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Abstract— This paper presents the first System Design Methodology based on SystemC-AMS for the development 

of Heterogenous Mixed-Signal Automotive Audio Power Amplifier ICs. The complexity of Automotive Audio Power 

Amplifier ICs is increasing steadily due to the increasing number of features/speakers and the introduction of 

functional safety. To cope with the higher application complexity, embedded software and microcontrollers are 

introduced to increase flexibility. The software is usually developed post-silicon, leading to additional throughput time 

and a sub-optimal system design due to compromises in the hardware-software architecture and partitioning. To 

improve system quality and shorten the development cycle, the hardware and software should be developed 

concurrently and the full system be verified before design freeze. Our proposed methodology has been applied 

successfully to control the signal-path of a Mixed-Signal Audio Power Amplifier. 
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I. INTRODUCTION 

The new generation Automotive Audio Power Amplifiers ICs are fully heterogeneous systems, implementing 

both low-power digital and high-power analog hardware, controlled by software/firmware running on an embedded 

microcontroller. The complexity of these systems is steadily increasing [6][8][9] due to the increasing number of 

features, like e.g. more speakers/channels, increasing output power, advanced feedback, diagnostics, protections, 

microcontrollers, embedded software and functional safety. Existing languages and tools such as Mathematica, 

Matlab/Simulink and Verilog-AMS do not offer a single, consistent framework in which complex heterogeneous 

systems can be designed. 

The overall chip development is multi-disciplinary, and traditionally different disciplines use different 

languages, tools and environments. The lack of a common modelling language leads to inconsistent functionality 

descriptions (e.g. models) at different disciplines, making it difficult to reach the more demanding automotive 

quality standards. System and IC architects typically use a graphical block diagram to draw the System and HW 

architecture, but this block diagram is completely disconnected from the design environment where the models and 

design are created, verified and integrated. Multiple analog models of the same IP are created in different modelling 

languages in different environments, making it difficult to keep them consistent. For example, a Simulink and 

VerilogAMS model cannot be simulated using a single simulation kernel. Co-simulation is possible, but complex, 

inconvenient and slow.  

Therefore the goal of the new System Design Methodology is to improve the system design, product quality 

and reduce the time to market by using a Model-Based Design (MBD) [5] philosophy, where one System Model is 

used as the main communication medium between the different disciplines in the design team. The System Model 

also enables early System Verification, leading to less tapeouts and hardware debugging and therefore to a reduced 

time-to-market. 
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This paper is structured as follows. Section II introduces related work. Section III presents the methodology 

requirements. Section IV presents the new System Design Methodology including the Design Flow. Section V 

presents a simplified System-Level Model of an Automotive Audio Power Amplifier developed using our proposed 

Methodology and shows some preliminary simulation results. Finally, Section VI presents the conclusions and 

opportunities for future work. 

 

II. RELATED WORK 

Our proposed System Design Methodology is based on [7] that presents an ESL top-down design methodology 

for mixed-signal systems using SystemC-AMS, but extends it by adding software, a microcontroller and a testbench 

environment, and applies it to a different domain, namely the Automotive Audio Power Amplifier domain. 

 

III. REQUIREMENTS 

To reach the goal described in the introduction, the Top-Down System Design Methodology should cover the 

following use-cases: 

• Full System Verification 

o Improves the product quality, because all sub-systems are verified together pre-silicon. 

o Reduces the Time-to-Market, because unnecessary spins are avoided. 

• Concurrent Hardware/Software Development 

o Improves the system design, because hardware/software architecture and partitioning 

choices are made upfront before the implementation phase is entered. 

o Reduces the Time-to-Market, because activities run in parallel.  

• Executable Specification 

o Improves the system design, because the full system can be simulated at any point in time 

during the development cycle. 

o Improves the product quality, because different disciplines share their understanding of the 

system in the system model. This avoids misinterpretation of text documents. 

 

IV. METHODOLOGY 

The proposed System Design Methodology consists of a model architecture, a modelling language, a test 

infrastructure, a modelling library and a design flow. These are all described in the coming paragraphs. 

