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ABSTRACT 

The increase in mixed-signal content - both in size and complexity 
– of an SoC demands a change in the existing mixed-signal 
verification techniques. Although some ad-hoc practices exist 
today for analog or mixed-signal verification, none of these 
methods scale to the complex circuit conditions that analog and 
mixed-signal verification tasks encounter. In general, it is 
perceived that the verification system for a mixed-signal SoC will 
need to leverage metric-driven verification techniques that are 
well established in the digital verification domain for quite some 
time now and extend them to address the requirements of 
verifying the analog and mixed-signal content of the SoC. 

As part of this thought, this paper introduces the concept of how 
PSL and SVA - the two most widely used IEEE standards for 
specifying assertion - can be extended to model an analog/mixed-
signal assertion in a natural way without compromising the 
verification goals. This approach has several long term benefits:  

• By extending PSL and SVA to work with mixed-signal 
languages and semantics, we will be able to leverage the 
existing rich features that are standard in Assertion 
Based Verification, such as coverage, in a natural way.  

• There is a growing need for analog and mixed-signal 
verification to be visible to the overall system 
verification environment. As of now, there is a lack of 
visibility into the verification tasks specified and 
covered in the analog or mixed-signal sub-system. By 
using a consistent language and use model from the 
pure digital to mixed-signal representation, such 
visibility and information sharing would be natural.  

In discussing the PSL and SVA extensions required to support, we 
discuss the specifics of how the Boolean layer of the PSL 
language can incorporate useful aspects of Verilog-AMS to model 
analog and mixed-signal circuit behavior. We also discuss a smart 
value access methodology that allows System-Verilog testbenches 
to be able to use analog quantities such as voltage, current, 
dissipated power or operating point parameters in System-Verilog 
Assertions. Finally, we explain these concepts with the aid of a 
mixed-signal model. 
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1. INTRODUCTION 
Assertions, by definition, capture the intended behavior of a 
design. Assertion Based Verification (ABV) is a powerful 

verification approach which has proven to help digital IC 
architects, designers, and verification engineers improve design 
quality and reduce time to market. Assertions are written both 
during development of the design and the verification 
environment. Both designers and verification engineers can be 
involved in identifying requirements and capturing them as 
assertions. 

A designer for a given block enables assertion-based 
verification of the block by: 

• Locating or writing assertions that reflect the properties 
of the interface between that block and the rest of the 
design (e.g. the red colored assertions in Figure 1) 

• Documenting as assertions any additional assumptions 
made about the interface as the block is implemented 

• Writing assertions about important interactions that are 
expected to occur among subcomponents of the block 

• Writing assertions that prohibit predictable nominal 
functionality-related, boundary condition-related, 
startup behavior-related, and other predictable errors 

• Creating coverage points to ensure that known corner 
cases and complex areas of the design are verified 

Designers can also verify their blocks using the assertions 
they have written about its behavior. In particular, designers can 
use formal analysis to verify that the block behaves correctly. 
They can also simulate, to test whether the block works correctly 
in common scenarios. 

A verification engineer or design integrator defines 
assertions and coverage points derived from the functional 
specification for the device only. For example, a verification 
engineer might define assertions to ensure that: 

• The design is always in a valid configuration 

• The design and the environment communicate correctly 

• The design responds correctly to its inputs (e.g. the blue 
colored assertions in Figure 1) 



  
Figure 1 Device under Verification (DUV) with embedded 

Assertions 
A verification engineer will also be concerned about 

measuring functional coverage, to ensure that the design is 
thoroughly verified. To that end, the verification engineer will 
define functional coverage points to check that 

• The design has been verified in every valid 
configuration 

• All possible variations in the communication protocol 
between design and environment have been verified 

• All, or at least representative, valid combinations of 
inputs have been used in the verification 

• All, or at least representative, valid combinations of 
outputs have been observed in the verification 

Standard assertion languages such as PSL[2] and SVA[1] have 
evolved to meet the needs of logic designers and verification 
engineers in the digital space, and are used both with dynamic 
(simulation-based and accelerator-based) testing and Formal 
Verification methods. Such assertion languages provide a formal 
framework for posing and verifying questions about the design 
such as those listed in Figure 2. 

