Mixed Signal Verification of a Voltage Regulator using a State Space
Approach and the SV-DC extensions

Rajat Mitra
Cadence Design Systems
270 Billerica Road
Chelmsford, MA 01824
mitra@cadence.com

Abstract — Verification of mixed signal ICs has primarily been approached using a mixed signal simulator
such as Cadence’s AMS Simulator (AMSD). The analog portions of the design are simulated using a
combination of Verilog AMS and SPICE while the digital portions of the design are simulated using
Verilog and System Verilog. The approach has traditionally been to verify connectivity and functional
correctness at a high level between the digital and analog blocks. Recent trends in digital signal
processing and control systems [1] have enabled implementing traditional analog functions digitally. This
has resulted in significant digital content in mixed signal ICs. The traditional approach to mixed signal
verification needs to be rethought. This paper proposes a robust methodology for the verification of
mixed signal ICs with large digital content. The approach is digital centric and emphasizes a metric driven
flow towards verification completion and confidence. The approach is illustrated by ways of a case study
of a digital switch mode power supply (Buck Converter).

A. Introduction

A digital switch mode power supply is used to convert a voltage V,to another voltage V,. If V, is greater
than V, the power supply operates as a buck converter. If on the other hand V, is greater than V,, the
power supply operates as a boost converter. In either case, the digital switch mode power supply is
made up of the functional blocks illustrated in the Figure 1.

Analog Front End
Pulse Width
Modulator

Input voltage(Vb) ’\—j

Set Point
Analog Level

Error Voltage
Analog Level Actual Output
Voltage
Actual Output
Current

Output Voltage(Va)
Output Curren t
Error Voltage
Digital Code

Set Point -
Digital Code Output Filter (Inductors,

Capacitors, Driver,)

Controller
Adjusted
Pulse width

Figure 1: Digital Switch Mode Power Supply - Functional Blocks

The ADC, DAC, Controller, Pulse Width Modulator and the Analog Front constitute the physical
embodiment of the digital switch mode power supply. The Output Filter are a combination of discreet

and active components that are driven by the digital switch mode power supply to produce an output
voltage for the Load. The Load is time varying in terms of power consumption. This means that the
current draw changes. When the current drawn by the load changes the output voltage will tend to
droop or spike. The digital switch mode power supply detects these voltage changes and regulates the
output voltage such that the droops and spikes are limited to a tolerance band.

From a verification angle the methodology partitions the system into the following functional blocks —

* The green blocks are representative of the analog/digital boundary.
* The blue blocks are digital blocks (RTL).

* The pink block is an analog block.

* The grey blocks are board level components.

The suggested approach has two verification contexts. The first is the metric driven flow where the
green, blue, pink and grey blocks are replaced with functionally equivalent models. The second is the full
chip functional flow where green and pink blocks are replaced with the real SPICE circuit. This paper
details the first flow using the buck converter as an example.

B. Functional Aspects of a Digital Switch Mode Power Supply

In order to illustrate the verification aspects of a digital switch mode power supply it is instructive to
outline the operational details of such an integrated circuit. This is done by analyzing each of the
functional blocks of Figure 1.

DAC

The DAC or the Digital to Analog Converter takes a voltage command code from the user and converts it
to an actual voltage level. The code to voltage conversion is dependent on the DAC’s resolution. The
resolution is quoted is terms of a code step. For a 10-bit DAC which has a range from 0 to 1.5 volts, the
resolution would be 1.5/2' or 1.46 millivolts per code step. DACs could also be specified in terms of a
code step. Suppose a 10-bit DAC has a code step of 5 millivolts. Its range would be from 0 volts
(assuming no built in offset) to 5.00e*2' or 5.12 volts. However when a DAC is specified this way an
upper limit to the output voltage may be specified and this would restrict the available command
codes(non-monotonic DAC). The example below illustrates a simple DAC model.

“define DAC_RESOLUTION 5.00e-3
module DAC(Y,A);

input wire [9:0] A;
output real Y;

oONOUVT A WNER

= O
® -

assign Y = A* DAC_RESOLUTION;

[EEIr
w N R

. endmodule

ADC

The ADC or the Analog to Digital Converter samples a voltage and converts it to a digital code. The code
to voltage conversion is dependent on the ADC’s resolution. The resolution is quoted in terms of a code
step. A 10-bit ADC which has a range from 0 to 1.5 volts, would have a resolution of 1.5/2" or 1.46
millivolts per code step. ADCs could also be specified in terms of a code step. Suppose a 10 bit DAC has a
code step of 5 millivolts. Its range would be from 0 volts (assuming no built in offset) to 5.00e>*2° or
5.12 volts. Unlike a DAC, it is customary to clock an ADC. The example below illustrates a simple
differential ADC model. The output of this ADC is a signed 7-Bit converted value. Later on it will be clear
why the modeling requirements being discussed require a differential ADC.

1. module DIFF_ADC(input real vin,

2. output [6:0] conv

3.)5

4.

5. //Digitize the error voltage; sample and hold ADC

6. real vin_abs, vin_conv;

7. reg [6:0] conv;

8. bit vin_sgn;

9.

10. always begin

11. #10; //Sample period of 1@ns

12.

13. vin_abs = vin < ©0.00 ? -1.00*vin: vin;

14. vin_sgn = vin < 0.00 ? 1'bl : 1'b0;

15. vin_conv = vin_abs;

16. conv_r = 0.000;

17. for(int ii=6; ii > -1; ii--)begin

18. if(vin_conv > $pow(2,ii)*adc_resolution)begin

19. conv[ii] = 1'b1;

20. vin_conv = vin_conv - $pow(2,ii)*adc_resolution;
21. end

22. else begin

23. conv[ii] = 1'be@;

24, end

28, end

26. //negate if the sampled voltage was negetive

27. conv = vin_sgn ? (~conv + 7'bl) : conv;

28.

