Mixed ESL Power/Performance Estimation using SystemC/TLM2.0 Modeling and PwClkARCH Library

Antonio GENOV, NXP Semiconductors
Loic LECONTE, NXP Semiconductors
François VERDIER, University Cote d`Azur, CNRS, LEAT
Agenda

- Automotive Multimedia
- Context
- Early stage power estimation
- PwClkARCH
- Power and Clock Intent definition
- Evaluation based on Interconnect subsystem
- Simple multi-task use case and results

Summary & Outlook
Automotive multimedia

- Feel at home on the road
- Complex SoCs for simplification of in-car media entertainment and mobile devices connection
- Strong relation between Comfort and Power consumption
- Each Watt counts ...
Context

- Power-aware designs era

- Increasing SoC performances?! Great, but at what price?

- Insufficient early stage architecture investigation capabilities
 - Architecture power waste
 - Increased production cost and time-to-market period
 - Architecture definition - tremendous Power/Perf trade-off impact

- It is always good to make abstractions ...
Early Stage power estimation

• What?
 – Power estimation in the very first stages of Design Flow (before RTL)
 – DYNAMICALLY estimate power on complex use cases

• Why?
 – Study different architecture options from beginning
 – Creating references for developers
 – Catching/Avoiding bugs earlier in the flow
 – Reduce design iterations

• How?
 – High-Level Virtual Prototyping using SystemC/TLM2.0 for behavioral/communication model
 – Using PwClkARCH library for power intent description
PwClkARCH - semantics

- C++ classes and SystemC/TLM modules
 - UPF-based high-level approach
 - Design elements, power state table, power switches, supply nets
 - Added clock tree description
 - External clocks, generated clocks, DPLLs, clock state table, clock managers
- Power and Clock domains
- Power management
 - OPP Table, Clock gating, Auto clock gating, Power gating, DVFS
PwClkARCH - power management and estimation

- **Advantages:**
 - Functional model / Power intent separation
 - Parallel DYNAMIC Co-simulation
 - Mixed Perf/Power estimation framework
 - Test power reduction technics **early in the flow** – (Power/Clock gating, DVFS)

- **Other existing solutions**
 - not easily applicable and they lack of precise power reduction technics mechanisms at high abstraction level.
Simple example

```java
//Create Clock Domains
Clock_Domain* TopCD = new Clock_Domain(NULL, "TopCD", "TOP");
Clock_Domain* CLKD_T = new Clock_Domain("TopCD", "CLKD_T", "TOP/CLKD_T");
Clock_Domain* CLKD_DRC1 = new Clock_Domain("TopCD", "CLKD_DRC1", "TOP/CLKD_DRC1");

//Create Power Domains
Power_Domain* TopPD = new Power_Domain(NULL, "TopPD", "top");
Power_Domain* PD_T = new Power_Domain("TopPD", "PD_T", "top/T");
Power_Domain* PD_DRC = new Power_Domain("TopPD", "PD_DRC", "top/DRC");
Power_Domain* PD_DRC1 = new Power_Domain("PD_DRC", "PD_DRC1", "top/DRC/DRC1");

//Design Elements
Design_elem* DE_Interc = new Design_elem("CLKD_T", PD_T, (top->ss_interc), INTERC_CAPACITY, INIT_ACTIVITY, INTERC_LEAKAGE_RESISTANCE);
Design_elem* DE_Master = new Design_elem("CLKD_T", PD_T, (top->master), 0*(std::pow(10, 12)), 0.6, 1066);
Design_elem* DE_DRC = new Design_elem("CLKD_DRC1", PD_DRC, (top->ss_drc1), DRC_CAPACITY, INIT_ACTIVITY, DRC_LEAKAGE_RESISTANCE);

//Create DPLLs
DPLL* DPLL_T = new DPLL("CLKD_T","DPLL_T",2);
DPLL* DPLL_DRC = new DPLL("CLKD_DRC1","DPLL_DRC",2);

//Power switches
Power_Switch* SW1 = new Power_Switch(PD_DRC1, "SW1", 2);
(SW1)->input_supply_nets().push_back(VDD_DRC);
SW1->set_output_supply_net(VDD_DRC);
```

© Accellera Systems Initiative
Tables

// Power state table - PST
$1.create_pst("PST_top",TopPD, "3", "VDD_T", "VDD_DRC", "VDD_DRC1");
$1.add_pst_state("PST_top","PST1-ALL_ON", "3", "ON_H", "ON", "ON"); // #1
$1.add_pst_state("PST_top","PST3-DRCI_OFF", "3", "ON_L", "ON", "OFF"); // #2

// Power states legal transitions
$PTTrans* Tr = new $PTTrans("PST_top", "**, **");

// Create external clocks
$Clock_extern* Clk_I_R = new $Clock_extern("Clk_I_R", "reference", "DPLL_T", 24*(std::pow(10,6)));
$Clock_extern* Clk_I_B = new $Clock_extern("Clk_I_B", "Bypass", "DPLL_T", 32*(std::pow(10,3)));
$Clock_extern* Clk_DRC1_R = new $Clock_extern("Clk_DRC1_R", "reference", "DPLL_DRC1", 24*(std::pow(10,6)));
$Clock_extern* Clk_DRC1_B = new $Clock_extern("Clk_DRC1_B", "Bypass", "DPLL_DRC1", 32*(std::pow(10,3)));

