p2 assigns to p1, if t2 is active then p3 assigns to p1 and if t1 

and t3 are active then p4 assigns to p1. The final value of p1 is an MDRF of all the assignments on it. The model 

for p1, p2, p3 and p4 is: 

 

           (                 )     (                 )               

                                 
        (20) 

           (                 )                                     

                                 
(21) 

           (                 )                                     

                                                              

(22) 

 

           (                 )                                     

                                                               
        (23) 

 

 Adding each new bidirectional switch in the chain increases the possible number of paths and in worst case 

can have exponential complexity. Each new bidirectional switch added in the chain should propagate its impact to 

all the components in the earlier chain. In order to correctly model a bidirectional switch, the impact from all the 

bidirectional switches connected directly and indirectly to it should be taken into account. This is achieved by 

doing a traversal over the chain of back to back connected bidirectional switches and evaluating the contribution 

for each signal connected to the chain in terms of the other signals in the chain. Fig. 4 shows pseudo code of a 

generic traversal on chain of bidirectional switches to extract model for each signal in the chain. The complexity 

of extracting model for chain of bidirectional switches depends on how the chain has been designed. The 

complexity is of order of number of paths in the chain of switches.  

 

C. Optimizations for Bidirectional Switches 

 We have shown that adding each new bidirectional switch in the chain of bidirectional switches makes the 

expressions more complex. If a bidirectional switch can be optimized such that it reduces the size of the chain 

then it will reduce the effort required in propagation its impact.  For bidirectional switches, the following 

optimizations are done to determine the direction of conduction and also to reduce the chain of instances to 

simple equations. 

 

For a chain of bidirectional switches  -
Let N signals are connected in a chain of M switches.

For each bidirectional switch (A, B, control) in M.
{
expr_A = Value(A)
expr_B = Value(B)
propagate(A, expr_B, control)
propagate(B, expr_A, control)
}

propagate(target, source_expr, control)
{
cache - Cache of nodes in current path
Insert(cache, target)
Assign(target, source_expr, control)
propagate_recurse(target, source_expr, control) 
}

For non-conditional bidirectional switches control can be 
assumed as 1

propagate_recurse(node, source_expr, control)
{    
for each switch neighbor (neigh, node, ctrl) of “node”

if (Exists(cache, neigh))  { continue }
else {

new_control = merge(control, ctrl)
Assign(neigh, source_expr, new_control)
Insert(cache, neigh)
propagate_recurse(neigh, source_expr, new_control)
Remove(cache, neigh)

}
} 

Assign(target, source_expr, control)
{
target_value_expr = Value(target)
new_target_value_expr = target_value_expr

MDRF 
(control === false) ? z : source_expr

}

Figure 4 Pseudo code for model extraction of chain of switches 
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1) When both the inout pins of bidirectional switch are connected to constants then the switch can be 

ignored as constants retain their value in design, see Fig. 5, Example 1. 

2) When only one of the inout pins in bidirectional switch is constant then it can be optimized to an 

assignment of constant pin to non-constant pin, see Fig. 5, Example 2. 

3) When one of the inout pins in bidirectional switch doesn’t have any assignment on it then it can be 

optimized to an assignement from assigned pin to un-assigned pin, see Fig. 5, Example 3. 

4) When there are multiple bidirectional switch instances on same set of signals then it can be optimized to 

one instance with control pin as function of control pins of actual instances, see Fig. 5, Example 4. 

 

5) Library cell modules are generated to implement basic gates using bi-directional instances only. Such 

cells have only one output port, other ports are of type input port and module definitions consist of bi-directional 

instances only. Those cells can be optimized by optimizing bidirectional switch instances invloving input and 

output ports of cell. Input ports can treated as read only and output ports as write only in bidirectional switches. 

Fig. 6 show an example of 2-Input NAND gate implemented using a library cell of bi-directional switches and 

the optimized design after applying the above optimizations on this design. The 2-state truth table of this 2-Input 

NAND gate matches with 2-state truth table of optimized output signal, “out”. 

 

IV. FUNCTIONAL ACCURACY OF EXTRACTED MODELS 

The models extracted for switches need to be functionally accurate so as to get the desired behavior during 

formal verification. We will do a functional equivalence check of both MOS and bidirectional switches with the 

models extracted for them for formal verification. 

 

 
supply0 p1; 
supply1 p2; 
tran t1 (p1, p2)   // optimized away 

supply0 p1; 
wire p2; 
tran t1 (p1, p2)     // optimized to p2 = p1 

wire p1, p2; 
assign p1 = some_signal; 
// There is no assignment on p2 in the design 
tran t1 (p1, p2)   // optimized to p2 =p1 

tranif0 t1 (p1, p2, c1) ; 
tranif0 t2 (p1, p2, c2); 
// optimized to tranif0 t (p1, p2, (c1 || c2)) equivalent 

Example 1 Example 2 

Example 3 Example 4 

Figure 5 Optimization examples for bidirectional switches 

 

Applying optimization 4 on I3 and I4 
tranif0 I3_MERGE_I4 (out, vpwr, a1 || a2)

Applying optimization 1 on I1 and I3_MERGE_I4
net1 = (a1 === 0) ? z : vgnd (1)
out = ((a1 === 1) && (a2 === 1)) ? z : vpwr (2)

Applying optimization 5 on I2
out = (a2 === 0) ? z : net1;                          (3)   

Merging (1) and (3)
out = (a2 === 0) ? z : (a1 === 0) ? z : vgnd (4)

Now the cell is optimized to:
out = (((a1 === 1) && (a2 === 1)) ? z : vpwr) 