29. //obtain real representation of converted value
30. //compare this with the actual sampled value - DEBUG only
31. for(int ii=0; ii < 6; ii+=1)begin

32. conv_r = conv_r + conv[ii]*$pow(2,ii)*adc_resolution;
33. end

34. conv_r = conv_r - conv[6]*$pow(2,6)*adc_resolution;
35. end // always @ (vin)

36.

37. endmodule // DIFF_ADC

Analog Front End (AFE)

The analog end measures the voltage at the load and subtracts this from the commanded DAC voltage.
The resulting voltage difference is the error voltage. The error voltage is what eventually is digitized by
the ADC and forwarded to the controller. The controller acts on the error voltage to compensate for the
under voltage (error voltage > 0) or the over voltage (error voltage < 0) condition. Note the
requirement for the differential ADC. The example below illustrates a simple AFE model.

3

1. module AFE(vin_m, vin_ref, v_delta);
2c

3.

4. input wreal vin_m;

5. input wreal vin_ref;

6. ouput wreal v_delta;

7.

8.

9. assign v_delta = vin_ref - vin_m;
10.

11.

12. endmodule

Controller and Pulse Width Modulator

These two blocks reside in the digital portion of the digital switch mode power supply. The metric driven
verification methodology described below is mainly to verify these blocks. It is appropriate to mention
here that the controller samples the error voltage code from the ADC, the control voltage code from the
DAC and schedules the next “pulse width” to be generated by the pulse width modulator. Figure 2
below is a broad overview of the controller and pulse width modulator functionality.

ADC Error Code

\‘ Switching Period

/-{ Control Law: Next PW = F(DAC Code, ADC Error Code)
DAC Code \\‘

Pulse Width Modulator(Synthesize Output Pulse) }—» Pulse Out

cl ck¥35 / ckZ25 /' ckZl5
0/ ck¥80 ck

Clock Generator - Multiphase Clock

Figure 2 - Overview of Controller and Pulse Width Modulator

The control law implemented by the controller is a function of the current DAC Code and the current
ADC error code. Based on the programmed switching period, the controller schedules the next pulse
width and forwards this to the pulse width modulator. The pulse width modulator synthesizes the pulse
width and generates the pulse at the end of the switching period. The pulse width modulator uses multi
phase clock (clock delayed by fixed periods) to synthesize the required pulse. Typically, there is
additional circuitry inside the controller block. These include a PID control block, filters and fast
response circuitry to mitigate sudden over shoots and under shoots that are outside of the bandwidth of
the main control loop.

Output Filter and Load

The output filter is a combination of active and passive circuitry. In the past, one would model these
using straight analog components and use SPICE to simulate their behavior. Figure 3 illustrates the
output filter and load combination of a typical buck (step down) converter.

ey
Iy) HioH siDE FET
l_

INDUCTOR DCR

Vout Sefise

Output
Voltage Driver

Regulator IC

INDUCTOR

T&aT

LOW SIDE FET

"OLI0VdYD
xing

|

CAPACITOR

Figure 3 - Buck Converter IC, Driver, FET, Output Filter and Load Assembly

The output driver and FETS can be modeled digitally using the following real number model.

1. import cds_rnm_pkg::*;

2

3. module driver_and_FET(/*AUTOARG*/
4. // Outputs

5 pwm_r,

6 // Inputs

7 pwm_d, vin

8.)5

9.

10. input wire pwm_d;

11. input vin;

12. output pwm_r;

13.

14. wrealldriver vin;

15. wrealldriver pwm_r;

16.

17. assign pwm_r = pwm_d ? vin : 0.00;
18.

19. endmodule // driver_and FET

In what follows, a state space model of the output filter (load, resistors, capacitor and inductor) is
combined with driver and FET to create a full digital metric driven verification environment for the
digital voltage regulator.

C. Methodology
The next several sections will describe the requirements to create a full digital simulation environment.

It is important that the verification effort is centered on an understanding of the functionality of the
voltage regulator. A sound understanding of its functionality will help identify critical verification

requirements. This will be discussed in section 1. The state space approach to modeling the output filter
is discussed in Section 2. The paper also explains how the SV-DC extensions to System Verilog 1800-2012
is used in conjunction with the state space approach to create a highly effective metric driven mixed
signal test bench. This along with several new features to constrain randomize real numbers will be the
subject of Section 3.

1. The Buck Converter
There is ample literature [2], [3], [4] that detail the functionality of a buck converter. In this section, we
will outline the pertinent aspects of such a device that is important for the verification effort. In what
follows, details of the controller and the pulse width modulator are explained.
The controller implements a control law. The control law for a buck converter is the—

Vout = Vin* PWM _DC 1.1

In Eq. 1.1 Vout is the output voltage as seen by the load. This is what is desired and is commanded by
the controller based on user input (programmed). Vin is the input voltage to the output filter. PWM_DC
is the duty cycle of a single PWM pulse. Figure 3 illustrates where Vin is applied and Vout is measured.
Eqg. 1.1 suggests that if an output voltage of 1.0 volt is desired from an input voltage of 12 volts, a PWM
duty cycle of 1.0/12.0 or 8.3% is required during steady state operation.

Verror Code

User Configuration >{ Verror Filter } » Fast Verror

Slow or Steady State Verror
Code

y

Verror =
Verror_code*Verror_Scale

User Configuration

A A

Slow Verror
PID Controller PWM Generator
Command Scaling
Vout Command : "
- Filters » Pulse Width
R Voutv— Vdasc_tlzode * PWM Duty Cycle
out_Scale Factory >
User Configuration
User Configuration
Digital Controller User Configuration

Switching Perior\/‘

Figure 4 The Digital Controller and the PWM Generator

Were the controller to operate as open loop systems, implementation of equation 1.1 would be fairly
straightforward. However this is rarely the case. The controller in reality is feedback based. Figure 4
illustrates the functional aspects of the controller.

