
Mixed Signal Assertion-Based Verification
Prabal Bhattacharya

Cadence Design Systems, Inc
2655 Seely Ave, B10

San Jose, CA
+1 408 9431234

prabal@cadence.com

Don O’Riordan
Cadence Design Systems, Inc

2655 Seely Ave, B10
San Jose, CA

+1 408 9431234

riordan@cadence.com

Walter Hartong
Cadence Design Systems, Inc

Mozartstrasse 2
D - 85622 Feldkirchen bei München

+ 49.0.89.4563.7770

hartong@cadence.com

ABSTRACT

The increase in mixed-signal content - both in size and complexity
– of an SoC demands a change in the existing mixed-signal
verification techniques. Although some ad-hoc practices exist
today for analog or mixed-signal verification, none of these
methods scale to the complex circuit conditions that analog and
mixed-signal verification tasks encounter. In general, it is
perceived that the verification system for a mixed-signal SoC will
need to leverage metric-driven verification techniques that are
well established in the digital verification domain for quite some
time now and extend them to address the requirements of
verifying the analog and mixed-signal content of the SoC.

As part of this thought, this paper introduces the concept of how
PSL and SVA - the two most widely used IEEE standards for
specifying assertion - can be extended to model an analog/mixed-
signal assertion in a natural way without compromising the
verification goals. This approach has several long term benefits:

• By extending PSL and SVA to work with mixed-signal
languages and semantics, we will be able to leverage the
existing rich features that are standard in Assertion
Based Verification, such as coverage, in a natural way.

• There is a growing need for analog and mixed-signal
verification to be visible to the overall system
verification environment. As of now, there is a lack of
visibility into the verification tasks specified and
covered in the analog or mixed-signal sub-system. By
using a consistent language and use model from the
pure digital to mixed-signal representation, such
visibility and information sharing would be natural.

In discussing the PSL and SVA extensions required to support, we
discuss the specifics of how the Boolean layer of the PSL
language can incorporate useful aspects of Verilog-AMS to model
analog and mixed-signal circuit behavior. We also discuss a smart
value access methodology that allows System-Verilog testbenches
to be able to use analog quantities such as voltage, current,
dissipated power or operating point parameters in System-Verilog
Assertions. Finally, we explain these concepts with the aid of a
mixed-signal model.

Keywords
Assertions, Verification, ABV, PSL, SVA, VHDL, Verilog,
Verilog-A, Verilog-AMS, VHDL-AMS, Mixed-Signal

1. INTRODUCTION
Assertions, by definition, capture the intended behavior of a
design. Assertion Based Verification (ABV) is a powerful

verification approach which has proven to help digital IC
architects, designers, and verification engineers improve design
quality and reduce time to market. Assertions are written both
during development of the design and the verification
environment. Both designers and verification engineers can be
involved in identifying requirements and capturing them as
assertions.

A designer for a given block enables assertion-based
verification of the block by:

• Locating or writing assertions that reflect the properties
of the interface between that block and the rest of the
design (e.g. the red colored assertions in Figure 1)

• Documenting as assertions any additional assumptions
made about the interface as the block is implemented

• Writing assertions about important interactions that are
expected to occur among subcomponents of the block

• Writing assertions that prohibit predictable nominal
functionality-related, boundary condition-related,
startup behavior-related, and other predictable errors

• Creating coverage points to ensure that known corner
cases and complex areas of the design are verified

Designers can also verify their blocks using the assertions
they have written about its behavior. In particular, designers can
use formal analysis to verify that the block behaves correctly.
They can also simulate, to test whether the block works correctly
in common scenarios.

A verification engineer or design integrator defines
assertions and coverage points derived from the functional
specification for the device only. For example, a verification
engineer might define assertions to ensure that:

• The design is always in a valid configuration

• The design and the environment communicate correctly

• The design responds correctly to its inputs (e.g. the blue
colored assertions in Figure 1)

Figure 1 Device under Verification (DUV) with embedded

Assertions
A verification engineer will also be concerned about

measuring functional coverage, to ensure that the design is
thoroughly verified. To that end, the verification engineer will
define functional coverage points to check that

• The design has been verified in every valid
configuration

• All possible variations in the communication protocol
between design and environment have been verified

• All, or at least representative, valid combinations of
inputs have been used in the verification

• All, or at least representative, valid combinations of
outputs have been observed in the verification

Standard assertion languages such as PSL[2] and SVA[1] have
evolved to meet the needs of logic designers and verification
engineers in the digital space, and are used both with dynamic
(simulation-based and accelerator-based) testing and Formal
Verification methods. Such assertion languages provide a formal
framework for posing and verifying questions about the design
such as those listed in Figure 2.

Question Property Type
Are there signals that have a
set behavior that must occur

independent of time?

