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Abstract— The Hardware/Software (HW/SW) architectural exploration has become a key component of System on 

Chip (SoC) design modeling. The insufficient power and timing analysis capabilities at early stages of the design flow 

limit the optimized modeling. Thus, pushed by the need to improve that shortage and inspired by the numerous studies 

on Electronic System Level (ESL) modeling, we introduce a novel ESL methodology that combines power and 

performance estimation in one unified framework.  

In this paper, we present our new approach applied and tested on an NXP proprietary switch matrix/interconnect 

system used in i.MX8 series of SoCs. Our model is based on SystemC-TLM2.0 and make use of PwClkARCH library 

for power management. This framework allows us to develop a SoC transaction level model (TLM) written exclusively 

in C++/SystemC-TLM2.0 and to extract power consumption and performance metrics after the simulation. This 

modeling approach allows a strong separation between the functional SystemC/TLM model and its power intent 

description. Only a few pieces of code must be added to performance model to hook power model to it. Moreover, it 

makes the code easier to debug and maintain. 

Keywords— Dynamic approach, Power estimation, Power efficiency, Electronic System Level, System design, 

Performances estimation 

I.  INTRODUCTION  

The complexity and capabilities of modern high-performance devices are growing exponentially with 

continuously reducing the transistors size and successfully increasing the integration density. Thanks to these 

advances, the number of Intellectual Properties (IPs) on a single chip and the capabilities of systems are constantly 

growing. As a result of increasing complexity, the power consumption of System-On-Chip (SoC) are also 

increasing. Consequently, the trade-off between performance and power efficiency has become a real challenge. 

Therefore, SoC manufacturers and engineers are devoting considerable effort to researching new development 

strategies based on higher level of abstraction. Many power reduction techniques [1] have been developed to reduce 

the current leakage. The application of these techniques starts at the design specification stage and is refined at each 

step of the development flow [2], but it is unfortunately difficult to quantify their impact at the architectural 

definition stage. We will see in the following that at correctly chosen stages, we can have a real impact on the 

energy consumption. 

In the next section [Section II], we will present a brief description of the ESL level modeling and current issues. 

Next, we will present some existing approaches and related work, and then in section III we will introduce our 

modeling choices. In section IV, we will present a solution, developed to address the discrepancies of existing 

techniques by allowing the application of different power reduction techniques and a dynamic approach for power 

estimation. Therefore, in sections V and VI we will give an example and its simulation results. 

II. ELECTRONIC SYSTEM LEVEL (ESL) MODELING 

A. Architecture and Design definition 

   The flow starts with the customer/marketing requirements, which lead to the definition of the specifications. At 

this level, architecture teams work on these specifications and explore component selection options. Almost in 

parallel is the Electronic System Level (ESL) initiation. The ESL refers to a high abstraction level design modeling 

and architectural exploration. This means that architecture team defines a Virtual Prototype (VP) of a system 

architecture starting only with the unavoidable behavioral parts of the Design Under Test (DUT) and makes some 

timing approximations instead of cycle accurate models. A widely used and well-established approach to early 

performance estimation is to create functional models using languages such as C, C++ and SystemC. With each 
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refinement of the functional model, we can perform the necessary performance analysis by some simple 

monitoring or by using existing EDA.  

On the other hand, the power consumption is almost neglected at this high level of abstraction. This is due to the 

limited information at the beginning of the design flow and the difficulty of specify and testing power management 

strategies. A commonly used approach at this level is a static approach consisting of taking characteristics of the 

technology for leakage estimation, different IP power numbers (given by manufacturers) for the worst/best case 

dynamic consumption and components area information. Then, the static and dynamic power consumption is 

calculated using Excel tables or automated tools and by applying power equations. This approach works well for 

static or pseudo-static use cases but cannot be applied to more complex dynamic ones. Therefore, the need for a 

method to dynamically estimate complex SoC use cases energy consumption has led to multiple studies on power 

estimation at ESL level. IEEE Unified Power Format (UPF) standard was developed [3]. The main UPF 

contribution is the ability to include the power intent definition, through which we can divide the system into 

multiple power domains, define voltage levels, add isolation cells and level shifters, and apply techniques such as 

power gating and Dynamic Voltage Scaling (DVS). Prior to UPF 3.0 [4], released in 2015, the UPF required that 

an RTL model be developed in order to be applied for power estimation. UPF 3.0 allows to move to a higher 

abstraction level and nowadays, the power model can be started at the ESL level, only with power/logical states, 

and then refined to voltage and supply nets. However, at our level of abstraction, UPF 3.0 is not sufficient for an 

easy detailed power and performance design exploration, where power management needs to be defined and the 

trade-off between power and performance are to be investigated. 