A. System Model Architecture 

The architecture of a typical state-of-the-art Audio Power Amplifier consists of three domains:  

Software&Control, Digital Hardware and Analog Hardware, as illustrated in Figure 1. The Software&Control 

domain controls and receives status and diagnostic information from the digital and analog signal-path, and 

typically consists of a microcontroller, memory and a bus. The Digital Hardware domain does digital signal 

processing, like e.g. TDM/I2S reception, filtering, interpolation, amplification and digital PWM-modulation. The 

Analog Hardware domain does analog signal processing, like e.g. power amplification, protection and filtering. 

Looking at Figure 1, the signal-path starts from the Stimuli Generator ① (an audio source on the same or a 

different IC) that generates a digital audio stream. The audio signal then passes through the digital signal processing 

② and analog signal processing ③ in the Device-Under-Test (DUT) ⑨ and finally ends in the loudspeaker ④. The 

digital and analog signal processing is controlled from embedded control software ⑤ that is connected to a 

hardware-software interface ⑦ via a bus ⑥. The hardware-software interface ⑦ communicates with the digital 

and analog signal processing circuitry via a control path ⑧ implemented as a bus or a dedicated interface. Finally, 

the three domains are instantiated in a Testbench ⑩. 
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Figure 1. System Model Architecture with the signal-path at the bottom from left to right, and control-path from the top to the bottom. 

B. SystemC & SystemC-AMS 

The SystemC [1] and SystemC-AMS [2][3] languages are used to model the mixed-signal signal-path, due to 

the following reasons: 

1) Use-cases: SystemC and SystemC-AMS are the only languages that can cover all the use-cases in one 

model. 

2) C-based: SystemC and SystemC-AMS are both based on C, and therefore the full system including 

software and analog- and digital hardware can be described in only one language. This enables quick 

Full System Verification using only one simulator and it therefore avoids slow and complex co-

simulation. The high simulation speed means that the full system can be verified over a lot of user 

scenarios within a reasonable period of time. The hardware model (Virtual Prototype) in SystemC and 

SystemC-AMS can be used by the Software team to verify if their software is working correctly with the 

hardware, while the software in C/C++ can be used by the Hardware team to verify if their hardware is 

working correctly with the software. This enables Concurrent Hardware/Software Development. The 

SystemC-AMS model represents the system requirements specification and is used as a golden reference 

for model refinement down-to implementation level. The SystemC-AMS model is an Executable 

Specification, because it can be simulated (in contrast to a text-based specification). 

3) Models of Computation (MoC): SystemC and SystemC-AMS provides a wide range of Models of 

Computation, like Discrete Event (DE), Timed Data Flow (TDF), Linear Signal Flow (LSF) and 

Electrical Linear Network (ELN). The different MoC makes it easy to describe functionality on different 

abstraction levels in the Top-Down Design Flow, from fast virtual prototypes for early software 

development and algorithm design, via architecture-level and RTL-level (e.g. VHDL and 

SystemVerilog), downto transistor-level. Using different MoC for different sub-systems, enables an 

optimal trade-off between simulation speed and accuracy. 

4) Industry: SystemC and SystemC-AMS are heavily used in the industry, making it possible to learn from 

others, reuse IP, share knowledge and cooperate. 
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5) IEEE: SystemC and SystemC-AMS are standard open-source IEEE languages, that are supported by many 

EDA tools and makes refinement downto implementation-level easier. 

C. Reusable Test Infrastructure (RTI) 

The Reusable Test Infrastructure (RTI) [10] is a software-configurable Testbench based on SystemC that can 

generate analog interfaces (e.g. signal generators, loads), monitors, checkers, microcontrollers (e.g. ARM 

Fastmodel), memories (e.g. RAM/ROM), timers, busses (e.g. Transaction Level Modelling (TLM)) and HW-SW 

Interfaces (e.g. SCML registers) to control the DUT. Verification or Application Software is compiled into the 

memories and executed by the microcontroller on the DUT without any knowledge about the Testbench itself. 