Invariants

Are there signals that have a
set of behavior that must occur

within a certain time frame?

Bounded Invariants

Does the design contain
boundary conditions that must

trigger a set behavior?

Boundary Cases

Are there ways to specify
values or sequences that would

describe an error condition?

Bug Identification

Is the behavior of certain
signals critical to the

functionality of the design

Signal Values

Figure 2 Basic Questions and Property Types.

2. ASSERTION IN ANALOG AND MIXED-
SIGNAL SPACE

2.1 New Frontiers in Mixed-Signal
Verification
As design complexity is increasing, the verification tasks around
an analog or mixed-signal system are becoming more and more
difficult to plan and execute. Some of these fundamental
difficulties are:
• There is no consistent language and methodology across

the complete spectrum of discrete event driven systems,
mixed-signal systems and continuous time varying
systems to express the verification intent in form of
assertions?

• As no such standard methodology exists, how does
information, expressed by one group of design or
verification engineers – presumably in the
analog/mixed-signal domain – flow from one group to
another, or from one level of design abstraction to
another?

• In absence of a standard language and methodology to
apply verification to a mixed-signal system in its
entirety, how can a verification plan include testing
analog and mixed-signal blocks - that were tested in
isolation – in context of the complete system? This
challenge includes verifying aspects like power
sequences, current leakages, noise figures etc from the
analog or mixed-signal blocks, in a full system context.

The availability of formal property specification languages with
their well defined set of semantics has benefited the digital design
and verification communities for some time, and in view of the
challenges mentioned above it is natural to attempt to apply the
same or similar concepts to the Analog and Mixed Signal design
and verification domains. Indeed, various efforts are now
proceeding in that direction, such as those of the Verilog-AMS
language committee [6].

2.2 Mixed-Signal Assertions Applications
Applications of Analog/Mixed signal assertions could potentially
cover quite a gamut of properties and possibilities, including but
certainly not limited to the following:
• Functional properties. Does the circuit/design meet its
basic functionality requirements? The ability to specify properties
such as this would be needed should formal verification of
analog/mixed signal circuits ever become a reality.
• Mixed-Signal properties. Any property where an analog
value on one side of the mixed-signal interface should match to a
digital code on the other side fits into this category. Examples
include an analog to digital converter (ADC) used for
measurement purposes, or a digitally calibrated current-DAC
(digital to analog converter). These design styles and associated
properties arise due to the increasing amount of analog variability
on smaller geometry processes leading to the need for digitally
calibrated analog circuitry. These can often be subdivided into
digital-centric properties and analog centric properties. Examples
of digital centric properties include pure existing digital
properties, but where the associated clocking/sampling events
reference analog quantities (e.g. “clk” is an analog node).
Examples of of analog centric properties include those in which
the boolean layers reference real-valued variables or signals.
• Digital properties. Even purely digital properties used in
typical verification testbenches need to be re-useable when the

design is reconfigured such that portions of it are represented in
the continuous domain. In particular, many of these design
configurations require swapping out a digital block or sub-block
and replacing it with a transistor level counterpart, and/or re-
simulating the blocks in the presence of parasitic devices. During
these regression tests, it is desirable to reuse the same testbenches
in an “as is” manner across both representations, even though
some of the signals referenced in the Boolean Layer of Properties
are no longer purely digital, but instead now are real valued
voltages/currents solved for by the analog kernel in a mixed signal
simulator such as Cadence Virtuoso AMS Designer Simulator.

3. EXISTING APPROACHES
CONSIDERED FOR ASSERTION IN
ANALOG AND MIXED-SIGNAL
In the analog verification domain, the idea of specification, which
drives the need for defining assertion, is not a common notion.
Nevertheless, analog designers and verification engineers do set
custom characterization checks to specify the safe operating
conditions for the devices that comprise a circuit. In the Cadence
Virtuoso Spectre circuit simulator [3] this is done by adding a
special assert device to the circuit and associating a checklimit
analysis to verify if the device level conditions specified by the
user has indeed been satisfied during the course of a simulation
which the checklimit analysis corresponds to.

3.1 A brief tour of Spectre Assert Statement
and Checklimit Analysis
With the assert statement, a user can set custom characterization
checks to specify the safe operating conditions for the circuit.
Spectre then issues messages telling the user when parameters
move outside the safe operating area and, conversely, when the
parameters return to the safe area, peak value and duration of
violations. When a variable changes from an above-max value
directly to a below-min value in one simulation step (that is, no
stay within bounds), the Spectre simulator uses a middle bound
solution (min+max)/2 to report the peak value and the duration of
violations.
The four types of checks that are supported in the device checking
flow in the Cadence Virtuoso Spectre circuit simulator are
described below.