B. Related works 

Previously, many power estimation methodologies have been studied or developed, mostly based on static 

approaches. In the following approach [5], the authors use IP activity during TLM simulation and extract it in a 

VCD file. Then, they synthesize the TLM model and compile the design using design constraints. The power 

consumption is estimated based on cell reports extracted from the design. 

In another study [6], the approach also relies on IP activity. Different activity types are defined, and counters are 

added for each one of them. Each counter increments when the corresponding activity is executed during 

simulation. The corresponding power consumption is applied to each type, allowing the entire module activity to 

be calculated. Each type of IP has its own modelling approach i.e. memory, processor, crossbar etc. 

 In [7], the power information is added to the SystemC functional model. In this work, it is assumed that power 

related transactions are developed before the functional transactions. Each corresponding IP transactions are 

identified, and their consumption are characterized. Macro-models of IPs with multiple parameters are created 

and the TLM functional models are enriched in order to dynamically call these macro-models during simulation. 

All these methods need a significant amount of time and coding effort in order to extract power estimations. In 

addition to that, there is no information about the application of any power reduction technique.  

In [8] there is an approximately timed SystemC/TLM approach applied to NoC architecture with Dynamic Voltage 

and Frequency Scaling (DVFS). The authors mention that they do not use pure functional models and describe IP 

specific power model for each IP. In their approach, the DVFS modelling is independent to the actual power 

modelling. 

In [9], [10], the authors present a well-structured and interesting approach, which is inspired by many studies. 

They use SystemC functional models augmented with their PMS library to create UPF-like power intent. Once 

the SystemC/PMS model is sufficiently accurate and detailed, they proceed to High-Level Synthesis (HLS) to 

generate RTL code and UPF file. The main Power intent verification is done with the generated RTL and UPF. 

Like their solution is provided for HLS, they use SystemC interfaces for the communication. Thus, it remains a 

highly time-consuming approach for modeling complex and protocol-based systems. 

Besides, there are many industrialized methods and tools that are being used for power estimation. We can cite 

tools like Synopsys Platform Architect [11] which uses UPF-based high-level state machine description. A power 

consumption is associated to each state and at each state triggered by given events, the virtual prototype detects 

these events and updates the total power consumption. This is a good approach for power estimation. However, 

the lack of easy way to describe clock/power domains and to apply power reduction techniques make it unsuitable 

for power management investigation. 

Another industrial solution is Intel Docea Power Simulator (IDPS) [12] used to create power and thermal models 

of SoC at system level and to apply post-processing power analysis. Intel`s simulator is also primarily based on 

dynamic approach for power estimation. For each component, it needs a description of power state transition 

events, translated into Power State Machine (PSM). For each power state, the user needs to provide the 

corresponding power profile. The extraction of specific data from SystemC-TLM functional model to VCD files 

enables us to co-simulate the power model with these VCD files. Thus, it is an effective method for power and 
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temperature estimation. However, the IDPS does not provide a tool for power optimization strategies description. 

The only way to do it is to integrate the entire description into the functional model. There is not a direct 

power/functional models’ co-simulation, thus it may be more time consuming and the functional/power models 

relation may become less stable. 

Mentor Graphics presents another solution at TLM level called Mentor Graphics Vista [13], but similar to the 

previously cited industrial solutions, it is not suitable for power management strategies investigation. 

The performance estimation approach we use is based on transaction level monitoring. It allows us to start with a 

higher functional abstraction and refine our behavioral model all the way down. The proposed solution for the 

power modelling is called PwClkARCH. It is a library of C++/SystemC-TLM classes, inspired by the UPF 

standard, allowing a SystemC-TLM architecture to be structured in power and clock domains and power 

management strategies to be applied accordingly. In this way, the impact on power consumption and on 

performance can be observed and dynamically evaluated for any IP/SoC executing any application. This library 

does not rely on state machines, but on relatively precise surface information and IP activity reports. The power 

estimation is extracted from the sum of these information and is more accurate than the power states-based ones. 