Question Property Type 
Are there signals that have a 
set behavior that must occur 

independent of time? 

Invariants 

Are there signals that have a 
set of behavior that must occur 

within a certain time frame? 

Bounded Invariants 

Does the design contain 
boundary conditions that must 

trigger a set behavior? 

Boundary Cases 

Are there ways to specify 
values or sequences that would 

describe an error condition? 

Bug Identification 

Is the behavior of certain 
signals critical to the 

functionality of the design 

Signal Values 

 

Figure 2 Basic Questions and Property Types. 

2. ASSERTION IN ANALOG AND MIXED-
SIGNAL SPACE 
 

2.1 New Frontiers in Mixed-Signal 
Verification 
As design complexity is increasing, the verification tasks around 
an analog or mixed-signal system are becoming more and more 
difficult to plan and execute. Some of these fundamental 
difficulties are: 
• There is no consistent language and methodology across 

the complete spectrum of discrete event driven systems, 
mixed-signal systems and continuous time varying 
systems to express the verification intent in form of 
assertions? 

• As no such standard methodology exists, how does 
information, expressed by one group of design or 
verification engineers – presumably in the 
analog/mixed-signal domain – flow from one group to 
another, or from one level of design abstraction to 
another? 

• In absence of a standard language and methodology to 
apply verification to a mixed-signal system in its 
entirety, how can a verification plan include testing 
analog and mixed-signal blocks - that were tested in 
isolation – in context of the complete system? This 
challenge includes verifying aspects like power 
sequences, current leakages, noise figures etc from the 
analog or mixed-signal blocks, in a full system context. 

The availability of formal property specification languages with 
their well defined set of semantics has benefited the digital design 
and verification communities for some time, and in view of the 
challenges mentioned above it is natural to attempt to apply the 
same or similar concepts to the Analog and Mixed Signal design 
and verification domains. Indeed, various efforts are now 
proceeding in that direction, such as those of the Verilog-AMS 
language committee [6]. 

2.2 Mixed-Signal Assertions Applications 
Applications of Analog/Mixed signal assertions could potentially 
cover quite a gamut of properties and possibilities, including but 
certainly not limited to the following: 
• Functional properties. Does the circuit/design meet its 
basic functionality requirements? The ability to specify properties 
such as this would be needed should formal verification of 
analog/mixed signal circuits ever become a reality. 
• Mixed-Signal properties. Any property where an analog 
value on one side of the mixed-signal interface should match to a 
digital code on the other side fits into this category. Examples 
include an analog to digital converter (ADC) used for 
measurement purposes, or a digitally calibrated current-DAC 
(digital to analog converter). These design styles and associated 
properties arise due to the increasing amount of analog variability 
on smaller geometry processes leading to the need for digitally 
calibrated analog circuitry. These can often be subdivided into 
digital-centric properties and analog centric properties. Examples 
of digital centric properties include pure existing digital 
properties, but where the associated clocking/sampling events 
reference analog quantities (e.g. “clk” is an analog node). 
Examples of of analog centric properties include those in which 
the boolean layers reference real-valued variables or signals. 
• Digital properties. Even purely digital properties used in 
typical verification testbenches need to be re-useable when the 



design is reconfigured such that portions of it are represented in 
the continuous domain. In particular, many of these design 
configurations require swapping out a digital block or sub-block 
and replacing it with a transistor level counterpart, and/or re-
simulating the blocks in the presence of parasitic devices. During 
these regression tests, it is desirable to reuse the same testbenches 
in an “as is” manner across both representations, even though 
some of the signals referenced in the Boolean Layer of Properties 
are no longer purely digital, but instead now are real valued 
voltages/currents solved for by the analog kernel in a mixed signal 
simulator such as Cadence Virtuoso AMS Designer Simulator.  