Check Description
Initial setup
check

Includes checks on constant parameters only,
such as constant global, model or instance
parameters that are independent of the operating
points.

This check is done only once before any
analysis (including checklimit) is run. This
check is also repeated once if any constant
parameter is altered.

Note: The initial setup check cannot be disabled
and the error level cannot be changed by the
checklimit statement.

Operating
point check

Includes checks on MDL (Measurement
Description Language) expressions and instance
operating point parameters.

This check is done for each analysis.
Time domain
check

Check done during transient analysis.

Frequency
Domain
Check

Check done during AC analysis

Assert statements, which are specified in the netlist, are supported
in Spectre for transient, AC, DC and DC sweep analyses.
Users can enable or disable an assert or a group of asserts with
the checklimit statement. One or more checklimit statements can
be enabled in the netlist, each enabling or disabling individual
asserts. The statement is applied to subsequent transient, DC, and
DC sweep analyses until the next checklimit statement appears.

3.2 Using Mixed-Signal Behavioral
Languages to Express Assertion Intent

The power rendered by standard mixed-signal languages such as
Verilog-AMS or VHDL-AMS are also used today to define
checks of various kinds. These checks employ standard language
techniques such as macros, disciplines etc to define a set of
common expected circuit behavior and then can set or unset error
flags when in the course of simulation a model goes out of or
comes back within the specified operating range for that model. A
snippet of such a set of macros is as follows

// Generic Verilog‐AMS assertion macros:

// `ACHECK(Val,Max,Min,Desc,Name,Flg,En,Td,Vtol)

analog value check

// `DCHECK(Val,Max,Min,Desc,Name,Flg,En,Td)

discrete value check

// `XCHECK(Val,Name,Flg,En,Td)

check bus for X

// `COMP_CHECK(DP,DN,Name,Out,En,Td) Out=DP if

complementary, else X

// Process specific assertion macros:

// macro arguments nominal range

// ‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐

‐‐‐‐‐

// `DVDD_CHECK(node,"name",ef,en) 1 +‐10%

// `AVDD_CHECK(node,"name",ef,en) 1 +‐10%

// `AVDDH_CHECK(node,"name",ef,en) 2.5 +‐10%

// `GND_CHECK(node,"name",ef,en) 0 +‐0.1

// `IBIAS_CHECK(expr,"name",nom,ef,en) nom +‐10%

// `VBIAS_CHECK(expr,"name",nom,ef,en) nom +‐10%

// `RANGE_CHECK(expr,"name",Max,Min,ef,en) check for

// in range

// `DX_CHECK(expr,"name",errflg,en) checks

// digital bus for any X

// Useful macro functions:

// `FCUROUT(N1,N2,Iref,Kgain,Tr,dV,Ioff); Current

// mirror output driver

3.3 Review of Limitations of the Approaches
Discussed so far
While the application of the assert device along with checklimit
analyses is useful to verify the device level characteristics, there is
currently no way to set up and verify more complex circuit
conditions that analog and mixed-signal verification tasks
encounter. Some of these challenging operations include the
ability to predicate assertions on some time varying circuit
characteristics, or the ability to check temporal properties of a
circuit at intervals determined by complex clocking conditions.
Moreover, the current use model of using assert and checklimit
creates an isolated solution in that the methodology only applies
to the pure analog or mixed-signal applications and it neither
leverages nor makes itself visible to the much broader digital
verification methodologies that currently exist.
On the other hand, a mixed-signal HDL based approach for
checking model behavior is more abstract and can cover a range
of behaviors from device characteristic level to more complex
temporal behavior. However, the limitation with this approach is
that it does not leverage the set features that come with standard
assertion languages. Measurement of coverage for the assertions
that are set for a particular design block, ability to keep the design
and verification aspects of a block separate from each other and
having visual rendering tools dedicated to browse and debug
assertions are just a few examples.
In contrast, the digital verification system has a well established
use model for assertion based verification. This use model is
based on standard assertion languages such as PSL and SVA and
methodologies that have evolved over time to satisfy the
verification needs in the discrete domain. In defining the language
and methodology for assertion based verification that covers the
entire spectrum of digital, mixed-signal and analog systems, we
attempt to fully leverage this power and address the limitations
that are listed above with the existing approaches.