    In the next section we will introduce our functional model choices and a quick overview of the performance 

estimation key points that are needed to be observed. 

III. MODELING CHOICES 

A. Behavioral model choices 

    There are different techniques, tools and languages used to create functional/behavioral models, but the most 

commonly used is the SystemC library, which is based on C/C++ languages. For the communication part, 

SystemC provides interfaces, channels and ports. On the other hand, the TLM2.0 transaction level modeling 

methodology presents a standardized abstraction approach, which combines generic transactions information into 

payloads and transfer these payloads via interfaces called sockets. In this way, the multitude of pin connections is 

replaced by a single socket that transports the entire block of information via function callbacks. Thanks to this 

higher-level description, we can successfully generate fast simulating functional un-timed or timed models with 

reduced coding effort. TLM2.0 allows the usage of two main coding styles. 

- Loosely Timed style - uses transactions with only two timing points i.e. at the beginning and at the end 

of the transaction. It is more suited to software fast simulating verification. 

- Approximately Timed style - employs breaking down transactions into multiple timing points (four 

phases by default) and therefore allowing to model particular hardware communication protocols and 

approximate time accuracy. It is useful for architectural exploration. 

We use SystemC to describe the behavior of hardware systems and TLM2.0 to simplify the communication 

between different IP SystemC models by using function callbacks instead of pin wiggling. We are interested in 

the definition of specific protocols, and more precisely in some AXI protocol capabilities. As a first step, instead 

of recreating the entire AXI protocol, we prefer to model only the points we need in order to create a simpler 

sufficiently accurate model. 

B. Performance estimation 

    The accuracy of the performance estimation depends on the functional model abstraction. The more the 

functional model respects the actual behavior of the hardware and its timing, the more our accurate our 

performance estimation will be. As performance estimation is already a well-established and developed solution, 

we will focus our attention on power estimation part. This section is therefore devoted to some key points in 

estimating the performance of a memory-based system. In order to perform this estimation, we need to be able to 

configure several points for each IP. Some of the most significant configurable parameters are READ/WRITE 

access delays, MAX/MIN arbitration delays, number of ports and systems, ports width and data length. The most 

important performance criteria for performance evaluation are latency, deadline respect for real-time systems, the 

influence of configurations on performance and of course the bandwidth. Some of the metrics used for accuracy 

quantification are: 

- Transaction duration - Time between the start and the end of each transaction. 

 𝑇𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑡𝐸𝑛𝑑𝑇𝑖𝑚𝑒 − 𝑡𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 Eq. 1 

- Throughput - Number of transactions during the total simulation time or during a given time frame. 

 
𝑇𝑃 =

∑ 𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠𝑁𝑢𝑚𝑏𝑒𝑟
𝑛=0

𝑇𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒

 
Eq. 2 
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- Transaction reordering - Important for modules receiving/transmitting multiple simultaneous 

transactions. The accurate modeling of transactions order can have a significant impact on performance 

estimation accuracy. The main reordering types are Port Transaction ordering - ordering on each port 

and Global Transaction ordering - global view on system. 

    If we have the RTL model, we can also find the Error rate for each metric. 

C. Power estimation and Power management 

    The classic equation for power P(t) is the product of the voltage V(t) and the current I(t) turning in the circuit.  

In many cases V(t) remains almost constant, so the only variable that needs to be calculated is the current I(t). 

The energy is calculated as the integral over the time of the instantaneous power: 

The power dissipated by an SoC can be divided in two general parts: 

- Static Power - due to transistors leakage current  

- Dynamic Power - due to the switching activity of transistors. The short-circuit power is the power dissipated 

by an instantaneous short-circuit connection at the time the gate switches state. In our case we find short-

circuit power to be negligibly small, hence ignored. Theoretically, if all transistors switch at the same time 

and at each cycle of a clock, then the dynamic power is the product of the load capacity of the transistors 

(𝐶𝑙𝑜𝑎𝑑), the supply voltage of the transistors (𝑉𝑑𝑑) squared and the frequency (𝑓𝑐𝑙𝑘). In reality, we will never 

have all the transistors switching at the same time, so for each IP we can add an activity factor (α) with value 

between 0 and 1, which models the average activity based on switching transistors number. 

The total power consumption is simply the sum of these two parts. 