The Analog Front End (AFE) illustrated in Figure 1 creates the voltage difference between the desired or
commanded voltage and the voltage measured at the load. This voltage difference is the error voltage.
The high-speed differential ADC digitizes the error voltage (Verror Code). Note that the ADC has to be
differential since the error can be positive or negative. The error is positive if the commanded voltage is
greater than the measured output voltage. The error is negative if the commanded voltage is lower than
the measured output voltage. This can be seen from the AFE model code presented above. The error
voltage is sent to a filter block (Verror Filter). The filter block smoothens the error information through
the low bandwidth path for steady state operation. A higher bandwidth path through this block creates
wider band error information for the PWM generator to act on during sudden voltage transients. The
slow voltage error is finally processed through a PID controller. The PID controller attempts to force the
error voltage to zero.

The command-scaling block receives an output voltage command from the user and arithmetically scales
the command code as depicted in Figure 4. Pre-scaling the command code and the error code to a
common arithmetic format is efficient for subsequent processing. In the design specification it is
important to identify the arithmetic format for every 1/0 in the major block in the controller. For instance
one might state that the Vout signal’s format is ul.5. This would mean that the signal is unsigned, has
one integer bit and 5 fractional bits.

The Slow Verror and the Vout data are fed to the PWM duty cycle factory. The PWM Duty Cycle Factory
uses the Slow Verror and the Vout information to stage the duty cycle of the next modulator pulse. One
might implement the equation for the next modulator pulse as follows —

Vout + Verror
Pulse Width = ——— 19

Vin

The proper implementation and verification of 1.2 is challenging. As previously mentioned, Vout and
Verror need to have the same arithmetic format. Scaling procedures to unify their format can be
expensive from a hardware point-on-view and error prone. The divide by Vin might be implemented
assuming a constant Vin. In this case, the reciprocal of Vin is pre-computed and the resultant is scaled to
have a consistent format so that equation 1.2 might be recast as —

Pulse Width = (Vout + Verror) x Inverse_of (Vin)
13

However this is rarely the case and the implementation in 1.2 is the one of choice. This is because
variations in Vin need to be tracked. Vin is measured by a low bandwidth ADC and sent to the digital
controller. The divider might be implemented in several different ways but the fastest way to do so is by
using the Newton-Raphson algorithm [5]. Others such as SRT, restoring and non-restoring division [6]
are also common. In the Newton-Raphson method, the reciprocal of Vin is determined. This reciprocal is

used to scale Vout + Verror. Each divide might take several cycles and consequently the sudden
variations in Vin might not be effected instantaneously. This posses a verification challenge.

The pulse width value computed by the digital control block is filtered and sent to the PWM generator.
This information is used to synthesize the output pulse based on the specified switching period. The
switching period is the time between two consecutive rising edges of the output pulse train and is
configured by the user. An example of output pulse synthesis by the modulator is illustrated in Figure 5.

System Clk I

Clk | | |
Clkas I |
Clk90
Clk135 |
Clkis0 | | |
Clk225 I |
Clk270
Clk315 | |
OR Gate Pulse Synthesis of Clk + Clk45 + Clk90
Clka —l I |

Figure 5 - Multi Phase Clock Pulse Synthesis

Figure 5 shows an example of how the multi phase clocks are logically OR-ed to create a single pulse. If
the pulse width is specified in terms of the number of multi phase clock periods the PWM Generator
will divide this number by 8 (since in this implementation there are 8 multi phase clocks) to create an
integral(quotient) and fractional(remainder) pulse count. For the first phase of the output pulse, all the
multi phase clocks are OR-ed for an integral count of the clock period. When the integral count is
exhausted, the remaining fractional count is implemented in a single clock period and this is the OR-ing
of the remaining multi phase clock pulses.

The PWM generator implementation stated above is one of several. Clearly the higher the multi phase
clock resolution(say 16 as opposed to 8), the more accurately the output voltage may be regulated.

2. The State Space Approach to Modeling the Output Filter

The state space method is popular in modeling control system behavior. There is ample literature that
derives and explains this technique [7]. This section will briefly outline the state space methodology and
use it to derive the equations for the output filter. This equation and the model equations for the driver
and FET will be discussed in context of the simulation environment.

A means to model a dynamical system is to identify observable properties of that system. These
properties are quantified mathematically in terms of a variable. Examples include the velocity of a

moving vehicle, the temperature of a heating element, the current through an inductor and the voltage
across a capacitor. If the state of a system can be characterized by these variables then the variables are
termed state variables for the system. An important property of these variables is that if their state is
known at any given time (current state) along with the agents that influence their value (the inputs to
the system), then it is possible to measure the behavior of the systems state variables at any future time
(the output of the system).

In electrical engineering, one broadly speaks of two types of systems. A digital system is classified as a
discreet time system. An analog system is classified as a continuous time system. Let x(t) be a
continuous time state variable. This variable can be interpreted as the value of property “x” of a
systems at time “t”. The property could be voltage or current. Using the state space approach a closed
form equation for the rate of change of x(t) can be written as follows —

dx(t) 2.1
Frak Ax(t) + Bu(t)

This equation says that the rate of change of x(t) depends on the current value of x(t) and the applied
input u(t). Coefficients A and B are determined based on physical laws that relate the current state and

the applied input to the rate change of the state variable. In the case of the output filter these are
derived from Kirchhoff’s Laws as will be shown shortly.

In passing it is instructive to mention the equivalent equation to 3.1 for a digital system is written as
follows —

x(n+1) = A'x(n) + B'u(n) 2.2

where “n” replaces the time variable as the n-th sampled value of “x” and “u”.