4. USING PSL WITH VERILOG-AMS

4.1 PSL Assertions involving Analog
Expressions
For the purpose of this discussion, analog expressions refer to the
combination of legal Verilog-AMS operators and operands as
defined by the Cadence Verilog-AMS Language Reference.
Analog expressions can appear in PSL assertions in Boolean
expressions, clocking expressions and as actual arguments in
property and sequence instances when there is a single top-level
clock either defined explicitly or defined via a default clock.
electrical sig;
reg a, b, clk;
// top‐level clock specified in the assertion
// psl assert always (V(sig) ‐> next(b)) @(posedge
clk);

// the default clock is inferred as the top‐level
clock
// psl default clock = (posedge clk);
// psl property P1 = always {a;V(sig1)} |=>
{V(sig2);b};
// psl assert P1;

4.2 Analog Events for Assertion Clocking
Verilog-AMS analog event functions cross and above are
supported as clocking events in PSL assertion.
electrical sig1, sig2, sig3;
reg a, b;
// psl assert always ({V(sig1);a} |=> {V(sig2);b})
@(cross(V(sig3)));

4.3 Support for wreal in PSL
The wreal net type represents a real-valued physical connection
between structural entities in the Verilog-AMS language. For
more information on wreal net type and how it supports more than
one driver, refer to the section on Real Nets in Cadence Verilog-
AMS Language Reference.
Expressions involving wreal type objects that are explicitly
declared can appear in PSL assertions in boolean expressions,
clocking expressions and as actual arguments in property and
sequence instances.
wreal mywreal1, mywreal2;
reg clk;
// psl assert always ({mywreal1 > 4.4; mywreal2 <
6.6}) @(posedge clk);

4.4 Module bound Verification Units
vunits can be used for analog psl assertions. This is a very useful
feature if the source text of the design block should not or cannot
be modified. A vunit is a side file that is linked to the design file
for simulation. Thus, the design file remains untouched and the
assertion code is provided reside in the vunit file.
vunit myvunit(test) {
//psl assert (V(sig1) > 1.4) @(cross(V(sig3)));
}
Note that vunits are mainly used to store the assertion code;
however, they are not limited to assertions only. If additional
behavioral code is needed for the assertions, like storing some
values in variable/registers, it can be added to the vunit as well.
Consider to use this feature as it makes the coding of assertions
much easier in some cases.
Verification units can be used to add assertions to
Verilog/Verilog-ams/System-Verilog or VHDL instances.
vunit myvunit(test) {
// psl property P1 = ({V(sig1)} ‐> next (V(sig2))
@(cross(V(sig3)));
//psl assert P1;
}

4.5 Support for PSL built-in Functions
Analog expressions are allowed within the prev PSL built-in
sampled value function. It is an error to have analog expressions
as arguments to built-in sampled value functions other than prev.
// psl assert always ({V(sigout) > 0.5} |=>
{prev(V(sigout)) > 0.4}) @(cross(V(sigout)));

4.6 Coverage Analysis for PSL Assertion
Assertions are an important part of the coverage driven
verification environment. Coverage points indicate whether the
stimulus was able to create the conditions necessary to test the
design's behavior. This information is critical to ensuring that the
design has been sufficiently tested. This is typically achieved by
defining signals and expressions that are being asserted on as
coverage points and also defining the assertions themselves as
coverage monitors.

S
a
d
b
p
c
S
m
a

5
I

S
S
S
c
is
H
a
c
is
f
m

e

m

e

m

e

m

e

O
fu
a
s

i

Similar applicatio
assertion in a
directive, when
boolean layer wi
provide valuable
checking all the
Similarly, creatin
make up an asse
assertion itself ne

5. USING S
IN A MIXE

SystemVerilog
SystemVerilog
SystemVerilog
continuous doma
s not possible.

However, the Ca
assertions allow
context of analog
s connect to n

following examp
module top;
 var real r,
 assign xr =
 ams_electric
 // causes in
 // connectio
 ams_electric
 // causes in
 // Real2Elec
 ams_wreal_sr
 // Coercion
 // to wreal
endmodule

module ams_ele
 input e; ele
 initial #10
endmodule

module ams_ele
 output e; el
 analog V(e)
endmodule

module ams_wre
 output w; wr
 assign w = 2
endmodule

Once a System
functionality as s
assertion stateme
simple example b

input var rea
 assert prope
 ((outp‐out

ons of coverage
mixed-signal c
comprising of

ill take part in c
insight into whe
analog conditio

ng coverage poin
ertion provide v
eeds to be refine

SYSTEM-V
D-SIGNAL

Assertion (SV
P1800-2009 s
standard does
ain object. Ther

adence IUS[7] i
s real data type
g design, this can
nets belonging

ple illustrates this

 xr, wr;
 3.14;
cal_src e_s1(r
nsertion of El
on module
cal_dst e_d1(x
nsertion of
ctrical connec
rc w_s1(w
 of SystemVeri

ectrical_dst(e
ectrical e;
 $display("%M:

ectrical_src(e
lectrical e;
 <+ 5.0;

eal_src(w);
real w;
2.5;

mVerilog real
shown above, it
ent that permits
below shows how

al outp, outm;
erty (@(posedg
tm) < 10));

are expected to
context. In part

mixed-signal e
coverage report
ether the assertio

ons the design is
nts for the actua
valuable insight
ed to verify the d

VERILOG A
L DESIGN

VA) is a lega
tandard. This
not allow the

efore creating a

implementation
es in the Boole
n be used if a re
to the electric

s use model:

r);
lectrical2Real

xr);

ction module
wr);
ilog real vari

e);