Equations [Eq. 5], [Eq. 6], [Eq. 7] results in the total power equation:  

IV. PWCLKARCH 

PwClkARCH is a C++ library developed for ESL power estimation. Many previous studies have been 

conducted and collected in order to optimize the library [14], [15], [16], [17]. Most of the semantics included in 

this library are UPF based and abstracted at the TLM level. As in UPF, there is a list of components called Design 

Elements (DEs). DEs are defined as references or pointers to their corresponding SystemC-TLM design model. 

Then, a power and clock specifications are built over these DEs to define the power intent. In this way, the 

separation between the hardware design and the power/clock intent is reinforced (Figure 1). 

 
Figure 1. PwClkARCH semantics 

Each DE aims to apply the generic static [Eq. 5] and dynamic [Eq. 6] power equations, taking into account the 

component specific capacitance (𝐶𝑙𝑜𝑎𝑑) and the leakage resistance (𝑅𝑙𝑒𝑎𝑘𝑎𝑔𝑒). Using the procedure for defining 

 𝑃(𝑡) = 𝑉(𝑡) ∗ 𝐼(𝑡) Eq. 3 

 𝐸 =  ∫ 𝑃(𝑡)𝑑𝑡 
Eq. 4 

 
𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑉𝑑𝑑 ∗ 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒 =

𝑉𝑑𝑑
2

𝑅𝑙𝑒𝑎𝑘𝑎𝑔𝑒

 
Eq. 5 

 𝑷𝒅𝒚𝒏𝒂𝒎𝒊𝒄 = 𝑷𝒔𝒉𝒐𝒓𝒕−𝒄𝒊𝒓𝒄𝒖𝒊𝒕 + 𝑷𝒔𝒘𝒊𝒕𝒄𝒉𝒊𝒏𝒈 = 𝜶 ∗ 𝑪𝒍𝒐𝒂𝒅 ∗ 𝑽𝒅𝒅
𝟐 ∗ 𝒇𝒄𝒍𝒌  Eq. 6 

 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐   Eq. 7 

 𝑃𝑡𝑜𝑡𝑎𝑙 = (𝑉𝑑𝑑 ∗ 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒)  + (𝛼 ∗ 𝐶𝑙𝑜𝑎𝑑 ∗ 𝑉𝑑𝑑
2 ∗ 𝑓𝑐𝑙𝑘) Eq. 8 
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DEs in the library, we can divide DEs (and thus the IPs) into different power and clock domains. Moreover, it is 

possible to add DPLLs, switches, power state tables, clock state tables and OPP tables. We can test different 

strategies by changing power/clock domain structures, applying power/clock gating, auto clock gating, testing 

different clock frequencies and observing the behavior of the functional model. 

In Figure 1 we can see a block called Power Management Unit (PMU). This block is a SystemC - 

sc_module and it is the only mandatory power-oriented block that must be connected to the functional model. The 

PMU acts as an interface between the functional and the power model. It serves as a relay for the implementation 

of power management strategies based on the exploitation of clock/power domains states. Switching from one 

power mode to another corresponds to a power management request (TLM transaction) sent by an initiator from 

the SystemC-TLM model to the PMU. This initiator can be, for example, the CPU or another module. In summary, 

the initiators send orders to PMU when power state change is to occur, and the PMU applies all necessary changes 

and configurations to ensure compliance with the defined power strategy. It is important to mention that when we 

use auto-clock gating, it is the DEs that give the orders to the PMU and not the initiators. The approach has been 

tested on Intel`s proprietary pre-silicon simulation environment to define clock gating strategy on L2 Copro - 

hardware accelerators-based block [14]. Another test was performed on DRAM memory using a simple functional 

model and the DRAMPower tool  [16]. This study shows that PwClkARCH can be connected to DRAMPower, 

and thus extract an accurate power consumption estimation of a given memory technology used in an ESL 

functional model. Furthermore, it also includes a DVFS application using PwClkARCH`s OPP tables. 

Our study introduces a test on a complex interconnection module. Moreover, this is the first PwClkARCH 

application on approximately timed (AT) model. Power gating, clock gating and DVFS are used in use cases. 

V. USED TESTBENCH AND DESIGN UNDER TEST 

    Our targeted Design Under Test (DUT) is a complex system serving as hierarchical memory mapped bus. Its 

main tasks are to manage the communication between all sub-systems integrated in the SoC, to apply transaction 

reordering and scheduling, and to manage the Quality of Service (QoS) of the entire SoC. In order to model it, we 

use AT coding style and some protocol-specific extensions for the transaction scheduling. For our first 

methodology test, we defined a testbench containing simple traffic initiators to mimic memory access traffic and 

simple targets to mimic memory blocks, allowing us to test the capabilities of our interconnect module. 