3. EXISTING APPROACHES 
CONSIDERED FOR ASSERTION IN 
ANALOG AND MIXED-SIGNAL 
In the analog verification domain, the idea of specification, which 
drives the need for defining assertion, is not a common notion. 
Nevertheless, analog designers and verification engineers do set 
custom characterization checks to specify the safe operating 
conditions for the devices that comprise a circuit. In the Cadence 
Virtuoso Spectre circuit simulator [3] this is done by adding a 
special assert device to the circuit and associating a checklimit 
analysis to verify if the device level conditions specified by the 
user has indeed been satisfied during the course of a simulation 
which the checklimit analysis corresponds to. 

3.1 A brief tour of Spectre Assert Statement 
and Checklimit Analysis 
With the assert statement, a user can set custom characterization 
checks to specify the safe operating conditions for the circuit. 
Spectre then issues messages telling the user when parameters 
move outside the safe operating area and, conversely, when the 
parameters return to the safe area, peak value and duration of 
violations. When a variable changes from an above-max value 
directly to a below-min value in one simulation step (that is, no 
stay within bounds), the Spectre simulator uses a middle bound 
solution (min+max)/2 to report the peak value and the duration of 
violations. 
The four types of checks that are supported in the device checking 
flow in the Cadence Virtuoso Spectre circuit simulator are 
described below. 

Check  Description 
Initial setup 
check 

Includes checks on constant parameters only, 
such as constant global, model or instance 
parameters that are independent of the operating 
points. 

This check is done only once before any 
analysis (including checklimit) is run. This 
check is also repeated once if any constant 
parameter is altered.  

Note: The initial setup check cannot be disabled 
and the error level cannot be changed by the 
checklimit statement. 

Operating 
point check 

Includes checks on MDL (Measurement 
Description Language) expressions and instance 
operating point parameters.  

This check is done for each analysis. 
Time domain 
check 

Check done during transient analysis. 

Frequency 
Domain 
Check 

Check done during AC analysis 

Assert statements, which are specified in the netlist, are supported 
in Spectre for transient, AC, DC and DC sweep analyses. 
Users  can enable or disable an assert or a group of asserts with 
the checklimit statement. One or more checklimit statements can 
be enabled in the netlist, each enabling or disabling individual 
asserts. The statement is applied to subsequent transient, DC, and 
DC sweep analyses until the next checklimit statement appears. 

3.2 Using Mixed-Signal Behavioral 
Languages to Express Assertion Intent 
 
The power rendered by standard mixed-signal languages such as 
Verilog-AMS or VHDL-AMS are also used today to define 
checks of various kinds. These checks employ standard language 
techniques such as macros, disciplines etc to define a set of 
common expected circuit behavior and then can set or unset error 
flags when in the course of simulation a model goes out of or 
comes back within the specified operating range for that model. A 
snippet of such a set of macros is as follows 

// Generic Verilog‐AMS assertion macros: 

//  `ACHECK(Val,Max,Min,Desc,Name,Flg,En,Td,Vtol) 

analog value check 

//  `DCHECK(Val,Max,Min,Desc,Name,Flg,En,Td)      

discrete value check 

//  `XCHECK(Val,Name,Flg,En,Td)                   

check bus for X 

//  `COMP_CHECK(DP,DN,Name,Out,En,Td)       Out=DP if 

complementary, else X 

// Process specific assertion macros: 

//   macro        arguments              nominal range 

//  ‐‐‐‐‐‐‐‐‐‐‐‐  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐    ‐‐‐‐‐‐‐   

‐‐‐‐‐ 

//  `DVDD_CHECK(node,"name",ef,en)    1      +‐10% 

//  `AVDD_CHECK(node,"name",ef,en)    1      +‐10% 

//  `AVDDH_CHECK(node,"name",ef,en)  2.5     +‐10% 

//  `GND_CHECK(node,"name",ef,en)     0      +‐0.1 

//  `IBIAS_CHECK(expr,"name",nom,ef,en) nom     +‐10% 

//  `VBIAS_CHECK(expr,"name",nom,ef,en)  nom     +‐10% 

//  `RANGE_CHECK(expr,"name",Max,Min,ef,en)  check for 

// in range 

//  `DX_CHECK(expr,"name",errflg,en)        checks  

// digital bus for any X 

// Useful macro functions: 

