
Mind the Gap(s):
Creating & Closing Gaps Between Design and

Verification
Chris Giles, Product Manager, Mentor, A Siemens Business
Kurt Takara, Product Engineer, Mentor, A Siemens Business

1

IS AND IS NOTS…
Things we will and will not be discussing…

2

• Remind you of increasing complexities…

• …or shorter schedules…

• …or fewer resources…

• ….or closing coverage faster*

• …or finding bugs faster*
*at least as the ends, and not the means

This Workshop Will Not…

3

This Workshop Will…

Help you prove faster that your design works as intended
via mindful attention to gaps in development

4

Gaps Are Neither Good nor Bad
You succeed or fail based on how you address gaps!

1. Recognize where they occur
2. Align your process to minimize the loss across the gaps
3. Cover the remaining gaps with precision

This workshop will highlight typical gaps, then show examples of:
• Creating intentional gaps in development to align work, organizations, skills
• Closing gaps precisely

– That are organizational, geographical, or time-based
– Between design and implementation

5

WHERE ARE THE GAPS?
Every point of hand-off is a potential gap in the development process

6

• Documentation: incomplete, subject to translation,
assumptions, interpretation

• Models: abstractions, inaccurate

• Change: impacts requirements, constraints, markets,
technologies, standards and teams

• Organization: (and discipline) boundaries create opportunities
for information loss

• Knowledge: need may not align with ability

Certain Types of Gaps Cause Program Issues

7

CREATING AND EMBRACING GAPS:
INTENT VERIFICATION VS
FUNCTIONAL VERIFICATION

Asking an OO-Coder to Understand Metastability or a Designer to Run Formal Methods

VerificationDesign

8

Design &
Verification

Discipline Drivers at the Dawn of RTL
Design and DV were essentially the same skillset

• RTL, testbenches and tests were coded with same language
– Directed, self-checking testing
– Some smart checking of outputs
– Manual maintenance of test coverage

• Engineered serially
– Designed first, verified second

9

Verification

Discipline Drivers Today

Design

Circuit Knowledge

Object-Oriented

Timing

Sequential Function

SynthesisDFT

RTL

Object-Oriented

UVM

Assertions

Constrained-Random

Functional Coverage

Portable Stimulus

UVVM/OSVVM

Formal Methods

Assertions

What drives verification today is different than design

10

The Designer Knows the Intent: S1

• Scenario 1: Separate design and verification teams
– Information is lost between design and verification

• Subject to documentation, organization and knowledge gaps
– Verification teams drive the tools but may not understand the goal

• Should a verification engineer know about metastability?

VerificationDesign

But who is doing the verification?

11

S2: The Designer Knows the Intent

• Scenario 2: One team of engineers
– Engineers both design and verify
– Subject to skillset gaps

• How many teams can afford engineers that are great at modern design and verification?

VerificationDesign

But who is doing the verification?

12

Gap

Why Not Let the Designer Verify?

Verification
Tools

Intent
Verification

Intent Verification:
Verification of design intent, by the engineer who knows the intent and correct implementation best

Wrap verification
tools in a
designer-
friendly
wrapper

Create an intentional gap to embrace and align with your organizational & development gaps

Functional
Verification

Design DV

13

St
at

ic Creation
• Correct-by-

construction
• Syntax

St
at

ic Lint
• Syntax
• Semantics
• Structural
• Standards

Fo
rm

al Advanced
Lint
• Sequential

St
at

ic
 &

 F
or

m
al CDC

• Clock
Checks

• Protocol
Verification

St
at

ic
 &

 F
or

m
al

RDC
• Reset

Checks
• Protocol

Verification

Designer-Driven Intent Verification

Designers don’t want and shouldn’t have to use a testbench to verify intent

Either way, designers need different tools

HDL Designer Series Questa® AutoCheck Questa CDC Questa RDC

14

Why Isn’t Functional DV Enough?
• For functional DV to catch everything in “Intent Verification”, DV must:

– Have full functional coverage, code coverage, testplan coverage, etc.
– Sweep all asynchronous clocks and resets through all combinations
– Model and detect failures correctly and completely

• Even if it does all that, it will take time to do so
– Intent Verification solutions are static and exhaustive

• Even if it does all that, it could be debugged by another team
– Even worse – it could be “fixed” by another team

15

Intent Verification Example: Lint

• Why wait for simulation to find an intent mismatch?

