

1

A Mixed-Signal

System Design Methodology

using SystemC-AMS for

Automotive Audio Power Amplifiers

Skule Pramm, Joen Westendorp, Quino Sandifort

NXP Semiconductors, Nijmegen, the Netherlands

skule.pramm@nxp.com

joen.westendorp@nxp.com

quino.sandifort@nxp.com

Abstract— This paper presents the first System Design Methodology based on SystemC-AMS for the development

of Heterogenous Mixed-Signal Automotive Audio Power Amplifier ICs. The complexity of Automotive Audio Power

Amplifier ICs is increasing steadily due to the increasing number of features/speakers and the introduction of

functional safety. To cope with the higher application complexity, embedded software and microcontrollers are

introduced to increase flexibility. The software is usually developed post-silicon, leading to additional throughput time

and a sub-optimal system design due to compromises in the hardware-software architecture and partitioning. To

improve system quality and shorten the development cycle, the hardware and software should be developed

concurrently and the full system be verified before design freeze. Our proposed methodology has been applied

successfully to control the signal-path of a Mixed-Signal Audio Power Amplifier.

Keywords—SystemC-AMS; Mixed-Signal; Hardware; Embedded; Software; Co-development; System-Level; Design;

Verification; Methodology; Flow; Automotive; Audio; Power; Amplifier; Requirements; Model-Based Design; Modelling;

SCML; TLM; Use-Case; Functional Safety; Heterogenous; ESL; ASIC; RTI; SoC

I. INTRODUCTION

The new generation Automotive Audio Power Amplifiers ICs are fully heterogeneous systems, implementing

both low-power digital and high-power analog hardware, controlled by software/firmware running on an embedded

microcontroller. The complexity of these systems is steadily increasing [6][8][9] due to the increasing number of

features, like e.g. more speakers/channels, increasing output power, advanced feedback, diagnostics, protections,

microcontrollers, embedded software and functional safety. Existing languages and tools such as Mathematica,

Matlab/Simulink and Verilog-AMS do not offer a single, consistent framework in which complex heterogeneous

systems can be designed.

The overall chip development is multi-disciplinary, and traditionally different disciplines use different

languages, tools and environments. The lack of a common modelling language leads to inconsistent functionality

descriptions (e.g. models) at different disciplines, making it difficult to reach the more demanding automotive

quality standards. System and IC architects typically use a graphical block diagram to draw the System and HW

architecture, but this block diagram is completely disconnected from the design environment where the models and

design are created, verified and integrated. Multiple analog models of the same IP are created in different modelling

languages in different environments, making it difficult to keep them consistent. For example, a Simulink and

VerilogAMS model cannot be simulated using a single simulation kernel. Co-simulation is possible, but complex,

inconvenient and slow.

Therefore the goal of the new System Design Methodology is to improve the system design, product quality

and reduce the time to market by using a Model-Based Design (MBD) [5] philosophy, where one System Model is

used as the main communication medium between the different disciplines in the design team. The System Model

also enables early System Verification, leading to less tapeouts and hardware debugging and therefore to a reduced

time-to-market.

2

This paper is structured as follows. Section II introduces related work. Section III presents the methodology

requirements. Section IV presents the new System Design Methodology including the Design Flow. Section V

presents a simplified System-Level Model of an Automotive Audio Power Amplifier developed using our proposed

Methodology and shows some preliminary simulation results. Finally, Section VI presents the conclusions and

opportunities for future work.

II. RELATED WORK

Our proposed System Design Methodology is based on [7] that presents an ESL top-down design methodology

for mixed-signal systems using SystemC-AMS, but extends it by adding software, a microcontroller and a testbench

environment, and applies it to a different domain, namely the Automotive Audio Power Amplifier domain.

III. REQUIREMENTS

To reach the goal described in the introduction, the Top-Down System Design Methodology should cover the

following use-cases:

• Full System Verification

o Improves the product quality, because all sub-systems are verified together pre-silicon.

o Reduces the Time-to-Market, because unnecessary spins are avoided.

• Concurrent Hardware/Software Development

o Improves the system design, because hardware/software architecture and partitioning

choices are made upfront before the implementation phase is entered.

o Reduces the Time-to-Market, because activities run in parallel.