//  `FCUROUT(N1,N2,Iref,Kgain,Tr,dV,Ioff);    Current  

// mirror output driver 



3.3 Review of Limitations of the Approaches 
Discussed so far 
While the application of the assert device along with checklimit 
analyses is useful to verify the device level characteristics, there is 
currently no way to set up and verify more complex circuit 
conditions that analog and mixed-signal verification tasks 
encounter. Some of these challenging operations include the 
ability to predicate assertions on some time varying circuit 
characteristics, or the ability to check temporal properties of a 
circuit at intervals determined by complex clocking conditions. 
Moreover, the current use model of using assert and checklimit 
creates an isolated solution in that the methodology only applies 
to the pure analog or mixed-signal applications and it neither 
leverages nor makes itself visible to the much broader digital 
verification methodologies that currently exist. 
On the other hand, a mixed-signal HDL based approach for 
checking model behavior is more abstract and can cover a range 
of behaviors from device characteristic level to more complex 
temporal behavior. However, the limitation with this approach is 
that it does not leverage the set features that come with standard 
assertion languages. Measurement of coverage for the assertions 
that are set for a particular design block, ability to keep the design 
and verification aspects of a block separate from each other and 
having visual rendering tools dedicated to browse and debug 
assertions are just a few examples. 
In contrast, the digital verification system has a well established 
use model for assertion based verification. This use model is 
based on standard assertion languages such as PSL and SVA and 
methodologies that have evolved over time to satisfy the 
verification needs in the discrete domain. In defining the language 
and methodology for assertion based verification that covers the 
entire spectrum of digital, mixed-signal and analog systems, we 
attempt to fully leverage this power and address the limitations 
that are listed above with the existing approaches. 

4. USING PSL WITH VERILOG-AMS 
 

4.1 PSL Assertions involving Analog 
Expressions  
For the purpose of this discussion, analog expressions refer to the 
combination of legal Verilog-AMS operators and operands as 
defined by the Cadence Verilog-AMS Language Reference.  
Analog expressions can appear in PSL assertions in Boolean 
expressions, clocking expressions and as actual arguments in 
property and sequence instances when there is a single top-level 
clock either defined explicitly or defined via a default clock. 
electrical sig; 
reg a, b, clk; 
// top‐level clock specified in the assertion 
// psl assert always (V(sig) ‐> next(b)) @(posedge 
clk); 
 
// the default clock is inferred as the top‐level 
clock 
// psl default clock = (posedge clk); 
// psl property P1 = always {a;V(sig1)} |=> 
{V(sig2);b}; 
// psl assert P1; 

4.2 Analog Events for Assertion Clocking  
Verilog-AMS analog event functions cross and above are 
supported as clocking events in PSL assertion. 
electrical sig1, sig2, sig3; 
reg a, b; 
// psl assert always ({V(sig1);a} |=> {V(sig2);b}) 
@(cross(V(sig3))); 

4.3 Support for wreal in PSL  
The wreal net type represents a real-valued physical connection 
between structural entities in the Verilog-AMS language. For 
more information on wreal net type and how it supports more than 
one driver, refer to the section on Real Nets in Cadence Verilog-
AMS Language Reference.  
Expressions involving wreal type objects that are explicitly 
declared can appear in PSL assertions in boolean expressions, 
clocking expressions and as actual arguments in property and 
sequence instances. 
wreal mywreal1, mywreal2; 
reg clk; 
// psl assert always ({mywreal1 > 4.4; mywreal2 < 
6.6}) @(posedge clk); 

4.4 Module bound Verification Units  
vunits can be used for analog psl assertions. This is a very useful 
feature if the source text of the design block should not or cannot 
be modified. A vunit is a side file that is linked to the design file 
for simulation. Thus, the design file remains untouched and the 
assertion code is provided reside in the vunit file. 
vunit myvunit(test) { 
//psl assert (V(sig1) > 1.4) @(cross(V(sig3))); 
} 
Note that vunits are mainly used to store the assertion code; 
however, they are not limited to assertions only. If additional 
behavioral code is needed for the assertions, like storing some 
values in variable/registers, it can be added to the vunit as well. 
Consider to use this feature as it makes the coding of assertions 
much easier in some cases. 
Verification units can be used to add assertions to 
Verilog/Verilog-ams/System-Verilog or VHDL instances. 
vunit myvunit(test) { 
// psl property P1 = ({V(sig1)} ‐> next (V(sig2)) 
@(cross(V(sig3))); 
//psl assert P1; 
} 

