Mining Coverage Data for Test Set Coverage Efficiency

Bryan Hickerson
Mike Behm
IBM Austin

Monica Farkash - presenter
Balavinayagam Samynathan
UT Austin
Outline

• Coverage Efficiency
 • Coverage in Time
 • First Time Per Test Coverage
 • Hard To Hit Coverage

• Coverage Distribution
 • Scenarios to Waves
 • Wave Windows of Probability

• Controlling the Test Load

• Results & Conclusion

• Acknowledgments / References
Coverage Efficiency

- 12000 scenario files
- Millions of tests
- Coverage
 - All Events 150k
 - Hard-to-Hit 73k
 - Never-Hit events 15k
 - Coverage driven verification
 - Coverage driven test case generation
 - Graph based test case generation

Automatic or manual targeting
Coverage Efficiency

• Coverage
 – Never-Hit
 – Hard-to-Hit
 – Often-Hit \Rightarrow redundancy

• Efficiency
 – Achieve coverage goal less resources
 – Reduce redundancy

• Observe
 – Summarization, model identification, probability

• Control
 – Control the test case generation

used to drive the verification process
Coverage in Time

- Same scenario:
 - Semaphores
 - Locking mechanism

- Same load
 - Nb. of instr.
 - Nb. of cycles
First Time Per Test Coverage

Test A

Test B

Same Scenario

DSI_EAO

All Events

FTPT
FTPT Gamma Distribution

A LARX_STCX Test
Mixture of Coverage Waves

- Expectation Minimization (EM) algorithm to identify the mixture of Gaussians
- Waves show the exercising of a new area in the design
- We do not target coverage, target coverage waves
Different Scenarios

Four tests, two different scenarios

(DSI_EAO 456 and 163 and ATOMIC 58 and 20)
Scenarios to Generate Certain Waves

Particular wave(s) targeted by each scenario =>

Focus on the Hard-To-Hit waves for each scenario
HTH Coverage Wave Windows

For each scenario
- Identify which hard-to-hit wave it targets
- Identify the conditions under which it succeeds to achieve it.

Cycle window likely to see a given wave.
Overall Probability
=>
Identifies the Hard-to-Hit cycle windows

• Probability mass function for event e
 \[
 \Pr(\{\text{event } e \text{ hit; cycle } = c\})
 \]
 Probability test to hit e
 \[
 P(e) = \frac{N \text{ tests_hit}_e}{N \text{ tests}}
 \]
HTH-FTPT
Load Dependency
Experimental Test Size to HTH Coverage

40 tests; TM

Coverage

Test Load Increases (Simulation Cycles)

Original Size

40000 cycles+

Overall Coverage

Hard-To-Hit Coverage
Summary

• Coverage Efficiency

• Observe
 – Coverage in Time
 – FTPT Coverage in Time – HTH
 – Coverage waves Mixture – Model Fitting
 – Probability distributions

• Control
 – Test case number of instructions

• Industry results
Results

• Decreased hard-to-hit by 12%
 – 73,000 to 64,000
• Never-hit before events decreased by 13%
 – 15,000 to 13,000
 – saving 18 Person/Months.
• Less redundancy on easy-to-hit coverage.
• Shifted manual work to the automatic process
• Decreased time to achieve targeted coverage => enabled finding bugs earlier.
Acknowledgments

University of Texas

Adnan Aziz

IBM

Wolfgang Roesner
References

• Bruce, W., Gross, C. J. & Roesner, W., 2005. *Comprehensive functional verification the complete industry cycle.* Amsterdam: Elsevier/Morgan Kaufmann.