• The designer wants A=4

– needs a check for missing parens

A=8/4/2?

wire [3:0] a, b, c, d;

assign b = 4’h2;
assign c = 4’h1;

assign a = 4’h8 >> b >> c;

16

Linting is Essential

We have a linting solution available

• Currently engaging customers in early access mode

• Implements important differentiators

• We are interested in working with additional customers

✔
17

Intent Verification Example: Advanced Linting
• Why wait for simulation failures and debug (at best) to find:

– A deadlock scenario in your state machine

– An overflow condition on a registered variable

– A combinational loop in your code, etc.

DEADLOCK

COMBO-LOOP

OVERFLOW
The designer can find and fix these things without
a testbench, or knowledge of formal methods

18

Testplan
and

Coverage

Bridging the Gap to DV and Beyond
• Collateral from intent verification must be used in DV (and beyond)

– Constraints/waivers should be valid and consistent through all Intent Verification
– e.g SDC for CDC & RDC, then on to synthesis, STA, etc.

Successful
Intent

Verification

Configuration

Assertions

Constraints

Simulation

Formal

Emulation

Prototyping

19

Examples of Necessary Bridges to DV
When implementing an Intent Verification flow, consider the following:

• Some things are better left to simulation-based verification
– Deep reconvergence verification for clock and reset domain checks
– Some clock and reset domain crossing protocol verification

• Waiver cross-checking in simulation with functional coverage
– Was the designer overly aggressive in waiving violations?

• But, verification environment must support variable latency and
observation

20

Summary
• Identify gaps between design and verification

• Create an intentional gap by implementing Intent Verification flows
– Embrace design/DV gap by aligning verification with organization/knowledge gaps

• Bridge the remaining gaps with cross-checks, DV and coverage

VerificationDesign

21

CLOSING ORGANIZATIONAL, GEOGRAPHICAL,
TIME-BASED GAPS

SoCs Integrate IP from outside companies, across geographies, language barriers, previous projects

22

Recall the Story of a Very Large Aircraft…
A large aircraft launch was delayed multiple years
• Wire cables could not be connected in the prototype

– Despite reviews, modeling and mock-ups

• Root-cause analysis determined the causes to be:
– Different versions of software used by different teams in different countries
– With different backgrounds, languages, goals, even measurement units

• How different is that from your organization today?

• How can tools and methodologies bridge these gaps?

(Hint – minimize the handoffs)

23

Abstraction methods require EDA vendor support
Accuracy and performance both matter

Intent Verification, the SoC and Gaps

Flat Analysis
• Scalability (schedule) issues
• 3rd Party vendors don’t want to discuss

low-level design details
• You should not need to re-verify IP that

you’ve purchased or has already seen
silicon (?)

Hierarchical Analysis
• Scalable (faster approach)
• Aligned with organizational gaps (IP vs.

SoC, corporate, time)
• Requires abstraction

– Black-box implies trust – nothing is re-
evaluated beyond the lowest level

– White-box will yield better integration
analysis

24

Example: A Distributed Hierarchical CDC or RDC Approach

IP constraints/
waivers

IP constraints/
waivers

IP 1

IP n

IP 1
IP 2

IP n

IP 1
HierDBIP 1

HierDBIP n
HierDB

Signed-off CDC

Signed-off CDC

Top

Top-level
constraints/waivers

Enables a faster turnaround in case of RTL changes or ECOs

IP 1 IP 2

IP n

25

Hierarchical CDC or RDC Analysis Flow

Top

Block
Level
CDC

Top

Top-level setups

Propagate top-
level setups

Top-level CDC

Results

Block
Level
CDC

Block
Level
CDC

Block
Level
CDC

Block
Level
CDC

St
ep

 1
St

ep
 2

St
ep

 3

Block
Level
CDC

Top Top-level CDC

Results

Block
Level
CDC

Block
Level
CDC

Block
Level
CDC

Block
Level
CDC

Block-level setups

Bottom-up flowTop-down flow

26

Is My Hierarchical Flow Bullet Proof?
Conflicts will invalidate results!
• Critical for bottom-up flow
• Required for top-down flow with modified block constraints

1. Review block conflicts

2. Review top conflicts

Block
Level
CDC

Top Top-level CDC

Results

Block
Level
CDC

Block
Level
CDC

Block
Level
CDC

Block
Level
CDC

Block-level setups

Bottom-up flow

27

Block-level Conflicts
• User vs Inferred port conflicts categorized in 3 sections

