

Mixed-abstraction Modeling Approach with Fault Injection for Hardware-Firmware Co-design and Functional Co-verification of an Automotive Airbag System on Chip Product

by

Thang Nguyen, Dipl.-Ing.-Dr. and Dieter Haerle, Dipl.-Ing.

System Integration and Rapid Prototype Infineon Technologies Austria AG

fineon

Agenda

- Automotive Airbag System Overview
- Challenges of Airbag SoC Design and Verification
- The Mixed-abstraction Modeling Approach
- Model Coverage Evaluation
- Fault Injection Simulation using Global Signaling Concept
- Summary of Results/Conclusions

...a typical airbag system from bird's eye view

Challenges of Airbag SoC Design

- Factors that drive design complexity:
 - Based on modern sub-micron logic and PWR technology
 - integration of high complexity digital circuits with high voltage power driving modules
 - → new architecture approach with distributed functionalities in D/A/_HW and embedded FW
 - Compliance to ISO 26262 safety standard
- The system covers real-time embedded mixed-signal domains with high number of modules
- Time-to-Market and first time right design

\rightarrow leads to verification challenges

Modeling Requirements & Analysis

- A complete airbag SoC chip model:
 - Top-level functional simulation = HW, FW, and co-verification
 - "Accuracy" vs. "Speed"
 - Interface consistency between analogue/digital and also with toplevel schematic
- HW (A+D) behavior model for HW/FW co-verification at chip toplevel at <u>early stage</u> of the design phase.
- Effort vs. Time vs. Accuracy

7 of 11

Model Coverage Evaluation

- Functional coverage:
 - Hardware (ANA + DIG) behavior
 - Firmware behavior
 - − PWR → Chip Gobal functional
- Physical Impelmentation coverage:
 - Digital_Hardware (RTL)
 - ROM Mask
 - Interfaces between DIG and ANA hardware domain
 - Top-level LVS connectivities

The Mixed-abstraction Modeling Approach – Advantages/Limitations

- + Event based simulation @ chip top-level:
 - significantly gain in speed complexity and clk rate)
 - et. Convergency
- + still guarantee the accuracy for functional verification purpose.
- + Effort (integration and maintenance) vs. Time (in a very short) vs. Accuracy (High)
- For chip TL model integration: it is strongly dependent on the DIG TOP level
- Modeling of external load (capacitive and inductive) is limited \rightarrow workaround: "Global Signalling Concept"

Global Signaling Concept

Sponsored By:

2013

...for external load modeling

... for fault injection simulation

Summary of Results/Conclusions

- Virtual "prototype" of the airbag SoC product at an early phase for firmware develop. and verification
- Simulation performance: less than 1h (for a typical functional simulation run at chip top-level)
- Bridging the gap between "Speed" and "Accuracy"
- Project could significantly gain time-to-market and achieve design target