To derive the equations for the output filter consider the representative circuitry illustrated in Figure 6.
The output capacitors are modeled as a single equivalent capacitor C with equivalent series resistor
E_ESR. The inductor L is included with its DC resistance as R_DCR. The PWM pulses are modeled as a
voltage source V_PULSE. The output load is modeled using a controlled current source |_LOAD.

R O

R_DCR t

() e op

§ R_ES| Model of output load

Figure 6 - Simple Output Filter (Powertrain) and Load (approximation of Figure 3)

Models tije output driver and

Bulk representation of output
capacitor

Using Kirchhoff’s laws we can write down the following equations for this circuit —

dip RDCR+RESR*i l*v RESR*I +1*V 23
ar 1 tuwTp*Ve= 7 *lwoap T 7 * VPULSE
dve 1 1 2.4
—=—=x*i;+0 ——=%*] + 0=V
dt C * 1 * Ve C *1L04D * VpuLSE

2.3 and 2.4 are equations that express the current through the inductor and the voltage across the output
capacitor. The output driver and FETS are absorbed into voltage source (a reasonable approximation). The
approximations made are extremely effective in simulating the digital controller behavior. Knowing the
rate of change of these two key state variables (voltage across the capacitor and the current through the
inductor) it is possible to create a simulation model of the output filter. Choose a simulation timestep ‘dt’.
It can then be shown —

ip (t+dt) = iL(t)+dt*F(% 2.5
v (t+dt) = ve(t) + dt*F(‘%C 2.6

Here F() and G() are functions of the rate of change of i, and v.. They can be chosen in several different
ways. Two that are popular are the Runge-Kutta and the Forward Euler approximations[8]. The Forward
Euler approximation will be used to demonstrate the modeling approach.

Consider a function y(t) around to The Taylor expansion of y(t) around t, can be written as —

dy(to)

, d?y(to) 2.7
o 2107

1
+ = xdt + 0(dt?)

to + dt) = ty) + dt
y(to) = y(to) * 3 T

This equation assumes that the derivatives and higher order derivatives of y(t) exist around ty. The Euler
approximation to 2.7 assumes that terms of higher orders than one (of dt) are small enough to be
ignored. As smaller time steps are chosen the accuracy of the Euler approximation increases. Having
stated the definition of the Euler approximation equations 2.5 and 2.6 can be recast as follows —

di, (t 2.8
i (t+dt) =i, () +dt * ;E)

dv.(t 2.9
ve(t + dt) = ve(t) + dt * %

where di/dt and dv./dt are as defined in equations 2.3 and 2.4. The reader is encouraged to

10

explore the caveats of such an estimation including truncation errors resulting from the choice of
the time step and ignoring higher order terms (greater than 1) of dt. Ample literature exists that
illustrate this and other numerical techniques to solving differential equations [8]. In equations 2.3
and 2.4 the quantities v, i, , lioap and Vpyise are time dependent quantities. The following code
segment illustrates how one might create a Verilog model of the output filter using the state space
method discussed above.

import cds_rnm_pkg::*;

module output_filter(/*AUTOARG*/

// Inputs

vpulse, iload

)

parameter real dt = 10.00; //the
parameter real L = 250e-9; //the

parameter real C 3600e-6; //the
parameter real DCR = 2.929e-3;//the
parameter real ESR = 0.122e-3;//the

//of b

input vpulse; //pulse from PWM
input iload; //load setting

wrealldriver vpulse;
wrealsum iload;

//the voltage across the capacitor
real v_capacitor[2];

//the current through the inductor
real 1i_inductor[2];

//the time derivative of the voltage
real d_v_capacitor;

//the time derivative of the current
real d_i_inductor;

//optimize the computation;
//pre-compute the static coefficient

real a@o0, a0l, ale, all; //terms of
real boo, bol, ble, bll; //terms of

//capacitor voltage and inductor cur
real v_cap, i_ind;

//simulation time step
real dt_r;

assign v_cap = v_capacitor[@];
assign i_ind = i_inductor[@];

initial begin
alo = -1.00*(DCR+ESR)/L;
adl = -1.00/L;
ale = 1.00/C;

all = 0.00;

boo = 1.00/L;

b0l = -1.00*ESR/L;
blo = 0.00;

b1l = -1.00/C;

timestep - default 1@ns
inductance(Henries)

bulk(+ceramic) capacitance(Farads)
DC resistance of the inductor(Ohms)
Eq. series resistance

ulk(+ceramic) caps.

across the capacitor

through the inductor

s for the derivatives

the state transition matrix
the input matrix

rent

11

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.

dt_r = dt*1.00e-9;
end

always begin
//evaluate loop every time step...
// this method will sample vpulse and iload
//sampling errors will be introduced.
#(dt);

//compute the time derivatives of the voltage and current

d_i _inductor = a@@*i_inductor[@] + a@l*v_capacitor[0] +
b@@*vpulse + bel*iload;

d_v_capacitor = ale*i_inductor[@] + bll*v_capacitor[0] +
b10*vpulse + bll*iload;

//compute the next inductor current step and the capacitor
// voltage step

i_inductor[1] = i_inductor[@] + dt_r*d_i_inductor;
v_capacitor[1] = v_capacitor[@] + dt_r*d_v_capacitor;

//update
i_inductor[@] i_inductor[1];
v_capacitor[@] = v_capacitor[1l];

end // always begin

82. endmodule // output filter

Notice the form of the output filter. Traditionally this block would need a SPICE level implementation.
Using the state space approach a full digital implementation has been made possible.