D. Design Flow 

The Design Flow is illustrated in Figure 2 and it consist of the following (concurrent) steps. Step 1 is to create 

a SW Specification ① and SW-code ②. Step 2 is to create a HW-SW Interface Specification ③ which is used 

to generate the SW header file ④ and HW-SW interface ⑤. Step 3 is to create a Model Specification ⑥ and create 

SystemC-AMS models ⑦ of the mixed-signal Signal-Path. Step 4 is to integrate the HW-SW interface and 

SystemC-AMS models together in the HW toplevel ⑧. The DUT instantiates the software and hardware ⑨. A 

Testbench Specification ⑩ is created to generate the Controller ⑪ which is instantiated with the DUT in the 

Testbench ⑫. Finally the Testbench is simulated, analyzed and debugged ⑬. 
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Figure 2. Design Flow 

E. SystemC Modeling Library (SCML) 

The SystemC Modeling Library (SCML) [4] is a library used to describe HW-SW interfaces both on a high 

abstraction-level (e.g. SystemC TLM) without fixing the physical interface, and low abstraction-level (e.g. SystemC 

registers). SCML integrates easily with our SystemC-AMS model, because it is also based on SystemC. 

V. AUDIO POWER AMPLIFIER IMPLEMENTATION EXAMPLE 

To demonstrate the feasibility of our proposed methodology, we have built a System Model of a simplified 

Automotive Audio Power Amplifier using the ingredients from the previous chapter. Our goal is to use software to 

control the gain of the signal-path. 

A. Audio Power Amplifier Architecture 

The Audio Power Amplifier architecture is shown in Figure 3 and it is based on the System Model Architecture 

shown in Figure 1. 



 

5 

 

SineGen

TDF

ELN

DE

SCML

TDF

C/C++

Verification

Software

C/C++

RTI Testbench
SystemC

SC-AMS

RTI

1

8

Freq.
Ampl.

Legend

Test
case

Power
Stage

ELN

Gain
TDF

Output 
Filter
ELN

PWM
TDF

-

+

S
p

e
a
k
e
r

 Feedback ADC

TDF

TLM 
bus

Signal Path

ROM

uC
ARM

fastmodel

SW 

headers

C/C++

E
L
N

Reg

SCML

Timer

RAM

432

5

6

7

9 10

11

12

13

14

15

16

Speaker 
parametersHardware

Software

DUT

 

Figure 3. Audio Power Amplifier Architecture including Testbench (grey), Control-Software domain (green), Signal-Path domain 

(orange/red) and a register (yellow) on the Software-Hardware interface. The Signal-Path goes from the stimuli generator bottom left 
(orange), via the controlled gain-block, PWM-modulator, powerstage and output filter, to the speaker load at the bottom right. The Feedback 

ADC closes the controlloop. 

The signal-path starts with a Sinewave Generator ① that generates a fixed frequency/amplitude sinewave that 

is amplified in the Variable Gain block ②. The amplified sine is sent to a PWM-modulator ③ which converts the 

sine into a PWM signal for the Powerstage ④. The Powerstage amplifies the PWM and sends it through the Output 

Filter ⑥ to filter out the PWM carrier before going to the speaker ⑦. To improve audio quality, the Powerstage 

output is fed back to the PWM-modulator via an ADC ⑤. The low-power digital signal-path is modelled in 

SystemC-AMS TDF iso. SystemC DE, due to real-time requirements for the feedback loop and for high simulation 

speed. TDF simulates the loop quicker, because it calculates the loop schedule before starting the simulator. This 

in contrast to DE, which calculates the schedule during simulation, resulting in multiple iterations at the same time 

point causing delta-cycles. The high-power analog signal-path on the other hand, is modelled in ELN for high 

accuracy analog performance (analog limits the audio performance) and a close link to the analog implementation 

and analog design team. 

The control-path starts with Verification Software ⑧ written in C/C++ that communicates with the 

Microcontroller ⑩ via the Software Headers ⑨. The verification software controls the gain of the signal-path 

and a code snippet is shown in Figure 4. 
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Figure 4. Verification software code snippet 

The verification software may also control e.g. the frequency and amplitude of the stimuli generator, the speaker 

parameters and include monitors and checkers to enable system-level verification. The RTI is used to generate the 

Testbench, Software Header file, Microcontroller, RAM, ROM, Timer, TLM-bus and Register. The 

Microcontroller ⑩ uses an ARM Fastmodel, while the RAM ⑪ and ROM ⑫ use generic TLM memory models. 

The Timer ⑬ is used by software to control the delay between commands. The bus ⑭ is implemented in TLM on 

a high abstraction level to make it flexible. The Hardware-Software Interface Specification is used to generate 

the Software Header file ⑨ and a register ⑮ in SCML using RTI [4]. The Hardware-Software Interface 

Specification is shown in Figure 5. 