MDRF 
((a2 === 0) ? z : (a1 === 0) ? z : vgnd)

module nand2 (out, a1, a2);

output out;

supply1 vpwr;

supply0 vgnd;

input a1, a2;

tranif1 I1 ( net1, vgnd, a1);

tranif1 I2 ( out, net1, a2);

tranif0 I3 ( out, vpwr, a1);

tranif0 I4 ( out, vpwr, a2);

endmodule

Figure 6 Optimization examples of cell implemented using bidirectional switches 
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A. MOS Switches 

Functional accuracy check for MOS switches is done by comparing the truth table of the extracted model with 

the truth table of MOS switches specified in LRM (IEEE Std. 1800-2009, Chapter 28). Fig. 8 shows truth table of 

continuous assignment model generated for a pmos instance, “pmos p1 (out, data, control)”. For our 

implementation L and H are considered as ‘0’ and ‘1’ respectively. This truth table of the continuous assignments 

modeled for pmos is 4-state (‘0’, ’1’, ‘x’ and ‘z’) accurate with the LRM (IEEE Std. 1800-2009, table 28.6) truth 

table, Fig. 7. Similar comparisons were done for nmos and cmos switches to check their equivalence with 

continuous assignment extracted models (2) and (3) respectively. 

 

B. Bidirectional Pass Switches 

The functional accuracy check of bidirectional pass switches is done by comparing simulation results of 

design with the formal results obtained from implementation of model extraction of switches. Properties were 

generated for inout pins of bi-directional switches. These properties are run with the test bench created to provide 

all possible values to the pins of bidirectional switches. The same designs are being run with formal tool having 

implementation of model extraction of switches. Simulation results are matched with the formal results to check 

whether the extracted model is functionally correct or not. 

V. FORMAL FRIENDLY MODELING 

The model which we have created for switches is formal verification engine friendly. By formal verification 

engine friendly we mean that there is no special handling required for switches in verification engine after the 

switches are modeled. We have modeled switches to functionally equivalent expressions which formal 

verification engine already handles. 

VI. DEBUG FRIENDLY MODELING 

The continuous assignment model extraction of switches is done by preserving the source of bidirectional 

switch instances and maintaining a mapping between the extracted models with the bidirectional switch instances 

in the source files. This mapping helps in back annotation of models with the actual source in design and provides 

full visibility of the designs and debug utility for switches in the design. Fig. 8 is a snippet of Questa Static 

Formal schematic showing bidirectional switch, tranif0 used in design. 

 
Symbol L represents a result that has value 0 or z 

Symbol H represents a result that has value 1 or z 
 

 
 

                  ? `z : data 

 

Figure 9 Snippet of tranif0 instance in QFormal Schematic 

Figure 7 1800-2009 IEEE Std. pmos truth table Figure 8 pmos continuous assignment model truth table 
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VII. APPLICATION OF MODELING 

This model extraction done for designs based on switches for formal verification can be applied to 

applications based on formal verification, some of which are: 

A. RTL vs Gate verification, 

B. RTL level model checking when parts of the design are gate-level or IP blocks and 

C.  SoC level verification which uses formal based application for various verifications paradigms like  

1) Connectivity checks 

2) Security checks 

3) X checks 

4) Power checks 

5) DFT checks 

VIII. RESULTS 

We internally validate our extracted models for functional correctness against simulation results of the 

original description. We have been able to run various real life designs through this flow and successfully apply 

formal techniques for verification. Table I, Design1 is an example of how modeling affects formal verification 

results; There were earlier incorrect firings in the design which after modeling are correctly proven by formal 

verification. We have been able to run a design, Table II, Design2 with around 3500 bidirectional switches in 

RTL and 5 million bidirectional switches after design is flattened. There was back to back chain of bidirectional 

switches involving around 50 signals. The reason behind such a huge use of bidirectional switches was because 

primary gates were implemented using switches. Table III, Design3 is an example of time taken in modeling of 

design with and without optimizations. 

Table I. Results for design with and without model extraction of switches 

Design Without Modeling With Modeling 

Name No. of 

bidirectional 

switches 

No. of black-boxed 

modules 

Properties 
No. of black-boxed 

modules 

Properties 

Proven Fired Proven Fired 

Design1 3 1 0 3 0 3 0 

 

Table II. Results for design with and without model extraction of switches 

Design Without Modeling With Modeling 

Name No. of 

bidirectional 

switches 

No. of black-boxed 

modules 

Coverage 

Exclusions 

No. of black-boxed 

modules 

Coverage 

Exclusions 

Design2 3529 679 154 52 1237 

 

Table III. Time taken in modeling with and without optimizations 

Design Time taken in modeling (seconds) 

Name No. of bidirectional switches Without Optimizations With Optimizations 

Design3 38 60 2 

 

IX. SUMMARY AND FUTURE WORK 

In this paper, we propose a methodology to extract “formal-friendly” model for switch based circuit 

descriptions. We perform model extraction for various switches - tran, pmos, nmos and cmos. We describe some 

context based situations that lead to optimized models. As an example, we showed a complex network of 

bidirectional switches representing a NAND gate that is eventually extracted to a continuous assignment model 

representing the same functionality. Our models are efficient for formal usage and preserve the debug information 
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to back-annotate the results to original description. This allows verification of switch-based designs through our 

formal tool natively, without any specific setup requirements at the designers end. 

In the future, various challenges can be addressed. Bidirectional switches make a design more complex when 

the switch signals are connected to pullp-pulldown sources. How can it be determined whether to propagate the 

first pullup-pulldown value to the other signal via the switch or to first switch the value and then propagate the 

source to the signal? Also, recall that in our continuous assignment modeling approach, our focus was primarily 

functionality where strength and delay specifications of switches were not taken into consideration. It would be 

interesting to study whether these specifications can impact the functionality of design. 
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