3. Use Of The Verilog 1800-2012 SV-DC Extensions for Mixed Signal Metric Driven Verification

To implement verification with the state space modeling approach described above, the use of the SV-DC
extensions proves useful. The SV-DC extensions allow the user to define a System Verilog data structure
and use this along with a resolution function. The following code listing show how this is implemented —

oONOUVT A WNER

L1171 777777777777777777777777777777717177
//Definition of a current carrying wire
[I171777771777777777777777777777777717177
typedef struct{

real I;

} load;

[11T711777 7077777777777 7777777777777

//resolve_TC is a resolution function

. //that computes the total current of the
. //network connected by an instance of "load"

AT T
. function automatic load resolve TC(input load driver[]);

//sum over all drivers
foreach(driver[i])begin

12

17. resolve TC.I += driver[i].load;
18. end

19.

20. endfunction

Then declare a user defied net of type load with resolution function resolve_TC as follows —

I1777777777777777777777777777777717777777

//Declare a user defined net of type (nettype -keyword)
//load that resolves its current using the

//function resolve TC; call this current_net
[1177777777777777777777777777777717777777

nettype load current_net with resolve_TC;

AUV WNBR

The user would put the above code in a System Verilog package and import the package into files where a
“current_net” instance is required. Tool vendors will usually create a package of such nets and provide
them as a part of a value added offering. This section will illustrate how such a net might be used for a
metric driven verification flow to control load current on the output filter.

The following example uses a net type called “wrealsum” to connect loads to the output filter. This user
defined net is provided as a part of the “cds_rnm_pkg” in Cadence’s INCISIVE tool chain. When a load
model is connected to the output filter as is illustrated in the following code segment; the user is able to
create load or current steps in the load model. This practice now becomes an important part of the
stimulus methods towards the verification strategy of the buck converter. Further the load model can be
embellished with the usual tools for metric driven verification. The code segment below illustrates how
two load instances |0 and I1 are connected to the output filter instance u0. The current draw in load 10 is
controlled by the instance s0 of the load_stim (load stimulus) block. For this example a pulse generator
instance ul of pgen is used to provide a pulse train to the output filter for initial setup and test purpose.
“iload” is an instance of the “wrealsum” net that connects the two loads to the output filter. “vpulse”
drives the output filter from the pulse generator instance ul. In a full testbench this output would be the
pulse width modulated output from the voltage regulator. Comments in the code clarify the required
syntax to use the SV-DC nettypes for the intended function.

1. import cds_rnm_pkg::*;

2. module tb;

3.

4. //User Defined Nettype ports on module instances need to be
5 //connecter with type "interconnect” NOT wire !!!

6 interconnect vpulse;

7 interconnect iload;

8.

9. //real wire connect load_stim to loads

10. real load_control_0;

11. real load_control_1;

12. // End of automatics

13.

14. [111T77777 777777777777 7777777777777777777777777777777777
15. //Load control block; iniitalized 2 loads with 2.0 Amps
16. //and 1.0 Amps of current draw

17. [17771777777777
18.

19. load_stim #(2.0, 1.0)s0(/*AUTOINST*/

20. // Outputs

13

21. .load_control_o (load_control 0),

22. .load_control_1 (load_control_1));

23.

24.

25. [111777777 77777777 77777777777777777777777777777777777777
26. //Instance of 2 loads connected to the output filter and

27. //controlled by load stim
28. [111T77777 77777777777 777 777777777777 77777777777777777777

29.

30. /*load AUTO_TEMPLATE (.load_control(load _control @),
31.)s*/

32

33. load 10(/*AUTOINST*/

34. // Outputs

35. .iload (iload),

36. // Inputs

37. .load_control (load_control 0));
38.

39. load 11(/*AUTOINST*/

40. // Outputs

41. .iload (iload),

42. // Inputs

43. .load_control (load _control 1));
44,

45. [11771777777777
46. //Output Filter

47. [111T7777777 77777777 777777777777777777777777777771777717
48. output_filter u@(/*AUTOINST*/

49. // Inputs

50. .vpulse (vpulse),

51. .iload (iload));

52.

53.

54. [111T77777 777777777777 7777777777777777777777777777777777
55. //Pulse Generator; this is the DUT model creating a

56. //Pulse train to run the output filter; it tries to

57. //regulate the output to a voltage Vout = DC*Vin

58. //where Vin = 12.0 volts and DC is the Duty cycle

59. //of the output pulse; the DC is the stimulus variable
60. //under control

61. [11777
62. pgen ul(/*AUTOINST*/

63. // Outputs

64. .vpulse (vpulse));

65.

66. endmodule // top

67.

The behavior of the wrealsum nettype is identical to the “current_net” example illustrated above. The
net’s final resolved value is the sum of all driven values driving it. This is consistent with the behavior of
how the total current is resolved on a wire with multiple sources.

Figure 7 below shows a top level schematic of the test bench code mentioned above -

14

Schematic Tracer 1 - SimVision = o b

cile Edit View Trace Format Cells Windows Help cadence
EEE R O |2 e f $ + "rREREMNEEE
o'W, TimeA~| = |0 ~lnsv{@m#*-| _¢a =_|| Search Times: | Value~| > &8, a8 & e a

is UDNJinstance]
R iIGad[of]load]

ad control 0 iload fiload

ad_control_1

iload

(current{drawjin]l0fan]1]

[Pulselgeneratorgprovides]
[a]pulseltrainltoltestioutputifilter] ——
output_filter

?2»d 1 object selected

Figure 7 - Schematic of test bench

The following code segment illustrates how the real values created in the stimulus generator are assigned
to the user defined net(load) from each instance of the load model -

1. module load(/*AUTOARG*/

2c // Outputs

3. iload,

4. // Inputs

5. load_control

6.)5

7.

8.

9.

10. output iload;

11. wrealsum iload;

12.

13. input 1load_control;

14. real load_control;

15

16. //contribution to the load network;
17. //use load control to vary contribution of this load to
18. //the overall network....

19. assign iload = load_control;

20.