 

 

Figure 5. Hardware-Software Interface Specification for the Gain block 

The Software header file is generated from the Hardware-Software Interface Specification, and a code snippet 

is shown in Figure 6. 
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Figure 6. Software header file code snippet 

The register model is generated in SCML based on the Hardware-Software Interface Specification. A code 

snippet of the xml-description is shown in Figure 7. 

 

Figure 7. Register model code snippet (xml) 

To simulate, first the Verification Software is compiled into the RAM/ROM, then the Microcontroller sets the 

register via the TLM-bus, and finally the register controls the Gain block via a dedicated interface. 

B. Design Flow 

The Design Flow is illustrated in Figure 8 and it is based on the Design Flow in Figure 2. The flow consist of 

the following steps: Step 1 is to create the SW Specification ① which is used to create SW code ②. Step 2 is to 

create the Hardware-Software Interface Specification ③ in a spreadsheet and use it to generate the software header 

file ④ and register (SCML) ⑤. Step 3 is to create a Model Specification ⑥ and create SystemC-AMS models ⑦ 

of the mixed-signal Signal-Path. Step 4 is to integrate the SCML register and SystemC-AMS models together in 

the HW toplevel ⑧. Step 5 is to create an RTI Specification ⑨ which is used to create the Microcontroller ⑩, 

RAM/ROM ⑪, Timer ⑫, the DUT ⑬ and the Testbench ⑭. Finally the Testbench is simulated, analyzed and 

debugged ⑮. 
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Figure 8. Design Flow for the Audio Power Amplifier 
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C. Audio Power Amplifier Signal-Path schematic 

The schematic of the Audio Power Amplifier Signal-Path is shown in Figure 9. All blocks are modelled in 

SystemC-AMS except for the register which uses SCML. The signal-path goes from the signal source ① top left , 

via the gain block ② controlled by the register ③ and TLM bus ④ bottom left. The low-power signal then passes 

through the PWM-modulator ⑤ and power stages ⑥ to the LC-filter ⑦ and Speaker load ⑧ at the right side. The 

feedback ⑨ is found in the middle of the schematic. 

 

 
Figure 9. Audio Power Amplifier Signal-Path schematic 

D. Design Hierarchy 

The Design Hierarchy is shown in Figure 10 and Figure 11. The toplevel is called chip_core ⓪ and it consists 

of six Sub-Systems: ① top_eln is the SystemC-AMS model with the Signal-Path, ② u_bus is the TLM-bus, ③ 

u_cpu is the ARM fastmodel, ④ u_ram is the RAM, ⑤ u_rom is the ROM, and u_tim ⑥ is the timer 

 

 

Figure 10. Design 
hierarchy 

 

Figure 11. Toplevel schematic including SystemC-AMS model, CPU, TLM-bus, Timer, RAM and ROM. 

E. Simulation Results 

The full system is linked and simulated on the commandline. The simulation waveforms in Figure 12 show that 

the amplitude of the differential output voltage (green waveform third from the bottom) increases correctly with 

the increasing gain set by software. This 12 ms simulation takes approx. 12 seconds wall clock time to run, giving 

a simulation speed of 1ms/s. A dozen scenarios are foreseen for the full audio power amplifier chip to verify the 

different functions, and this simulation speed is sufficient for short scenarios (millisecond range) like e.g. boot, 

startup, modulation schemes, diagnostics, protections, shutdown. For long scenarios (seconds range) like e.g. a 

boot-startup-shutdown scenario or a scenario where a full song/speech-fragment is sent through the amplifier, 

further optimization of the models is anticipated. 
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Figure 12. Simulation results showing from top to bottom the sine audio input (red), amplified sine (yellow), register settings (light green 
staircase), differential output load voltage (green), PWM carrier (turquoise) and PWM signal (blue). 

 

VI. CONCLUSIONS 

A new ESL Design Methodology based on a Model-Based Design Philosophy, SystemC-AMS and a 

standardized approach for register modeling and testing (RTI), has been presented. The requirements for the 

methodology were identified and all parts of the methodology described. The methodology has been applied 

successfully to the creation of a System Model of an Automotive Audio Power Amplifier, where software is used 

to control the gain of the signal-path. The current flow is partly automated, so full automation is a goal for future 

work. 
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