4.5 Support for PSL built-in Functions  
Analog expressions are allowed within the prev PSL built-in 
sampled value function. It is an error to have analog expressions 
as arguments to built-in sampled value functions other than prev. 
// psl assert always ({V(sigout) > 0.5} |=> 
{prev(V(sigout)) > 0.4}) @(cross(V(sigout))); 

4.6 Coverage Analysis for PSL Assertion 
Assertions are an important part of the coverage driven 
verification environment. Coverage points indicate whether the 
stimulus was able to create the conditions necessary to test the 
design's behavior. This information is critical to ensuring that the 
design has been sufficiently tested. This is typically achieved by 
defining signals and expressions that are being asserted on as 
coverage points and also defining the assertions themselves as 
coverage monitors. 
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The syntax of the cds_get_analog_value function is the 
following: 

real $cds_get_analog_value(hierarchical_name [, 
optional index[, optional quantity qualifier]]) 

where: 
• The index can be variable, reg, or parameters so 

long as their value evaluates to an integer constant. 
• The quantity qualifier can be potential, flow, 

pwr, or param. If none is specified, potential is 
assumed. 

The object referred to by hierarchical_name must exist and must 
be owned by the analog solver. It must be a scalar or a vector, and 
if the later, the index must be specified, such that the result 
resolves to a scalar. The hierarchical_name can be a relative or 
absolute path. 
Note: It is possible to check whether the object referred to by 
hierarchical_name meets these conditions by using the helper 
functions cds_analog_is_valid, cds_analog_exists, and 
cds_analog_get_width. These helper functions enable the 
user to create reusable testbenches where the representation of the 
model containing the object that the value fetch routine points to 
can change from digital to analog or vice versa. 
The value fetch routine can be called from within: 
• Verilog, SystemVerilog or Verilog-AMS scope 
The following calling scopes are not considered for the current 
version: 
• VHDL, VHDL-AMS, SystemC, Specman/e, Verilog-A 

(if not compiled as Verilog-ams code) 
The fetch routine needs to reference analog object. It can 
reference into any analog language: 
• Verilog-AMS, VHDL-AMS, Spectre, Spice Verilog-A ( 

compiled as Verilog-ams or included by ahdl_include) 

7. RELATED ACTIVITIES IN THE 
STANDARDS COMMITTEES 
 
Two standards groups are actively working towards standardizing 
analog/mixed signal assertions: 
• ASVA. The Analog System Verilog Assertions committee is 

focusing solely on analog/mixed signal extensions to the 
SVA subset of the System Verilog language. 

• SV-AMS. This group are defining AMS extensions to the 
entire System Verilog language, a work which parallels what 
Verilog-AMS has previously done for Verilog. The outputs 
generated by the ASVA group are expected to feed into this 
longer term SV-AMS effort. 

There is ongoing discussion regarding bringing aspects of ASVA 
into the Verilog-AMS language. There also is discussion 
happening to explore how analog simulation cycle can be fit into 
the overall SV simulation cycle and where would analog 
assertions fit in that cycle. 
The Cadence SVA implementation discussed herein depends only 
on the support of real valued data-types in SVA, which is 

expected to be a fundamental change that will be incorporated by 
both groups. 

8. TYING IT ALL TOGETHER: A MIXED-
SIGNAL SIGMA DELTA ADC EXAMPLE 
Sampled Data circuits are ideal for assertion based debugging, 
since the PSL/SVA assertion languages allow and encourage 
reasoning about sequential circuit behavior, and sampled data 
circuits (DACs, ADCs, SERDES, Switched Capacitor Filters etc.) 
by their very nature are sequential circuits.  
A Sigma Delta ADC (Modulator and Low Pass Digital Filter) is a 
typical example. Even the (essentially) analog modulator itself 
exhibits sequential behavior. In this example, we fully exploit the 
fact that, PSL/SVA Assertions aren’t limited to just reasoning 
about sequential behaviors, but can also be used to reason about 
predicated mixed signal behavior e.g. if something happens, then 
something else must (or must not) happen (possibly at the same 
time, possibly later). 