 %f", V(e));

e);

l variable im
can appear in an

s the use of rea
w this is being d

 simple_SVA_e
ge(hold))

occur when usin
ticular, an asse

expressions in th
and therefore w
ons are adequate
s passing throug
al expressions th

into whether th
design properly.

ASSERTION

l subset of th
version of th

e presence of
analog expressio

of SystemVerilo
ean Layer. In th
eal valued SV po
cal domain. Th

l

iable

mports the AM
ny SystemVerilo
al variables. Th

done

example:

ng
ert
he

will
ely
gh.
hat
he

N

he
he

a
ns

og
he
ort
he

MS
og
he

For the
that ex
bring a
SVA bl

6. U
ASSE
CHA
Fetchin
domain
method
fetch r
arbitrar
domain
operati
not und
advanc
ability
the las
solution
time po
usually
queried
values
offer su
To ov
$cds_g
AMS D
real x
always
 x =
“poten

The us
accesse
the vol
the ana

e sake of illustra
xplains how the
a real value into
lock.

SING VAL
ERTION ON

ARACTERI
ng values of
n is a common
dologies use to a
requires ability
ry levels of hi
n language lay
on is to be able
derstand continu
ced application,
to choose betwe
st accepted ana
n) or accurate fe
oint when the fe
y require a broad
d such as potent
etc. Unfortunate

uch features.
ercome this lim
get_analog_v

Designer Simulat
x;
s @(…)
= $cds_get_ana
ntial”);

ser provides th
ed and defines a
ltage) and the re
alog voltage at th

ation, we presen
Electrical2

a SystemVerilog

UE FETCH
N PURE AN
STICS
continuous-dom
n practice in v

account for mixe
to transcend la

ierarchy through
yers. Another r

to work from pu
uous-domain syn
verification eng

een sloppy fetch
alog solution p
etch (with an an

etch request is m
d spectrum of qu
ial, flow, power
ely, current mix

mitation, a new
value has been
tor. The function

alog_value(“to

e hierarchical s
a quantity specif
eturn value is a
he moment wher

nt another schem
2Real connectio
g testbench to b

H TO APPL
NALOG

main objects in
verification tha

ed-signal effects.
anguage bounda
h discrete and
requirement of
ure digital langu
ntax or semantic
gineers may requ

(with interpolati
point and the

nalog solution cr
made). Such fetch
uantities that may
r, operating poin
xed-signal langu

w system func
 introduced in t
n is used like thi

op.sub.end.foo

string to the o
fier (in this case
real number tha

re the function is

matic above
on can help
e used in an

LY

nto discrete
at testbench
. Such value
aries across

continuous
such fetch

uages that do
s. In a more
uire to have
ion between
speculative

reated at the
h operations
y need to be
nt parameter
uages do not

ction called
the Cadence
is:

o”,

bject to be
potential to

at represents
s triggered.

The syntax of the cds_get_analog_value function is the
following:

real $cds_get_analog_value(hierarchical_name [,
optional index[, optional quantity qualifier]])

where:
• The index can be variable, reg, or parameters so

long as their value evaluates to an integer constant.
• The quantity qualifier can be potential, flow,

pwr, or param. If none is specified, potential is
assumed.

The object referred to by hierarchical_name must exist and must
be owned by the analog solver. It must be a scalar or a vector, and
if the later, the index must be specified, such that the result
resolves to a scalar. The hierarchical_name can be a relative or
absolute path.
Note: It is possible to check whether the object referred to by
hierarchical_name meets these conditions by using the helper
functions cds_analog_is_valid, cds_analog_exists, and
cds_analog_get_width. These helper functions enable the
user to create reusable testbenches where the representation of the
model containing the object that the value fetch routine points to
can change from digital to analog or vice versa.
The value fetch routine can be called from within:
• Verilog, SystemVerilog or Verilog-AMS scope
The following calling scopes are not considered for the current
version:
• VHDL, VHDL-AMS, SystemC, Specman/e, Verilog-A

(if not compiled as Verilog-ams code)
The fetch routine needs to reference analog object. It can
reference into any analog language:
• Verilog-AMS, VHDL-AMS, Spectre, Spice Verilog-A (

compiled as Verilog-ams or included by ahdl_include)

7. RELATED ACTIVITIES IN THE
STANDARDS COMMITTEES

Two standards groups are actively working towards standardizing
analog/mixed signal assertions:
• ASVA. The Analog System Verilog Assertions committee is

focusing solely on analog/mixed signal extensions to the
SVA subset of the System Verilog language.