21. endmodule // load

15

In the mentioned testbench a pulse generator is used to demonstrate the functionality of the
output filter. Figure 8 illustrates a voltage output from the output filter when the pulse
generator creates an output pulse at 9.0% duty cycle. The input voltage is 12 volts. From 1.1
the output voltage or the voltage on the output capacitor of the output filter should
approximately be 1.08 volt. This is evident in the figure during steady state operation —

Waveform 1 - SimVision = =] x
File Edit View Explore Format Windows Help cadence
— = = - & b — v] = - = ann [10147
£ B |8 Eals| @ &) ¥ ¢ | T e |0~ | - S F+FrRERREEEE
Search Names: | Signal +| | > & & Search Times: |Value~|| > &, 8
M, [TimeA~| = [380,050 ~nsv|px-| @ = < Time: 87 [978,586ns:980,75] Gh F T = F
LL5 % Vpulseitoggles/between/0/and 12jvolts %%E&@)%%
EeslanlEio=Ey S Baseline v =978,950ns
e Cursor-Baseline v =1100ns
Scope: | @ ~| Eror =
=@ waves X laga] Name &~ Cursor o~ | |
-3 th 7‘ T -
O 10 =
a I | ﬂ] =t
) 5
Find: String~ :| E] 3

Show contents

clk ED
T divider[3:0] \
pwm

B A ES

W Click and a

..... 400,000 [500,000 Eil:lD,CII:ID,I‘] ,000,000

@\%d 0 objects selected

Figure 8 Vpulse vs Output Voltage

Since the pulse generator is not regulating the output voltage and the output filter is under damped, one
might expect a lot of overshoot and undershoot during startup. This is indeed the case as is illustrated in
Figure 9.

The load (current) stepping behavior is demonstrated by varying the current in either loads from the
load_stim instance of the stimulus generator. Figure 10 illustrates the output voltage undershoot when
load instance |0 goes from 2 amps to 50 amps and load 1 remains at 1 amp. iload which is the total
current load as seen by the output filter goes from 3 amps to 51 amps. This will cause the output voltage
to droop all the way down to 0.6 volts. This is undesired but unavoidable without regulation. Figure 10
depicts the load stepping behavior.

16

cile Edit ¥iew Explore

Format Windows Help

Waveform 1 — SimVision = o x

cadence

2]| %] BaRs| @
Search Names: [Signal~|[= #i &F
R, [Timea~| - [87,310 =ljns+|pa-| &= . 5 Time:

g, 0,

fesign Browser

Scope ‘@ =~ {§,§

~{

Find: String~

Show contents
clk
i divider[3:0]
pwm
=D vpulse
wvpulse_r

W Click and a

< % A o0~ || - S F rREREEEE
Search Times: |Value v ~| :

877 [0: 487,310ns . G
S e B

(1 Baselinev=0
EF| Cursor-Baseline v =487,310ns

Baseline = 0

MName &~ Cursor

Unresulated aﬂﬂ@m loop)
eventuallysettiesltolthelvoltagelspecified|bvithelcontrolliaw]

EIES=

0 objects selected

Figure 9 Unregulated output filter behavior

Waveform 1 — SimVision - =} x
File Edit View Explore Format Windows Help cadence
i 8] G Ty BBe| @ [56 D i 5| I8 e oL -] - T ks %Y =L
Search Names: [Signal~|[~[#is & Search Times: | Value~| | LI N
R, (Timea<) - [1061,757 =llns-|pe-| &= =, 0 Time: 8% [673,566ns 1,725.75] Bk £ 55 ¥
Lo 5555

Pesign Browser

Scope: | @ ~| o

=@ waves =

=43 tb
O 10
t |
O so B
O uw
i s) £
Find:|String~ i'

Show contents

iload
load_control_0O
load_control_1
= vpulse

M Click and a

Baselinev=0
Cursor-Baseline~ = 1,061,757ns
= 1,061,757ns

Cursor s .10

05 pead ctep o 10060 Aups

B load_control_0

-afils load_control_1

Z|d

0 objects selected

Figure 10 Voltage droop due to load stepping in the absence or regulation

The ability to control the load current using a nettype enables a full digital approach to verifying the
behavior of the digital voltage regulator.

The test bench can now be instrumented with assertions to check for proper behavior of the voltage

17

regulator. Common checks that are critical to implement in a test bench to guarantee safe operation of
the voltage regulator include —

Check for over voltage behavior; occurs during load release.

Check for under voltage behavior; occurs during load stepping.

Check for over current behavior; occurs during load stepping, might even occur during load
release.

Check over voltage fault; usually when this condition is created by the stimulus and the regulator
is unable to mitigate through regulation, the regulator is expected to shutdown.

Check under voltage fault; same explanation as over voltage fault.

Check over current fault; here the test bench generates a stimulus to step the load beyond the
maximum output load programmed in the voltage regulator. The regulator is expected to
shutdown.

The following lists a set of assertions that check for these behavior —

[17177
//Properties

[1117777777 777077777777 77777777777777777771717171717777

//Property to make sure voltage overshoots are within bounds
property voltage_ bound_max;
@(posedge clk)
disable iff(~(enable && in_ss_regulation))
voltage < regulation_voltage + max_voltage_overshoot;
endproperty

//Property to make sure voltage undershoots are within bounds
property voltage bound_min;
@(posedge clk)
disable iff(~(enable && in_ss_regulation))
voltage > regulation_voltage - min_voltage_droop;
endproperty

//Property to make sure current overshoots are within bounds
property current_bound_max;
@(posedge clk)
disable iff(~(enable && in_ss_regulation))
current < max_current_overshoot;
endproperty

//Property to check voltage slew is below max bound
property voltage slew_max_bound;
@(posedge clk)
disable iff(-(enable && in_voltage_transition))
voltage_slew < max_voltage_slew;
endproperty

. //Property to check voltage slew is above min bound

property voltage_ slew_min_bound;
@(posedge clk)
disable iff(-(enable && in_voltage_transition))
voltage_slew > min_voltage_slew;
endproperty

18

41.
42.
43.
44,
45.
46.
a47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

68.
69.
70.
71.
72.
73.
74.