8.1 Sigma Delta ADC Architecture 

 
The Sigma Delta  architecture couples a modulator [4] with a Low 
pass filter. For ADC designs, the modulator is analog and the 
filter digital, and vice versa for DAC designs. A key characteristic 
of the Sigma Delta Modulator design is a feedback loop, with a 
very low order (often just a single bit) quantizer. Integrator(s) are 
inserted into the loop in order to shape the quantization noise. The 
output from the quantizer (comparator/latch combo) is a bit-
stream, which is largely modulated by the input signal, and 
contains quantization noise. 

 

 
Our modulator architecture features a second order feedback 
scheme, with discrete (switched capacitor) integrators modeled 
using H(z) transfer functions shown in the above diagram. Also 
shown is the architecture for the Sinc3 filter. The node names used 
will also be referenced throughout this extended example.  
In the simulation Verilog-AMS testbench, An ADC (i1) module 
is instantiated, which further contains a modulator instance 
(mod1), and a filter_decimator (actually Sinc3 filter) instance 
df1. The modulator and filter are both modeled using Verilog-
AMS. Also instantiated are a sine-wave voltage source generator 
(input), and a clock generator (pulse waveform). The ADC input 
is a sine-wave, with amplitude 0.65 and a frequency of Tsig. The 
clock for this circuit has a chosen frequency that corresponds to 



an oversampling rate of 256 times the Nyquist rate of the input 
sine-wave. 
A manual (laborious) inspection of the simulation waveforms in 
order to determine if the core loop characteristics of this 
sequential circuit architecture are continually upheld is a 
somewhat tall order (even for a short number of input wave 
periods) due to the high oversampling rate. 
We use Assertion Based Verification (ABV) while the simulation 
is running to complement the more traditional (and laborious) 
methods of waveform inspection as a post-processing step. 

8.2 Assertion Properties 
All assertions are evaluated upon the same default clock used to 
switch the modulator integrator circuits. 
vunit my_psl_vunit_all(ADC) { 

// DEFAULT CLOCK FOR ASSERTIONS 

//default clock = (timer(254.5*80e‐9, 8*80e‐9)); 

default clock = (cross(V(clk), +1)); 

 

// modeling layer. Create some expression placeholders 

// (used in pos_integ1 assertion) 

integer i1_pos, i1_inputs_pos; 

integer vx_le_half_vref; 

real abs_vx, abs_vref, abs_vi1, abs_vi2; 

integer abs_vx_close_0; 

 

analog begin 

  i1_pos = V(I1) > 0.0; 

  i1_inputs_pos  =  (V(X)  >  0.0)  &&  (V(I1)  >  0.0)  && 
(V(Y) <= ‐V(Vref)); 

  vx_le_half_vref = abs(V(X)) <= abs(V(Vref))/2.0; 

  abs_vx = abs(V(X)); 

  abs_vref = abs(V(Vref)); 

  abs_vi1 = abs(V(I1)); 

  abs_vi2 = abs(V(I2)); 

  abs_vx_close_0 = abs(V(X)) <= 0.005; 

end 

 

We use the modeling layer of the vunit (above) to introduce 
several auxiliary Verilog-AMS variables that are referenced with 
the assertions detailed below. 
The first pair of assertions simply test that the first integrator 
preserves the sign of arithmetic operations, a fundamental 
property of an integrator circuit. The first assertion tests that in 
any given cycle where the inputs to the integrator are positive, the 
output from the integrator in the subsequent cycle must also be 
positive. The second tests the converse (though is more verbose as 
the modeling layer is not used)  
 
// INTEGRATORS and DIFF JUNCTIONS, basic behavior 

// Check that integrators preserve sign of arithmetic 
operations 

// ie. assert that when V(in) and V(I1) both positive, 
and comparator feedback 

// is negative, 

// then the first integrator output in the next cycle 
must be positive. 