• Executable Specification

o Improves the system design, because the full system can be simulated at any point in time

during the development cycle.

o Improves the product quality, because different disciplines share their understanding of the

system in the system model. This avoids misinterpretation of text documents.

IV. METHODOLOGY

The proposed System Design Methodology consists of a model architecture, a modelling language, a test

infrastructure, a modelling library and a design flow. These are all described in the coming paragraphs.

A. System Model Architecture

The architecture of a typical state-of-the-art Audio Power Amplifier consists of three domains:

Software&Control, Digital Hardware and Analog Hardware, as illustrated in Figure 1. The Software&Control

domain controls and receives status and diagnostic information from the digital and analog signal-path, and

typically consists of a microcontroller, memory and a bus. The Digital Hardware domain does digital signal

processing, like e.g. TDM/I2S reception, filtering, interpolation, amplification and digital PWM-modulation. The

Analog Hardware domain does analog signal processing, like e.g. power amplification, protection and filtering.

Looking at Figure 1, the signal-path starts from the Stimuli Generator ① (an audio source on the same or a

different IC) that generates a digital audio stream. The audio signal then passes through the digital signal processing

② and analog signal processing ③ in the Device-Under-Test (DUT) ⑨ and finally ends in the loudspeaker ④. The

digital and analog signal processing is controlled from embedded control software ⑤ that is connected to a

hardware-software interface ⑦ via a bus ⑥. The hardware-software interface ⑦ communicates with the digital

and analog signal processing circuitry via a control path ⑧ implemented as a bus or a dedicated interface. Finally,

the three domains are instantiated in a Testbench ⑩.

3

Stimuli
Gen

Digital
Processing

Analog
Processing

S
p

e
a
k
e
r

Bus

Hardware

Control

Software

Signal

Path

Control

Path

Testbench

4

321

5

6

8

9DUT

Software HW-SW

Interface

7

10

Analog Signal-Path

HW-SW Interface

Digital Signal-Path

Software

DUT

Legend
Testbench

Figure 1. System Model Architecture with the signal-path at the bottom from left to right, and control-path from the top to the bottom.

B. SystemC & SystemC-AMS

The SystemC [1] and SystemC-AMS [2][3] languages are used to model the mixed-signal signal-path, due to

the following reasons:

1) Use-cases: SystemC and SystemC-AMS are the only languages that can cover all the use-cases in one

model.

2) C-based: SystemC and SystemC-AMS are both based on C, and therefore the full system including

software and analog- and digital hardware can be described in only one language. This enables quick

Full System Verification using only one simulator and it therefore avoids slow and complex co-

simulation. The high simulation speed means that the full system can be verified over a lot of user

scenarios within a reasonable period of time. The hardware model (Virtual Prototype) in SystemC and

SystemC-AMS can be used by the Software team to verify if their software is working correctly with the

hardware, while the software in C/C++ can be used by the Hardware team to verify if their hardware is

working correctly with the software. This enables Concurrent Hardware/Software Development. The

SystemC-AMS model represents the system requirements specification and is used as a golden reference

for model refinement down-to implementation level. The SystemC-AMS model is an Executable

Specification, because it can be simulated (in contrast to a text-based specification).

3) Models of Computation (MoC): SystemC and SystemC-AMS provides a wide range of Models of

Computation, like Discrete Event (DE), Timed Data Flow (TDF), Linear Signal Flow (LSF) and

Electrical Linear Network (ELN). The different MoC makes it easy to describe functionality on different

abstraction levels in the Top-Down Design Flow, from fast virtual prototypes for early software

development and algorithm design, via architecture-level and RTL-level (e.g. VHDL and

SystemVerilog), downto transistor-level. Using different MoC for different sub-systems, enables an

optimal trade-off between simulation speed and accuracy.

4) Industry: SystemC and SystemC-AMS are heavily used in the industry, making it possible to learn from

others, reuse IP, share knowledge and cooperate.

4

5) IEEE: SystemC and SystemC-AMS are standard open-source IEEE languages, that are supported by many

EDA tools and makes refinement downto implementation-level easier.