• SV-AMS. This group are defining AMS extensions to the
entire System Verilog language, a work which parallels what
Verilog-AMS has previously done for Verilog. The outputs
generated by the ASVA group are expected to feed into this
longer term SV-AMS effort.

There is ongoing discussion regarding bringing aspects of ASVA
into the Verilog-AMS language. There also is discussion
happening to explore how analog simulation cycle can be fit into
the overall SV simulation cycle and where would analog
assertions fit in that cycle.
The Cadence SVA implementation discussed herein depends only
on the support of real valued data-types in SVA, which is

expected to be a fundamental change that will be incorporated by
both groups.

8. TYING IT ALL TOGETHER: A MIXED-
SIGNAL SIGMA DELTA ADC EXAMPLE
Sampled Data circuits are ideal for assertion based debugging,
since the PSL/SVA assertion languages allow and encourage
reasoning about sequential circuit behavior, and sampled data
circuits (DACs, ADCs, SERDES, Switched Capacitor Filters etc.)
by their very nature are sequential circuits.
A Sigma Delta ADC (Modulator and Low Pass Digital Filter) is a
typical example. Even the (essentially) analog modulator itself
exhibits sequential behavior. In this example, we fully exploit the
fact that, PSL/SVA Assertions aren’t limited to just reasoning
about sequential behaviors, but can also be used to reason about
predicated mixed signal behavior e.g. if something happens, then
something else must (or must not) happen (possibly at the same
time, possibly later).

8.1 Sigma Delta ADC Architecture

The Sigma Delta architecture couples a modulator [4] with a Low
pass filter. For ADC designs, the modulator is analog and the
filter digital, and vice versa for DAC designs. A key characteristic
of the Sigma Delta Modulator design is a feedback loop, with a
very low order (often just a single bit) quantizer. Integrator(s) are
inserted into the loop in order to shape the quantization noise. The
output from the quantizer (comparator/latch combo) is a bit-
stream, which is largely modulated by the input signal, and
contains quantization noise.

Our modulator architecture features a second order feedback
scheme, with discrete (switched capacitor) integrators modeled
using H(z) transfer functions shown in the above diagram. Also
shown is the architecture for the Sinc3 filter. The node names used
will also be referenced throughout this extended example.
In the simulation Verilog-AMS testbench, An ADC (i1) module
is instantiated, which further contains a modulator instance
(mod1), and a filter_decimator (actually Sinc3 filter) instance
df1. The modulator and filter are both modeled using Verilog-
AMS. Also instantiated are a sine-wave voltage source generator
(input), and a clock generator (pulse waveform). The ADC input
is a sine-wave, with amplitude 0.65 and a frequency of Tsig. The
clock for this circuit has a chosen frequency that corresponds to

an oversampling rate of 256 times the Nyquist rate of the input
sine-wave.
A manual (laborious) inspection of the simulation waveforms in
order to determine if the core loop characteristics of this
sequential circuit architecture are continually upheld is a
somewhat tall order (even for a short number of input wave
periods) due to the high oversampling rate.
We use Assertion Based Verification (ABV) while the simulation
is running to complement the more traditional (and laborious)
methods of waveform inspection as a post-processing step.

8.2 Assertion Properties
All assertions are evaluated upon the same default clock used to
switch the modulator integrator circuits.
vunit my_psl_vunit_all(ADC) {

// DEFAULT CLOCK FOR ASSERTIONS

//default clock = (timer(254.5*80e‐9, 8*80e‐9));

default clock = (cross(V(clk), +1));

// modeling layer. Create some expression placeholders

// (used in pos_integ1 assertion)

integer i1_pos, i1_inputs_pos;

integer vx_le_half_vref;

real abs_vx, abs_vref, abs_vi1, abs_vi2;

integer abs_vx_close_0;

analog begin

 i1_pos = V(I1) > 0.0;

 i1_inputs_pos = (V(X) > 0.0) && (V(I1) > 0.0) &&
(V(Y) <= ‐V(Vref));

 vx_le_half_vref = abs(V(X)) <= abs(V(Vref))/2.0;

 abs_vx = abs(V(X));

 abs_vref = abs(V(Vref));

 abs_vi1 = abs(V(I1));

 abs_vi2 = abs(V(I2));

 abs_vx_close_0 = abs(V(X)) <= 0.005;

end

We use the modeling layer of the vunit (above) to introduce
several auxiliary Verilog-AMS variables that are referenced with
the assertions detailed below.
The first pair of assertions simply test that the first integrator
preserves the sign of arithmetic operations, a fundamental
property of an integrator circuit. The first assertion tests that in
any given cycle where the inputs to the integrator are positive, the
output from the integrator in the subsequent cycle must also be
positive. The second tests the converse (though is more verbose as
the modeling layer is not used)

// INTEGRATORS and DIFF JUNCTIONS, basic behavior

// Check that integrators preserve sign of arithmetic
operations

// ie. assert that when V(in) and V(I1) both positive,
and comparator feedback

// is negative,

// then the first integrator output in the next cycle
must be positive.