// Ditto with polarities flipped  

pos_integ1:  assert  always  {  i1_inputs_pos  }  |=> 
i1_pos; 

neg_integ1: assert always { (V(X) < 0.0) && (V(I1) < 
0.0) && (V(Y) >= V(Vref)) } |=> V(I1) < 0.0; 

// COMPARATOR BASIC FUNCTIONALITY 

//  if  the  input  to  the  comparator  (integrator  2 
output) is positive, 

// ensure the comparator detects that immediately, and 
vice versa 

comparator_pos: assert always ((V(I2) > 0.001)‐> (V(Y) 
>= V(Vref))); 

comparator_neg:  assert  always  ((V(I2)  <  ‐0.001)  ‐> 
(V(Y) <= ‐V(Vref))); 

 

 

//  ensure  integrator  2  output  above  threshold  before 
comparator output goes high 

// if I2 output is positive, then ensure it goes high 
before (or at) the time the comparator output is high 

integ_to_comp1: assert always V(I2) < 0.0 ‐> V(I2) >= 
0.0 before_ V(Y) >= V(Vref); 

//  if  comparator  output  is  negative,  then  ensure  it 
stays negative until integrator 2 output positive 

integ_to_comp2: assert always V(Y) <= ‐V(Vref) ‐> V(Y) 
<= ‐V(Vref) until V(I2) >= 0.0; 

 
 
The next four assertions check the basic comparator operations. 
The first two of these check that if the I2 integrator output (the 
input to the comparator, which assumes a zero detection 
threshold) is positive/negative respectively, then the value fed 
back from the comparator via the one bit DAC is greater than 
V(Vref) and less than or equal to –V(Vref) respectively. These 
are examples of predicated assertions. 
The third (integ_to_comp1) ensures that once the I2 integrator 
output goes negative, then it has to subsequently go positive again 
before (or during) the cycle in which the comparator/feedback is 
positive (i.e. >= V(Vref)). This is an example of a condition 
predicating a sequence of events, and the events in that sequence 
must happen in the specified order. Note the use of the before_ 
keyword. 
The fourth (integ_to_comp2) assertion above is a somewhat 
mirrored example, testing that once the comparator/feedback 
output has become negative, then it must remain negative 
(strictly) until the I2 integrator output (which is the input to the 
comparator) has again become positive. Note the presence of the 
until keyword. 

A second set of properties (below) test loop stability fundamentals 
(higher order modulators are notoriously prone to instability). 



The first loop stability property tested (vin_less_vref  in the 
following screenshot) captures a key design assumption, that the 
input voltage to the modulator/ADC never exceeds half the 
reference voltage.  
This is an example of using a property to formally capture an 
assumption made in the design IP regarding the environment in 
which the design is to be subsequently integrated. By capturing 
assumptions in this way, simulations can check that the input 
constraint is never violated in an integration context.  
 
// INPUT ASSUMPTION PROPERTIES 

//  assert  at  every  oversampling  clock  that  the  input 
voltage is constrained 

// within half of Vref to avoid risking instability 

vin_less_vref: assume always abs_vx <= abs_vref/2.0; 

 

// STABILITY PROPERTIES 

//  assert  that  integrator  outputs  are  bounded  within 
+/‐1.5*vref 

// as instabilility tends to force integrator outputs 
out of bounds 

integ1_bounded: assert never abs_vi1 > 1.5*V(Vref); 

integ2_bounded: assert never abs_vi2 > 1.5*V(Vref); 

 

//  ensure  that  a  LONG  (7  in  a  row)  sequence  of 
CONSECUTIVE  

// ones or zeros from the comparator doesn't 

// happen, as this would also indicate instability 

no_long_one_seq: assert never {V(Y) >= V(Vref)[*7]}; 

no_long_zero_seq: assert never {V(Y) <= ‐V(Vref)[*7]}; 

 