C. Reusable Test Infrastructure (RTI)

The Reusable Test Infrastructure (RTI) [10] is a software-configurable Testbench based on SystemC that can

generate analog interfaces (e.g. signal generators, loads), monitors, checkers, microcontrollers (e.g. ARM

Fastmodel), memories (e.g. RAM/ROM), timers, busses (e.g. Transaction Level Modelling (TLM)) and HW-SW

Interfaces (e.g. SCML registers) to control the DUT. Verification or Application Software is compiled into the

memories and executed by the microcontroller on the DUT without any knowledge about the Testbench itself.

D. Design Flow

The Design Flow is illustrated in Figure 2 and it consist of the following (concurrent) steps. Step 1 is to create

a SW Specification ① and SW-code ②. Step 2 is to create a HW-SW Interface Specification ③ which is used

to generate the SW header file ④ and HW-SW interface ⑤. Step 3 is to create a Model Specification ⑥ and create

SystemC-AMS models ⑦ of the mixed-signal Signal-Path. Step 4 is to integrate the HW-SW interface and

SystemC-AMS models together in the HW toplevel ⑧. The DUT instantiates the software and hardware ⑨. A

Testbench Specification ⑩ is created to generate the Controller ⑪ which is instantiated with the DUT in the

Testbench ⑫. Finally the Testbench is simulated, analyzed and debugged ⑬.

Simulate & Verify

SW headers HW-SW Interface
SystemC-AMS

Models

Testbench

HW-SW Interface SystemC-AMS Testbench Generation

SW code

SW creation

HW Toplevel

42 5 7

8

SW & HW

Digital HW

Spreadsheet..

AMS HW

Software

Legend

DUT

SW Specification
HW-SW Interface

Specification
Model Specification RTI Specification

1 3 6

9

10

12

Controller11

13

Testbench

Figure 2. Design Flow

E. SystemC Modeling Library (SCML)

The SystemC Modeling Library (SCML) [4] is a library used to describe HW-SW interfaces both on a high

abstraction-level (e.g. SystemC TLM) without fixing the physical interface, and low abstraction-level (e.g. SystemC

registers). SCML integrates easily with our SystemC-AMS model, because it is also based on SystemC.

V. AUDIO POWER AMPLIFIER IMPLEMENTATION EXAMPLE

To demonstrate the feasibility of our proposed methodology, we have built a System Model of a simplified

Automotive Audio Power Amplifier using the ingredients from the previous chapter. Our goal is to use software to

control the gain of the signal-path.

A. Audio Power Amplifier Architecture

The Audio Power Amplifier architecture is shown in Figure 3 and it is based on the System Model Architecture

shown in Figure 1.

5

SineGen

TDF

ELN

DE

SCML

TDF

C/C++

Verification

Software

C/C++

RTI Testbench
SystemC

SC-AMS

RTI

1

8

Freq.
Ampl.

Legend

Test
case

Power
Stage

ELN

Gain
TDF

Output
Filter
ELN

PWM
TDF

-

+

S
p

e
a
k
e
r

 Feedback ADC

TDF

TLM
bus

Signal Path

ROM

uC
ARM

fastmodel

SW

headers

C/C++

E
L
N

Reg

SCML

Timer

RAM

432

5

6

7

9 10

11

12

13

14

15

16

Speaker
parametersHardware

Software

DUT

Figure 3. Audio Power Amplifier Architecture including Testbench (grey), Control-Software domain (green), Signal-Path domain

(orange/red) and a register (yellow) on the Software-Hardware interface. The Signal-Path goes from the stimuli generator bottom left
(orange), via the controlled gain-block, PWM-modulator, powerstage and output filter, to the speaker load at the bottom right. The Feedback

ADC closes the controlloop.