// Ditto with polarities flipped

pos_integ1: assert always { i1_inputs_pos } |=>
i1_pos;

neg_integ1: assert always { (V(X) < 0.0) && (V(I1) <
0.0) && (V(Y) >= V(Vref)) } |=> V(I1) < 0.0;

// COMPARATOR BASIC FUNCTIONALITY

// if the input to the comparator (integrator 2
output) is positive,

// ensure the comparator detects that immediately, and
vice versa

comparator_pos: assert always ((V(I2) > 0.001)‐> (V(Y)
>= V(Vref)));

comparator_neg: assert always ((V(I2) < ‐0.001) ‐>
(V(Y) <= ‐V(Vref)));

// ensure integrator 2 output above threshold before
comparator output goes high

// if I2 output is positive, then ensure it goes high
before (or at) the time the comparator output is high

integ_to_comp1: assert always V(I2) < 0.0 ‐> V(I2) >=
0.0 before_ V(Y) >= V(Vref);

// if comparator output is negative, then ensure it
stays negative until integrator 2 output positive

integ_to_comp2: assert always V(Y) <= ‐V(Vref) ‐> V(Y)
<= ‐V(Vref) until V(I2) >= 0.0;

The next four assertions check the basic comparator operations.
The first two of these check that if the I2 integrator output (the
input to the comparator, which assumes a zero detection
threshold) is positive/negative respectively, then the value fed
back from the comparator via the one bit DAC is greater than
V(Vref) and less than or equal to –V(Vref) respectively. These
are examples of predicated assertions.
The third (integ_to_comp1) ensures that once the I2 integrator
output goes negative, then it has to subsequently go positive again
before (or during) the cycle in which the comparator/feedback is
positive (i.e. >= V(Vref)). This is an example of a condition
predicating a sequence of events, and the events in that sequence
must happen in the specified order. Note the use of the before_
keyword.
The fourth (integ_to_comp2) assertion above is a somewhat
mirrored example, testing that once the comparator/feedback
output has become negative, then it must remain negative
(strictly) until the I2 integrator output (which is the input to the
comparator) has again become positive. Note the presence of the
until keyword.

A second set of properties (below) test loop stability fundamentals
(higher order modulators are notoriously prone to instability).

The first loop stability property tested (vin_less_vref in the
following screenshot) captures a key design assumption, that the
input voltage to the modulator/ADC never exceeds half the
reference voltage.
This is an example of using a property to formally capture an
assumption made in the design IP regarding the environment in
which the design is to be subsequently integrated. By capturing
assumptions in this way, simulations can check that the input
constraint is never violated in an integration context.

// INPUT ASSUMPTION PROPERTIES

// assert at every oversampling clock that the input
voltage is constrained

// within half of Vref to avoid risking instability

vin_less_vref: assume always abs_vx <= abs_vref/2.0;

// STABILITY PROPERTIES

// assert that integrator outputs are bounded within
+/‐1.5*vref

// as instabilility tends to force integrator outputs
out of bounds

integ1_bounded: assert never abs_vi1 > 1.5*V(Vref);

integ2_bounded: assert never abs_vi2 > 1.5*V(Vref);

// ensure that a LONG (7 in a row) sequence of
CONSECUTIVE

// ones or zeros from the comparator doesn't

// happen, as this would also indicate instability

no_long_one_seq: assert never {V(Y) >= V(Vref)[*7]};

no_long_zero_seq: assert never {V(Y) <= ‐V(Vref)[*7]};

// test for limit cycle sequence of 1100110011001100

limit_cycle_p1: assert never { { {V(Y) >= V(Vref)[*2]
; V(Y) <= ‐V(Vref)[*2] }[*2] }[*2] };

// test for limit cycle sequence of 0011001100110011

limit_cycle_p2: assert never { { {V(Y) <= ‐V(Vref)[*2]
; V(Y) >= V(Vref)[*2] }[*2] }[*2] };

The next group of properties ensures that the integrator outputs
remain properly bounded, in this case within 1.5 times V(Vref).
(Note: unstable Sigma Delta Modulators typically exhibit large
signal swings in integrator outputs, and indeed more exotic
designs have additional circuitry to detect such large swings and
reset/nullify the integrators to break the oscillations. See
references). For our example, we check the integrator output
levels to ensure they remain in bounds.
A second and related characteristic of unstable modulators is the
presence of particular bit patterns. In the next two properties, we
assert that a series of consecutive comparator high value outputs
(logic 1) or low value outputs (logic 0) is never supposed to
happen for this particular design. Note the presence of the [*7]
term in the sequence, which acts as a sequence multiplier using
the PSL language.