//Property to chcek over voltage condition and subsequent chip shutdown
property shutdown_ov;
@(posedge clk)
detect_voltage_high |->~(in_ss_regulation | in_voltage_transition);
endproperty

//Property to chcek under voltage condition and subsequent chip shutdown
property shutdown_uv;
@(posedge clk)
detect_voltage_low |->~(in_ss_regulation | in_voltage transition);
endproperty

//Property to chcek over current condition and subsequent chip shutdown
property shutdown_oc;
@(posedge clk)
detect_current_high |->~(in_ss_regulation | in_voltage_transition);
endproperty

//Property to check over voltage condition
sequence detect_voltage_high;
voltage > regulation_voltage + max_voltage_overshoot ##(fault_response_ov)
voltage_hi_fault;
endsequence // detect_voltage_high

//property to check under voltage condition
sequence detect_voltage_low;
voltage < regulation_voltage -
min_voltage_droop ##(fault_response_uv) voltage lo_fault;
endsequence // detect_voltage low

//property to check over current condition
sequence detect_current_high;

current > max_current_overshoot ##(fault_response_oc) current_hi fault;
endsequence // detect_current_high

The above variables are defined as follows —

program asserts_real(/*AUTOARG*/
// Inputs
voltage, regulation_voltage, current, clk, enable,
in_ss_regulation, in_voltage_transition, voltage_hi_fault,
voltage_lo_fault, current_hi_fault

)5

parameter real min_voltage_droop = 0.5; //Powertrain Minimum Voltage Droop
//(Volts V)

. parameter real max_voltage_overshoot = 1.5; //Powertrain Maximum Voltage Overshoot

//(Volts V)

. parameter real max_current_overshoot = 50.00;//Powertrain Maximum Current Overshoot

// (Ampere A)

. parameter real max_voltage_slew = 5.00e3; //Powertrain Maximum Voltage Slew
//(Volts/usec)

. parameter real min_voltage_slew = 10.00e3; //Powertrain Minimum Voltage Slew
//(Volts/usec)

. parameter int fault_response_ov = 100; //DUT Over Voltage Fault Response
//(nsec)

. parameter int fault_response_uv = 100; //DUT Under Voltage Fault Response
//(nsec)

. parameter int fault_response_oc = 100; //DUT Over Current Fault Response

19

Time

Time

Time

23.

24

. parameter int

25.
26.
27.

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

input
input
input
input
input
input
input
input
input
input

sampling_period = 1000;

real voltage;

real regulation_voltage;
real current;

logic clk;

logic enable;

logic in_ss_regulation;
logic in_voltage_transition;
logic voltage_hi_fault;
logic voltage_lo_fault;
logic current_hi_fault;

//(nsec)
//Voltage Sampling Period

//(nsec)

//Instantaneous Output Voltage
//Commanded Voltage
//Instantaneous Output Current
//Sampling Clock

//Chip Enable

//Steady State Regulation Flag
//Voltage Transitioning Flag
//Detect Over Voltage Flag
//Detect Under Voltage Flag
//Detect Over Current Falg

Once these assertion based checks are implemented, it now becomes crucial to implement the proper
stimulus so that all checks are covered.

Typically in a digital voltage regulator, the control loop and fault management circuitry are
programmed with performance and functional parameters respectively. The fault management
circuitry is programed with over voltage, under voltage and over current limits. The control parameter
from the test bench side for the implementation described here is the load. The manner in which the
load is stepped (up and down) influences the response of the control loop (this includes the model of
the output filter described previously).

The load control is implemented using a load management class structure. This is illustrated in the
code segment below —

[I11ITT77 7777777777777 7777777777777777777717777117177
//Load Control Package
[1777777777777777777777777777777777777777177777777717777
package load_control_pkg;

//Load Management Class
class load_manage;

virtual load_intf.DRIVER load_cntl;

for(int ii=0; ii < steps; ii++)begin
load_cntl.val = load_cntl.val + value/steps;
$display("INFO:Ramp Load Up at time %t..",$time);
#(period);

20

function new(virtual load_intf.DRIVER load_cntl);
this.load_cntl = load_cntl;
load_cntl.val = 0.00;

endfunction // new

[1T1T7T777T 7777777777777 7771771777117
//User controlled Load Ramp(Ramp Up and Down)

[IT1T7T777 7777777777777 177771777177
task ramp_load_up(real value, int steps, int period);

25. end

26.

27. endtask // ramp_load up

28.

29. task ramp_load_down(real value, int steps, int period);
30.

31. for(int ii=0; ii < steps; ii++)begin

32. load_cntl.val = load_cntl.val - value/steps;
33. #(period);

34. end

35.

36. endtask // ramp_load_down

37.

38. endclass // load_manage

39.

40. endpackage // load_control

A simple interface connects this class to the output filter and this interface is
illustrated below —

o /1717777707777 77 707777777777 7777777177777771777771771717
2. //Load Interface

3. /11717777717 777777171777777777777717177777771777771771717177
4. interface load_intf;

5.

6. wrealldriver wload;

7. real val;

8. assign wload = val;

9.

10. modport DRIVER(output val);

11. modport RECVR(input wload);

12.

13.

14. endinterface // load_intf

So far the discussion was centered on testbench control of the load stimulus. The other important
control parameter of interest is the commanded voltage. Figure 11 illustrates a real regulator being
commanded to several voltage points (the pulse generator was removed and the actual regulator
was put in its place) in this testbench. The dac_reference is what is commanded by the digital
interface. In this case the commanded voltage is in the form of a DAC code that is written to a
voltage command register by the testbench. When a new command code is received the regulator
ramps up or down to the commanded voltage. The waveforms in Figure 11 also show what happens
to the output current when the output voltage is in transition. Without proper regulation the output
current could potentially exceed the current limit programmed in the fault management logic and
cause the regulator to shutdown (if the fault management logic works properly) or continue to
operate and cause a system failure (if the fault management logic fails to detect the over current
condition).