The signal-path starts with a Sinewave Generator ① that generates a fixed frequency/amplitude sinewave that

is amplified in the Variable Gain block ②. The amplified sine is sent to a PWM-modulator ③ which converts the

sine into a PWM signal for the Powerstage ④. The Powerstage amplifies the PWM and sends it through the Output

Filter ⑥ to filter out the PWM carrier before going to the speaker ⑦. To improve audio quality, the Powerstage

output is fed back to the PWM-modulator via an ADC ⑤. The low-power digital signal-path is modelled in

SystemC-AMS TDF iso. SystemC DE, due to real-time requirements for the feedback loop and for high simulation

speed. TDF simulates the loop quicker, because it calculates the loop schedule before starting the simulator. This

in contrast to DE, which calculates the schedule during simulation, resulting in multiple iterations at the same time

point causing delta-cycles. The high-power analog signal-path on the other hand, is modelled in ELN for high

accuracy analog performance (analog limits the audio performance) and a close link to the analog implementation

and analog design team.

The control-path starts with Verification Software ⑧ written in C/C++ that communicates with the

Microcontroller ⑩ via the Software Headers ⑨. The verification software controls the gain of the signal-path

and a code snippet is shown in Figure 4.

6

Figure 4. Verification software code snippet

The verification software may also control e.g. the frequency and amplitude of the stimuli generator, the speaker

parameters and include monitors and checkers to enable system-level verification. The RTI is used to generate the

Testbench, Software Header file, Microcontroller, RAM, ROM, Timer, TLM-bus and Register. The

Microcontroller ⑩ uses an ARM Fastmodel, while the RAM ⑪ and ROM ⑫ use generic TLM memory models.

The Timer ⑬ is used by software to control the delay between commands. The bus ⑭ is implemented in TLM on

a high abstraction level to make it flexible. The Hardware-Software Interface Specification is used to generate

the Software Header file ⑨ and a register ⑮ in SCML using RTI [4]. The Hardware-Software Interface

Specification is shown in Figure 5.

Figure 5. Hardware-Software Interface Specification for the Gain block

The Software header file is generated from the Hardware-Software Interface Specification, and a code snippet

is shown in Figure 6.

7

Figure 6. Software header file code snippet

The register model is generated in SCML based on the Hardware-Software Interface Specification. A code

snippet of the xml-description is shown in Figure 7.

Figure 7. Register model code snippet (xml)

To simulate, first the Verification Software is compiled into the RAM/ROM, then the Microcontroller sets the

register via the TLM-bus, and finally the register controls the Gain block via a dedicated interface.

B. Design Flow

The Design Flow is illustrated in Figure 8 and it is based on the Design Flow in Figure 2. The flow consist of

the following steps: Step 1 is to create the SW Specification ① which is used to create SW code ②. Step 2 is to

create the Hardware-Software Interface Specification ③ in a spreadsheet and use it to generate the software header

file ④ and register (SCML) ⑤. Step 3 is to create a Model Specification ⑥ and create SystemC-AMS models ⑦

of the mixed-signal Signal-Path. Step 4 is to integrate the SCML register and SystemC-AMS models together in

the HW toplevel ⑧. Step 5 is to create an RTI Specification ⑨ which is used to create the Microcontroller ⑩,

RAM/ROM ⑪, Timer ⑫, the DUT ⑬ and the Testbench ⑭. Finally the Testbench is simulated, analyzed and

debugged ⑮.

Simulate & Verify

SW headers SCML register
SystemC-AMS

Models

Testbench

Toplevel SystemC-AMS

Register Generation SystemC-AMS Testbench Generation

SW code

SW creation

uC
 RAM
 ROM

 Timer

DUT

42 5 7

8

10 11 12

13

14

15

aut aut

aut aut
aut

aut aut aut

aut

aut

aut

aut

man

man

man man man

man

manman

man

HW & SW

SystemC

SCML

SystemC-AMS

C/C++

Spreadsheet..

Legend
SW Specification

1

HW-SW Interface

Specification
3

Model Specification
6

RTI Specification
9

man

aut

Manually

Automatic

Testbench

Figure 8. Design Flow for the Audio Power Amplifier

8

C. Audio Power Amplifier Signal-Path schematic

The schematic of the Audio Power Amplifier Signal-Path is shown in Figure 9. All blocks are modelled in

SystemC-AMS except for the register which uses SCML. The signal-path goes from the signal source ① top left ,

via the gain block ② controlled by the register ③ and TLM bus ④ bottom left. The low-power signal then passes

through the PWM-modulator ⑤ and power stages ⑥ to the LC-filter ⑦ and Speaker load ⑧ at the right side. The

feedback ⑨ is found in the middle of the schematic.