An often undesirable property of modulators (even stable ones) is
the presence of ‘idle tones’[5] i.e. additional repeating bit patterns
which can lead to audible tones/clicks when the modulator is used
in audio applications. Correspondingly we have two limit cycle
checks, coded to check for undesirable bit-stream sequences of
1100110011001100 and it’s inverse.

8.3 Simulation Results
A large number of assertion failures were noted after performing a
simulation, per the table below. Assertion waveforms allow
debugging such failures (see red highlighted cycles within green
assertion status waveforms) in the presence of other circuit
simulation waveforms. In our example, we noted the high number
of assertion failures were due to an error in the magnitude of a
random dither signal being added to the modulator comparator in
a not entirely successful attempt to minimize the likelihood of
limit cycles.

Assertion Name Finished Count Failed Count

comp_not_stuck 15 3
comparator_neg 2176 138
comparator_pos 2170 139
integ_to_comp1 2053 264
integ_to_comp2 2053 125
limit_cycle_p2 0 2
no_long_one_seq 14 2

9. CONCLUSIONS
In this paper, our objective was to take a broad look at the existing
challenges in analog and mixed-signal verification and then
evaluate how an assertion based verification concept addresses
some of these challenges and also bring forth many new
possibilities that are either too complex and expensive to develop
and maintain in today’s design and verification methodologies, or
are not possible at all. We then reviewed a set of extensions in the
standard PSL and SystemVerilog assertion languages that enable
users to develop complex assertions on their analog and mixed-
signal models.

Finally, we applied the language extensions that we described on
a mixed-signal Sigma Delta ADC design. We verified several
different types of properties related to sampled data/sequential
analog circuit behavior:

• predicated events (condition A occurring implies condition B
must/must not occur)

• predicated sequences (condition or sequence A occurring
implies sequence B must (or not) occur in specified order

• checks for desired and undesired repetitive sequences

• extended checks over multiple clock cycles

• constrained sub-sequences that must happen within a larger
sequence, in a given timeframe (number of clocks) etc

• predicated/triggered conditions that had to happen before
other conditions happened

• predicated/triggered conditions that had to hold until some
other condition happened

These checks were performed during a running simulation, not as
a post-processing step.

Waveform inspection alone is a laborious debug method for
analog and/or mixed signal circuits. Within this paper, we have
seen how complementing the waveform approach with an
Assertion Based Verification (ABV) approach during AMS
verification leads to much quicker and more rigorous
identification of bugs/issues i.e. improved throughput. The various
properties captured as assertions and assumptions have varied
from the very simple to the reasonably complex, and some of the
violations wouldn’t be immediately apparent from a casual

waveform inspection alone. Inspection of assertion status
waveforms superimposed on circuit node waveforms makes it
easier to identify and debug issues in the correct context.

10. REFERENCES

[1] 1800-2009 IEEE Standard for System Verilog-Unified

Hardware Design, Specification, and Verification Language.
(2009). Retrieved from IEEE Xplore:
http://ieeexplore.ieee.org/servlet/opac?punumber=5354133

[2] 1850-2010 IEEE Standard for Property Specification
Language (PSL). (2010 , April 6). Retrieved from IEEE
Xplore:
http://ieeexplore.ieee.org/servlet/opac?punumber=5445949

[3] Cadence Virtuoso Spectre Circuit Simulator. (n.d.).
Retrieved from www.cadence.com:
http://www.cadence.com/products/rf/spectre_circuit/pages/de
fault.aspx

[4] Delta-sigma Modulation. (n.d.). Retrieved from Wikipedia:
http://en.wikipedia.org/wiki/Sigma_delta

[5] Perez Gonzalez, E., & Reiss, J. D. (n.d.). Idle Tone Behavior
in Sigma Delta Modulation. Retrieved from AES E-Library
(Audio Engineering Society): http://www.aes.org/e-
lib/browse.cfm?elib=14093

[6] Verilog-Analog Mixed Signal Technical Subcommittee.
(n.d.). Retrieved from Accelera:
http://www.accellera.org/activities/verilog-ams/

[7] Incisive Enterprise Simulator (n.d.). Retrieved from
www.cadence.com:
http://www.cadence.com/products/fv/enterprise_simulator/pa
ges/default.aspx

