

Mining Coverage Data for **Test Set Coverage Efficiency**

Bryan Hickerson Monica Farkash - presenter

Mike Behm Balavinayagam Samynathan

IBM Austin

UT Austin

Outline

- Coverage Efficiency
 - Coverage in Time
 - First Time Per Test Coverage
 - Hard To Hit Coverage
- Coverage Distribution
 - Scenarios to Waves
 - Wave Windows of Probability
- Controlling the Test Load
- Results & Conclusion
- Acknowledgments / References

Coverage Efficiency

- 12000 scenario files
- Millions of tests
- Coverage
 - All Events 150k
 - Hard-to-Hit 73k(< than 2k hits for1M tests)
 - Never-Hit events15k

- Coverage driven verification
- Coverage driven test case generation
- Graph based test case generation

Automatic or manual targeting

Coverage Efficiency

- Coverage
 - Never-Hit
 - Hard-to-Hit

- used to drive the verification process
- Often-Hit => redundancy
- Efficiency
 - Achieve coverage goal less resources
 - Reduce redundancy
- Observe
 - Summarization, model identification, probability
- Control
 - Control the test case generation

Coverage in Time

- Same scenario:
 - SemaphoresLockingmechanism
- Same load
 - Nb. of instr.
 - Nb. of cycles

First Time Per Test Coverage

HTH Coverage in Time and FTPT

FTPT Gamma Distribution

Mixture of Coverage Waves

Expectation Minimization (EM) algorithm to identify the mixture of Gaussians

Waves show the exercising of a new area in the design

Different Scenarios

Scenario File 1

Four tests, two different scenarios

(DSI_EAO 456 and 163 and ATOMIC 58 and 20)

Scenarios to Generate Certain Waves

Particular wave(s) targeted by each scenario =>

Focus on the Hard-To-Hit waves for each scenario

HTH Coverage Wave Windows

For each scenario

- Identify which hard-to-hit wave it targets
- Identify the conditions under which it succeeds to achieve it.

Cycle window likely to see a given wave.

Probability Mass Function

Overall Probability

=>

Identifies the Hardto-Hit cycle windows

Probability mass function for event e

$$Pr(\{event\ e\ hit; cycle = c\});$$

Probability test to hit e

$$P(e) = \frac{\text{N tests_hit_e}}{\text{N tests}}$$

HTH-FTPT Load Dependency

Experimental Test Size to HTH Coverage

Test Load Increases (Simulation Cycles)

40 tests; TM

Summary

- Coverage Efficiency
- Observe
 - Coverage in Time
 - FTPT Coverage in Time HTH
 - Coverage waves Mixture Model Fitting
 - Probability distributions
- Control
 - Test case number of instructions
- Industry results

Results

- Decreased hard-to-hit by 12%
 - 73,000 to 64,000
- Never-hit before events decreased by 13%
 - 15,000 to 13,000
 - saving 18 Person/Months.
 - Less redundancy on easy-to-hit coverage.
- Shifted manual work to the automatic process
- Decreased time to achieve targeted coverage => enabled finding bugs earlier.

Acknowledgments

University of Texas

IBM

Adnan Aziz

Wolfgang Roesner

References

- Adir, A., Almog, E., Fournier, L. & Eitan, M., 2004. Genesys-Pro: innovations in test program generation for functional processor verification. *Design & Test of Computers, IEEE*, 21(2), pp. 84 - 93.
- Benjamin, M., Geist, D., Hartman, A. & Wolfsthal, Y., 1999. A study in coverage-driven test generation. New Orleans, IEEE, pp. 970-975.
- Bergeron, J., Nightingale, A., Cerny, E. & Hunter, A., 2006. Coverage-Driven Verification. In: Springer, ed. *Verification Methodology for System Verilog.* s.l.:s.n., pp. 259-280.
- Bishop, C. M., 2006. *Pattern recognition and machine learning.*. s.l.:Springer.
- Bruce, W., Gross, C. J. & Roesner, W., 2005. *Comprehensive functional verification the complete industry cycle*. Amsterdam: Elsevier/Morgan Kaufmann.
- Dit, B., Revelle, M., Gethers, M. & Poshyvanyk, D., 2013. Feature location in source code: a taxonomy and survey. *Journal of Software: Evolution and Process*, 25(1), pp. 53-59.
- Fayyad, U., Piatetsky-Shapiro, G. & Smyth, P., 1996. From Data Mining to Knowledge Discovery Databases. Artificial Intelligence, 17(3).
- Foster, H., 2013. Wilson Research Group 2012 Functional Verification Study. [Online]
 Available at: http://testandverification.com/DVClub/08_Apr_2013/2013AprWRGStudyatDVClubUK.pdf
 [Accessed 20 05 2014].
- IBM Research, 2014. Coverage Directed Test Generation. [Online] Available at: http://www.research.ibm.com/haifa/projects/verification/ml_cdg/cdg_sbfv.html [Accessed 20 05 2014].
- Piziali, A., 2004. Coverage Driven Verification. In: *Functional Verification Coverage Measurement and Analysis*. s.l.:Kluwer, pp. 109-136.
- Sane, Michael, Solving Modern Verification Challenges for Today's Industry Leaders, Available at: http://chipdesignmag.com/display.php?articleId=4503 [Accessed 20 05 2014].