Figure 9. Audio Power Amplifier Signal-Path schematic

D. Design Hierarchy

The Design Hierarchy is shown in Figure 10 and Figure 11. The toplevel is called chip_core ⓪ and it consists

of six Sub-Systems: ① top_eln is the SystemC-AMS model with the Signal-Path, ② u_bus is the TLM-bus, ③

u_cpu is the ARM fastmodel, ④ u_ram is the RAM, ⑤ u_rom is the ROM, and u_tim ⑥ is the timer

Figure 10. Design
hierarchy

Figure 11. Toplevel schematic including SystemC-AMS model, CPU, TLM-bus, Timer, RAM and ROM.

E. Simulation Results

The full system is linked and simulated on the commandline. The simulation waveforms in Figure 12 show that

the amplitude of the differential output voltage (green waveform third from the bottom) increases correctly with

the increasing gain set by software. This 12 ms simulation takes approx. 12 seconds wall clock time to run, giving

a simulation speed of 1ms/s. A dozen scenarios are foreseen for the full audio power amplifier chip to verify the

different functions, and this simulation speed is sufficient for short scenarios (millisecond range) like e.g. boot,

startup, modulation schemes, diagnostics, protections, shutdown. For long scenarios (seconds range) like e.g. a

boot-startup-shutdown scenario or a scenario where a full song/speech-fragment is sent through the amplifier,

further optimization of the models is anticipated.

9

Figure 12. Simulation results showing from top to bottom the sine audio input (red), amplified sine (yellow), register settings (light green
staircase), differential output load voltage (green), PWM carrier (turquoise) and PWM signal (blue).

VI. CONCLUSIONS

A new ESL Design Methodology based on a Model-Based Design Philosophy, SystemC-AMS and a

standardized approach for register modeling and testing (RTI), has been presented. The requirements for the

methodology were identified and all parts of the methodology described. The methodology has been applied

successfully to the creation of a System Model of an Automotive Audio Power Amplifier, where software is used

to control the gain of the signal-path. The current flow is partly automated, so full automation is a goal for future

work.

REFERENCES

[1] Accellera, "Standard SystemC Language Reference Manual", https://www.accellera.org/downloads/standards/systemc/

[2] Accellera, "Standard SystemC AMS extensions 2.0 Language Reference Manual",

https://www.accellera.org/images/downloads/standards/systemc/SystemC_AMS_2_0_LRM.pdf

[3] Accellera Systems Initiative, "SystemC AMS 2.0 Extensions", https://www.accellera.org/community/systemc/about-systemc-ams

[4] Synopsys, "SystemC TLM Models", https://www.synopsys.com/verification/virtual-prototyping/virtual-prototyping-models/systemc-

tlm-models.html (SCML)

[5] Roger Aarenstrup, "Model-Based Design", The MathWorks, 2015, https://nl.mathworks.com/campaigns/offers/managing-model-

based-design.html.

[6] M. Barnasconi, M. Dietrich, K. Einwich, T. Vörtler, J-P. Chaput, M-M. Louérat, F. Pêcheux, Z. Wang, P. Cuenot, I. Neumann, T.

Nguyen, R. Lucas and E. Vaumorin, "UVM-SystemC-AMS Framework for System-Level Verification and Validation of Automotive

use Cases", IEEE Design & Test 2015, http://ieeexplore.ieee.org.

[7] M. Barnasconi and S. Adhikari, "ESL Design in SystemC AMS", DAC 2017.

[8] J.S. Barros, V.H. Schulz and D.V. Lettnin, "An Adaptive Closed-loop Verification Approach in UVM-SystemC for AMS Circuits",

Symposium on Integrated Circuits and Systems Design (SBCCI) 2018, https://ieeexplore.ieee.org/document/8533229.

[9] T. Vörtler, K. Einwich, "Using Constraints for SystemC AMS Design and Verification", DVCon Europe 2018.

[10] E. de Kock, J. Verhaegh and S. Amougou, "A Configurable Test Infrastructure using a Mixed-Language and Mixed-Level IP

Integration IP-XACT Flow", CODES+ISSS 2012.