// test for limit cycle sequence of 1100110011001100 

limit_cycle_p1: assert never { { {V(Y) >= V(Vref)[*2] 
; V(Y) <= ‐V(Vref)[*2] }[*2] }[*2] }; 

// test for limit cycle sequence of 0011001100110011 

limit_cycle_p2: assert never { { {V(Y) <= ‐V(Vref)[*2] 
; V(Y) >= V(Vref)[*2] }[*2] }[*2] }; 

 
The next group  of properties ensures that the integrator outputs 
remain properly bounded, in this case within 1.5 times V(Vref). 
(Note: unstable Sigma Delta Modulators typically exhibit large 
signal swings in integrator outputs, and indeed more exotic 
designs have additional circuitry to detect such large swings and 
reset/nullify the integrators to break the oscillations. See 
references). For our example, we check the integrator output 
levels to ensure they remain in bounds.  
A second and related characteristic of unstable modulators is the 
presence of particular bit patterns. In the next two properties, we 
assert that a series of consecutive comparator high value outputs 
(logic 1) or low value outputs (logic 0) is never supposed to 
happen for this particular design. Note the presence of the [*7] 
term in the sequence, which acts as a sequence multiplier using 
the PSL language. 

An often undesirable property of modulators (even stable ones) is 
the presence of ‘idle tones’[5] i.e. additional repeating bit patterns 
which can lead to audible tones/clicks when the modulator is used 
in audio applications. Correspondingly we have two limit cycle 
checks, coded to check for undesirable bit-stream sequences of 
1100110011001100 and it’s inverse. 

8.3 Simulation Results 
A large number of assertion failures were noted after performing a 
simulation, per the table below. Assertion waveforms allow 
debugging such failures (see red highlighted cycles within green 
assertion status waveforms) in the presence of other circuit 
simulation waveforms. In our example, we noted the high number 
of assertion failures were due to an error in the magnitude of a 
random dither signal being added to the modulator comparator in 
a not entirely successful attempt to minimize the likelihood of 
limit cycles. 
   
Assertion Name  Finished Count  Failed Count 

comp_not_stuck 15 3
comparator_neg 2176 138
comparator_pos 2170 139
integ_to_comp1 2053 264
integ_to_comp2 2053 125
limit_cycle_p2 0 2
no_long_one_seq 14 2

 

 

9. CONCLUSIONS 
In this paper, our objective was to take a broad look at the existing 
challenges in analog and mixed-signal verification and then 
evaluate how an assertion based verification concept addresses 
some of these challenges and also bring forth many new 
possibilities that are either too complex and expensive to develop 
and maintain in today’s design and verification methodologies, or 
are not possible at all. We then reviewed a set of extensions in the 
standard PSL and SystemVerilog assertion languages that enable 
users to develop complex assertions on their analog and mixed-
signal models. 



Finally, we applied the language extensions that we described on 
a mixed-signal Sigma Delta ADC design. We verified several 
different types of properties related to sampled data/sequential 
analog circuit behavior:    

• predicated events (condition A occurring implies condition B 
must/must not occur) 

• predicated sequences (condition or sequence A occurring 
implies sequence B must (or not) occur in specified order 

• checks for desired and undesired repetitive sequences 

• extended checks over multiple clock cycles 

• constrained sub-sequences that must happen within a larger 
sequence, in a given timeframe (number of clocks) etc 

• predicated/triggered conditions that had to happen before 
other conditions happened 

• predicated/triggered conditions that had to hold until some 
other condition happened 

These checks were performed during a running simulation, not as 
a post-processing step. 

Waveform inspection alone is a laborious debug method for 
analog and/or mixed signal circuits. Within this paper, we have 
seen how complementing the waveform approach with an 
Assertion Based Verification (ABV) approach during AMS 
verification leads to much quicker and more rigorous 
identification of bugs/issues i.e. improved throughput. The various 
properties captured as assertions and assumptions have varied 
from the very simple to the reasonably complex, and some of the 
violations wouldn’t be immediately apparent from a casual 

waveform inspection alone. Inspection of assertion status 
waveforms superimposed on circuit node waveforms makes it 
easier to identify and debug issues in the correct context. 
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