// Clock States Table - CST
$2.create_clkst("CLKST_top", TopCD, "2", "CK_CN_CLKD_T_DE_Interc", "CK_CN_CLKD_T_MASTER", "CK_CN_CLKD_T_MASTER_DRC1");
$2.add_clkst_state("CLKST_top", "CST1-ALL_ON", "2", "4", "4", "4"); // #1
$2.add_clkst_state("CLKST_top", "CST2-DRCI_OFF", "2", "4", "4", "0"); // #2

// OPP Table
$2.create_opp_table("OPPtable", TopCD, TopPD, "3", "DPLL_T", "DPLL_DRC", "index");
$2.add_opp_state("OPPtable", "OPP1-ALL_ON", "3", "600,4", "600,4", "1,1"); // #1
$2.add_opp_state("OPPtable", "OPP2-DRCI_OFF", "3", "600,4", "600,4", "2,2"); // #2

// Create Power Management Unit (PMU)
$ARK_IPs::PMU* pnu = new $ARK_IPs::PMU("PMU", TopPD->power_domains_list, pst, TopCD->clock_domains_list, Clkst, DPLL_T->dll_list, pOppTable);

<table>
<thead>
<tr>
<th>State</th>
<th>VDD_T</th>
<th>VDD_DRC</th>
<th>VDD_DRC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL_ON</td>
<td>ON_H</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>DRC_OFF</td>
<td>ON_L</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>CLKD_divider</th>
<th>CLKD_Master_divider</th>
<th>CLKD_DRC_divider</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL_ON</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>DRC_OFF</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>DPLL_T</th>
<th>DPLL_DRC</th>
<th>Index[PD:C_D]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL_ON</td>
<td>600,4</td>
<td>600,4</td>
<td>1,1</td>
</tr>
<tr>
<td>DRC_OFF</td>
<td>600,4</td>
<td>600,4</td>
<td>2,2</td>
</tr>
</tbody>
</table>

© Accellera Systems Initiative
Evaluation - based on Interconnect subsystem

- Each device in i.MX8 family has:
 - 1x Switch matrix where all subsystems are plugged-in
 - Functional model is targeting both performance and power consumption
 - SCU (System Control Unit)
 - Handling reset, clock and power control
 - Those policies are modeled using PwClkARCH
 - 1x or 2x DRAM controller(s)
- All devices in i.MX8 family are following the same structure
 - Subsystems are scaled or replaced
Evaluation - based on Interconnect subsystem

- Switch Matrix (SM)
 - Contains a large number of complex sub-blocks
 - Manages QoS of incoming transactions
 - Apply Multi-level QoS based arbitration between subsystems
 - Handled interleaving to DRCs and routing system accesses
 - Executes multiple scheduling algorithms to assure optimal memory usage and performance

- = 1x voltage domain – low-power support
- ~ 5x power domain
- > 25 clock domains – HW auto clock gating
Simple multi-task use case - with power management

- **Full activity** – all Switch Matrix blocks and the 2 DRCs are active

- **IDLE** – no activity – clock gating (all clock domains in the Switch Matrix and those for DRCs)

- **Half activity** – half of the Switch Matrix is active and only 1 DRC is active at a time

- **Power OFF** – end of activity – Clock gating, Low-power mode for Switch Matrix and DRC power gating
Results - Total Power

Phase 1: Full activity
Phase 2: IDLE
Phase 3: Half activity
Phase 4: End of activity

Scales are masked due to confidentiality restrictions
Results - Observations

Scales are masked due to confidentiality restrictions
Results - Overall energy

- $E = \int P(t) dt$

- Observations
 - Phase 1 – max consumption
 - Phase 2 – absence of activity
 - Phase 3 – the slope is lower than in Phase 1

Scales are masked due to confidentiality restrictions
Results - Correlation

<table>
<thead>
<tr>
<th>Subsystems power contribution</th>
<th>Simulation/Silicon power measurements correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interconnect dynamic power</td>
<td>95%</td>
</tr>
<tr>
<td>Interconnect static power</td>
<td>97%</td>
</tr>
<tr>
<td>2 DRC dynamic power</td>
<td>95%</td>
</tr>
<tr>
<td>2 DRC static power</td>
<td>97%</td>
</tr>
<tr>
<td>Total power under 1.1V</td>
<td>95-97%</td>
</tr>
</tbody>
</table>

Values are masked due to confidentiality restrictions
Summary & Outlook

• Based on initial assessment, we are convinced by PwClkARCH technology and we continue to support and test it with different use cases and silicon measurements comparison.

• It would be very interesting to integrate this technology into an industrialized EDA.

• Our second DVCon2020 paper presents some additional use case simulations and methodology enhancements.
 – “Timing-Aware high level power estimation of industrial interconnect module” - (presented by Amal Ben Ameur)
Thank you!

Q&A