A. Testbench - Traffic Initiators and Targets 

 
Figure 2. Simplified Initiator and Target blocks 

The Initiator modules (Figure 2) are SystemC based traffic generators designed to recreate simplified 

accesses to external memory. For transaction memory management, we considered two pools - one for read 

transactions and one for write transactions. Their buffer size can be defined externally. We can also define 

different traffic configurations using parameters such as maximum outstanding READ/WRITE transactions and 

maximum number of simultaneous transactions. Each transaction generated by the initiators is complemented by 

ignorable TLM extensions to mimic signals such as transaction ID and QOS signal, representing AxID and QOS 

from AXI protocol. The Target modules (Figure 2) are basic models of DRAM controllers (DRC) + DRAM 

memories that can execute different memory accesses, such as READ and WRITE. Inside we consider fixed 

request acceptance delay, read execution delay and write execution delay. We can also manipulate parameters 

such as memory width/length.  

B. Design Under Test - Interconnection module 

     As mentioned earlier, our DUT (Figure 3) is a hierarchical interconnection system with multiple subsystems 

and levels. The main features of this module are the programmable course interleaving, system address decoding 

and transaction routing to the memory mapped SoC components via a cross-linked NIC fabrics. In addition, 

Quality of Service (QOS) algorithms are applied in this module to manage scheduling and reordering of 

transactions according to their priority. QoS traffic arbitration is performed at several levels. Each subsystem of 

this interconnect can be used separately, allowing us to increase the interoperability of our model. Thus, thanks to 
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this very advantage of our approach, we can reconfigure multiple interconnection structures. Due to confidentiality 

restrictions, we are not able to provide more information about the architecture and functionality of the component. 

 
Figure 3. Simplified Interconnect block 

C. Functional analysis of our architecture 

In one of our first testbench, we consider multiple transaction initiators and two DRAM memories as shown 

in Figure 4. The initiators are connected to the two DRAM memory targets via the interconnect block. 

 

 
Figure 4. Testbench example 

The tested use case consists of 4 functional phases (Figure 5). In the first phase, all data traffic generators send 

512 READ/WRITE transactions to recreate full activity of the Interconnect block. In the second phase, there is a 

short inactive period that is used to test the clock gating. In the third phase, only half of our traffic generators 

remain active for another 512 READ/WRITE transactions, allowing us to test the auto clock gating. In the fourth 

and final phase, when there is no activity, we test the power gating. The reason we chose this use case is that we 

have a real silicon power measurement extracted from existing chip with similar to this type of use case. 

 

 
Figure 5. Functional Use Case 

D. Power Management strategy 

In order to maintain the separation between functional and power models, we have added another SystemC 

block called "Master". That block observes the system and activates the power management strategies. The 

Master module is responsible for transmitting transactions to the PMU requesting power state changes. In the 

simulation, the Master starts by setting an OPP to the structure (supply voltage, clock domains frequencies). Once 

the PMU has received this OPP transition, the OPP state is found in the table and the voltage and frequency values 

are applied.  There is an assertion mechanism in each DE model, which indicates when a discrepancy between 

functional and power descriptions occurs. The Master then waits for the completion of all transactions. The Master 

module observes all the initiators but only communicates with the PMU in case of an OPP state change.  In this 

way, both modules have no direct TLM communication with any other functional model (Figure 6). An DE has 

also been associated with the Master in the power intent because this unit receives an event when the power 

manager state transition is completed (from PwClkARCH) and the Master is ready to request another OPP change. 

To avoid showing the power consumed by the Master, which has no direct correspondence in the functional model, 

we have set its capacitance (𝐶𝑙𝑜𝑎𝑑) to 0.0 uF and its leakage resistance (𝑅𝑙𝑒𝑎𝑘𝑎𝑔𝑒) to 106 Ω. In this way, there is 

no significant power consumption coming from it. Figure 6 shows the power and clock intent in our case study 

architecture. 