21

Waveform 1 - SimVision = o x

File Edit WView Explore Format Windows Help cadence
ElL~ B, R | 3 Mo iy e 1 5. Send To: Ty o0 [B]

Bo®e Bg8s & & ¥ [8 | |- | | B $ FrrRERREEHEREE®
Search Names: | Signal v/ | ~| ﬁm ﬂ'ﬂ} Search Times: | Value v/ | > 8, &

Outputicurrent
E] TimeA | = [3031 s~ %~ _E 9{_ \ Time: 5 |0 4035.96us >l k& : _ ; A
Design Browser X @ o Baselinev=0
S = FF| Cursor-Baseline v =3031us
Scope: All Avai v
S ‘0 J £~ Cursor
E-ggd waves
i
‘h 0000012D
Find: | Stringv| | | » ‘

Show contents: | In the

clk_135
clk_180

clk_225

clk_270

@ ck_315

% dac_reference[31:0]
I3 duty_cycle[15:0]
enable_clk

5

Regulation voltige
controlled]

FIFTEE

B (=0 | E |3 =0

o Click and add to waw

0 objects selected

@ %I*E |
Figure 11 Regulation of output voltage to 1.0, 0.5 and 1.5 volts

Finally it is possible (and recommended) to constrain randomize stimulus generation in an attempt to
cover the validation of the voltage regulator in extreme corners. Such corners include cases such as —

* Ramp voltage up and inject a load step during voltage transition

* Ramp voltage up and inject a load release during voltage transition

* Ramp voltage down and inject a load step during voltage transition

* Ramp voltage down and inject a load release during voltage transition
* lterate these conditions with various programmable voltage slew rates
* |terate voltage ramps with gradual / instant load step and release

As can be inferred from these cases, checking robustness of operation can easily become a challenging
task. The following code illustrates how a constraint may be written to exercise voltage ramping

concurrent with load slewing (stepping ore release) —

//Random Load and DAC Command Code Class
class randomize_load_and_cmd_voltage;

rand real r_val;
rand int r_steps;
rand int r_period;

AUV A WN R

22

7. rand int r_dac_code;

8.

9. constraint val_constraint {r_val >=10.00; r_val < 20.00;}

10. constraint steps_constraint {r_steps >=0; r_steps < 100;}

11. constraint period_constriant {r_period >= 100; r_period < 1000;}
12. constraint dac_code_constraint {r_dac_code >=50; r_dac_code < 200;}
13.

14. endclass // randomize_load

This class would be randomized and passed to the transaction object in the testbench which
would stimulate the load and command voltage code concurrently. This transaction object can
be equipped with covergroups to track coverage information.

D. Conclusion

This paper attempted to introduce the reader to a viable methodology for mixed signal verification.
Extending this approach with more verification centric objectives (particularly incorporating UVM) will
make it suitable for a rigorous digital centric mixed single testbenches. This work continues. A UVM
library is being crafted around this methodology and the author seeks reader inputs towards this effort. It
must be emphasized that the suggested approach is targeted with two goals in mind —

* A modeling and design goal — In such a case, the analog and mixed signal models / environment
would be used as tools towards designing the controller by the designer.
¢ A full digital metric driven verification goal — As was discussed.

It is important to bear in mind that the suggested approach is not a substitute for full chip simulation with
the real analog circuitry. Only a full chip simulation with the correct SPICE circuitry will guarantee proper
connectivity between the analog and digital domains. What is possible with this method is identification
of operational corner (in linear operational mode) cases and making sure that the DUT handles these
cases correctly. A properly crafted testbench will allow easy substitution of the analog /mixed signal
models with their SPICE counterpart and this seamless substitution technology exists today.

While this approach centers around a case study of a voltage regulator, it should be evident that it is
applicable for any kind of control loop simulation and verification. Finally it should be emphasized that
voltage regulators operate in extreme environments where the operational behavior becomes non-linear.
What has been presented is a vista into the realm of possibilities of verifying control systems using a full
digital approach. Work continues to extend this approach to model non-linear behavior. The authors
welcomes ideas that the reader may have.

E. Acknowledgements

The authors would like to extend his sincerest thanks to colleagues at Cadence Design Systems. Aaron
Spratt, Michael DelLanzo and Shekar Chetput took the time to review this paper and provide useful
feedback. This paper would not have been possible without encouragement from Umer Yousefzai, Adam
Sherer, Mladen Nizic and Hao Fang. Many thanks go to Venkat Sreenivas at Infineon Technologies who
nurtured the author’s interest in the area of digital control theory. Finally thanks to Michael Quadri from
Intel for providing insightful feedback.

23

F. References

[1] http://www.irf.com/product/ /N~1njelg

[2] Christophe Basso, “Designing Switch-Mode Power Supplies — SPICE Simulations and Practical
Practical Design”, McGraw-Hill Inc., 2008

[3] Christophe Basso, “Designing Control Loops for Linear and Switching Power Supplies: A Tutorial
Guide”, Artech House, 2012

[4] Abraham I. Pressman, et al, “Switching Power Supply Design”, Third Edition, McGraw-Hill Inc.,2009

[5],[6] Israel Koren, “Computer Arithmetic Algorithms”, A.K Peters Ltd., Second Edition, 2001

[7] Katshuiko Ogata, “Modern Control Engineering”, Prentice Hall, Fifth Edition, 2010

[9] Steven Chapra, et al, “Numerical Methods for Engineers”, McGraw-Hill Inc., Sixth Edition, 2010

24

