Mixed ESL Power/Performance Estimation using SystemC/TLM2.0 Modeling and PwClkARCH Library

Antonio GENOV, NXP Semiconductors

Loic LECONTE, NXP Semiconductors

François VERDIER, University Cote d'Azur, CNRS, LEAT

Agenda

CONFERENCE AND EXHIBITION

EURO

Automotive multimedia

- Feel at home on the road
- Complex SoCs for simplification of in-car media entertainment and mobile devices connection
- Strong relation between Comfort and Power consumption
- Each Watt counts ...

Context

Power-aware designs era

Increasing SoC performances?!

Great, but at what price?

Insufficient early stage architecture investigation capabilities

- Architecture power waste
- Increased production cost and time-to-market period

- Architecture definition tremendous Power/Perf trade-off impact It is always good to make abstractions ...

DESIGN AND VERIFICATION

Early Stage power estimation

• What?

- Power estimation in the very first stages of Design Flow (before RTL)
- DYNAMICALLY estimate power on complex use cases

• Why?

- Study different architecture options from beginning
- Creating references for developers
- Catching/Avoiding bugs earlier in the flow
- Reduce design iterations

• How?

- High-Level Virtual Prototyping using SystemC/TLM2.0 for behavioral/communication model
- Using PwClkARCH library for power intent description

PwClkARCH - semantics

- C++ classes and SystemC/TLM modules
- UPF-based high-level approach
 - Design elements, power state table, power switches, supply nets
- Added clock tree description
 - External clocks, generated clocks, DPLLs, clock state table, clock managers
- Power and Clock domains
- Power management
 - OPP Table, Clock gating, Auto clock gating, Power gating, DVFS

PwClkARCH - power management and estimation

- Advantages:
 - Functional model / Power intent separation
 - Parallel DYNAMIC Co-simulation
 - Mixed Perf/Power estimation framework
 - Test power reduction technics early in the flow – (Power/Clock gating, DVFS)
- Other existing solutions
 - not easily applicable and they lack of precise power reduction technics mechanisms at high abstraction level.

Simple example

© Accellera

SYSTEMS INITIATIVE

CONFERENCE AND EXHIBITION

Tables

CM

2020

DESIGN AND VERIFICATION

CONFERENCE AND EXHIBITION

ELROP

CM

ΡM

Evaluation - based on Interconnect subsystem

- Each device in i.MX8 family has:
 - 1x Switch matrix where all subsystems are plugged-in
 - Functional model is targeting both performance and power consumption
 - SCU (System Control Unit)
 - Handling reset, clock and power control
 - Those policies are modeled using PwClkARCH
 - 1x or 2x DRAM controller(s)
- All devices in i.MX8 family are following the same structure
 - Subsystems are scaled or replaced

Evaluation - based on Interconnect subsystem

- Switch Matrix (SM)
 - Contains a large number of complex sub-blocks
 - Manages QoS of in-coming transactions
 - Apply Multi-level QoS based arbitration between subsystems
 - Handled interleaving to DRCs and routing system accesses
 - Executes multiple scheduling algorithms to assure optimal memory usage and performance

QOS

Little Arbiter

= 1x voltage domain – low-power support

QOS

- ~ 5x power domain
- > 25 clock domains HW auto clock gating

Simple multi-task use case - with power management

- Full activity all Switch Matrix blocks and the 2 DRCs are active
- IDLE no activity clock gating (all clock domains in the Switch Matrix and those for DRCs)
- Half activity half of the Switch Matrix is active and only 1 DRC is active at a time
- Power OFF end of activity Clock gating, Low-power mode for Switch Matrix and DRC power gating

Results - Total Power

SYSTEMS INITIATIVE

Results - Observations

DESIGN AND VERIFICATION

CONFERENCE AND EXHIBITION

Results - Overall energy

Scales are masked due to confidentiality restrictions

Results - Correlation

Subsystems power contribution	Simulation/Silicon power measurements correlation
Interconnect dynamic power	95%
Interconnect static power	97%
2 DRC dynamic power	95%
2 DRC static power	97%
Total power under 1.1V	95-97%

Values are masked due to confidentiality restrictions

© Accellera Systems Initiative

Summary & Outlook

- Based on initial assessment, we are convinced by PwClkARCH technology and we continue to support and test it with different use cases and silicon measurements comparison.
- It would be very interesting to integrate this technology into an industrialized EDA.
- Our second DVCon2020 paper presents some additional use case simulations and methodology enhancements.
 - "Timing-Aware high level power estimation of industrial interconnect module" (presented by Amal Ben Ameur)

Thank you!

Q&A