 

7 

 

 
Figure 6. Power Intent 

Each subsystem within the DUT interconnection system is in a separate clock domain. There is a power domain 

for the entire interconnect. We have also added a power and clock domains for both DRAM memories. In order 

to execute the power gating, we added two power switches. A DPLL is instantiated in the PMU for each clock 

domain. We also define the possible Power and Clock State Tables (PST and CST) and the OPP Table. These 

tables are used by the PMU to apply the power reduction techniques. In this paper, we present a power 

management strategy that includes power and clock gating tests and a simple DVFS. We define 3 OPPs as shown 

in Figure 7. The first OPP (Boot OPP) acts like a boot. We change the frequency from reference clock to a so-

called bypass mode, a fast one-cycle operation before traffic generation to reset the process/memories to a default 

value. The second OPP (OPP1) indicates a start of the activity and thus the auto clock gating is activated. This is 

the main OPP and it is kept running for the duration of the traffic activity. Once the traffic activity is over, the 

third OPP (OPP2) is activated. The third OPP applies clock and power gating to both memories. 

 
Figure 7. Simple Power management strategy 

VI. RESULTS 

In this section, we present part of our experiment results. In Figure 8 we can observe the different use case 

phases and the effect of the applied power management strategy. In the figure we illustrate the total power 

consumed by the design (green curve) and the static power consumption (yellow curve).  

 

 
Figure 8. Overall power consumption profile in test case [mW] 
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In the first phase all traffic generators are active, so all the subsystems are also active. Half of these initiators start 

with transactions for DRC0 and the other half for DRC1. This way both memories are active. During the second 

phase, the dynamic power is switched off by the auto clock gating, the I/Os and PLLs of DRCs are in OFF state 

and the only power consumption is static. The change of DRCs state is sequential, because the execution of the 

transactions is completed sequentially. This can be explained by the fact that the execution delay of one transaction 

is longer than the execution time of the other (i.e. read execution slower than write execution), or transactions 

execution started at different moments. The change in PLL state is also visible thanks to the fixed delay/penalty. 

In the third phase, only half of the initiators have been activated. The consumption is almost halved. The reason 

for this is that there is only one active memory at a time. The consumption peaks are due to a short overlap between 

two pipelined memories, i.e. one transaction started for DRC0 and another ending for DRC1. In the fourth phase, 

the traffic is terminated, the clock gating is applied and the voltage value changes from 1V to 0V (normalized 

values) which means that the DRCs are power gated. The total consumption is switched off at the end. 

 
Figure 9. Clock Frequency variation during simulation 

In Figure 9 we can observe the variation of the clock frequency. Both DRCs are active during the first phase, 

inactive during the second and interleaved during the third. We can also observe the Interconnect subsystems and 

the impact of clock gating. During the first phase all subsystems are active, then during the third phase, half of 

them are clock gated (we illustrate only two subsystems clocks with different behavior). Total energy consumption 

in [mJ] is shown in Figure 10. The absence of activity (phase 2) is visible. Similarly, the slope of the curve of the 

third phase is lower than that of the first phase since half of the modules are in clock gated mode. 

 
Figure 10. Overall energy consumption profile in test case [mJ] 

VII. CONCLUSION & FUTURE WORKS 

In this paper, we presented a method for estimating power, showing that by using a pure functional model, we 

can easily define its power-related intent and extract measurements from it. Numerous tests have been performed 

using this test case, based on "what-if" study, such as memory acceptance time variation, read and write processing 

delays, frequencies, power intent and power management. However, we have seen that modifying model 

parameters has a direct impact on performance and power consumption and that the relationship between these 

two effects can be easily analyzed. The methodology applied in this study allowed us to test different power 

management strategies, to compare their impacts on energy consumption and to choose an optimal power intent. 

Moreover, we were able to establish a silicon correlation with the simulation results obtained and we had very 

good accuracy (about 90%-99%) for the maximum and average power consumption. Nevertheless, in this case, 

we used generic traffic generators, so we must perform some more complex use case simulations to verify the 

accuracy. Future work includes the development of more accurate testbenches and Virtual IPs (VIPs) models in 

order to have more accurate estimates and more generic initiators that can be easily reconfigured. On the 
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PwClkARCH side, LEAT are working on several areas to improve the tool experience. One of their work focuses 

on distributed PMU to reduce the complexity of internal tables (PST, CST, OPP). Therefore, we will test the 

interoperability of our functional framework, applying the same methodology on another chip of the same family 

and evaluate the effort and the accuracy. Once this has been done, we hope to apply the methodology on our next-

generation products. 
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