1.Single-clock mismatch

2.Multiple-clock mismatch

3.Sync mismatch

User : netlist port domain in –clock clk1 –module b1
Inferred : hier port domain in –clock clk2 –module b1

User : netlist port domain in –clock clk1 –module b1
Inferred : hier port domain in –multiple_clocks –module b1

User : netlist port domain in –async –module b1
Inferred : hier port domain in –clock clk1 –module b1

28

Top-level Conflicts
• Check mismatch between Block and Top constraints

– Constants & stable ports consistent

– Clocks hooked up consistently

– Ports hooked up consistently

• Warnings flagged for conflicts

* Section 2 : Conflicting Constraints
**
Port Conflicting constraints
--
d1 User-specified : netlist port domain d1 –clock clk1

Inferred : hier port domain d1 –clock clk2
d2 User -specified: hier port domain d2 –async

Inferred : netlist port domain d2[1] –async –clock clk1
hier port domain d2[0] –clock clk2

29

Questa CDC Hierarchical Model Evolution

1st Generation Model 2nd Generation Model

2006 2010 2014

• 3rd Generation Hierarchical Data Model (HDM)
• Binary model

– Database stores block information
– Extendable to provide additional accuracy
– Partially directives-based for overriding

• Supports both white-box & black-box abstractions

3rd Generation Model

30

Questa HDM White-box Abstraction
• Crossings reported to/from internal HDM sequential elements

– instead of HDM ports

• Improved multiple-fanout port visibility
– Black-box: single crossing to/from the port reported for HDM
– White-box: individual crossings for fanout registers of port’s load/driver

• Schematic visible for complete path including HDM internal logic
• Waivers work as expected

– -through <hdm_port>
– -to <hdm internal reg/latch>

• Enables sequential reconvergence verification

Domain 1

Domain 2

Domain 3

31

HDM Reconvergence : Example 1
• Syncs outside the HDM block converging inside the block

Reconvergence of synchronizers. (reconvergence)

clk2 : end : B1.q (/home/test01/dut.v : 1) (ID:reconvergence_79534)

clk2 : start : t2 (/home/test01/dut.v : 9) (Synchronizer ID:two_dff_19496) (Depth:0) (Reconvergence Severity:Caution)
clk2 : start : t4 (/home/test01/dut.v : 9) (Synchronizer ID:two_dff_67560) (Depth:0) (Reconvergence Severity:Caution)

32

HDM Reconvergence : Example 2
• Syncs inside the HDM block converging outside the block

Reconvergence of synchronizers. (reconvergence)

clk2 : end : o1 (/home/test03/dut.v : 1) (ID:reconvergence_68716)

clk2 : start : I1.q2 (/home/test03/dut.v : 13) (Depth:0) (Reconvergence Severity:Caution)
clk2 : start : I1.r4 (/home/test03/dut.v : 15) (Depth:1) (Reconvergence Severity:Caution)

33

Hierarchical Analysis Results
• Reconvergence issue involves three IP blocks:

• mod1, mod 2, and mod 3
• HDMs encapsulate the schematic
• Top-level shows the full reconvergence path

• even when the three IP blocks are HDMs

• CDC and reconvergence checks run quickly
• using HDMs on one of the SoCs

• SoC contains 509 HDMs

These results clearly show the
advantage of using HDMs.

Turnaround Time / Memory
MPU
(TOP)

IP1 IP2

Register Count (M) ~.40M ~.16M ~.32M
Number HDM Blocks 509 2 1
CPU Run Time ~25Min ~17Min ~7 Hours
Max Memory 23.4 GB 4.3 GB 15.3 GB

DVCon China 2019 - Aditya Vij, Mentor Graphics / Apoorv Aggarwal, Advance Micro Devices
34

Let’s Talk About Communication – It’s Hard!

It is probably not necessary to
write an assertion that power is

not ground

Provavelmente não é necessário
escrever uma afirmação de que o
poder não está fundamentado

Portuguese

English

It is probably not necessary to
write a statement that power is

not founded

Courtesy Google Translate
35

Can We Eliminate the Communication Gap?

• Specification is an important piece

• Guides both design and analysis

• Defines final closure requirements

Specification-based tool flows fill the gap
e.g. for a CDC or RDC flow

Treat the Specification as the Golden Source

36

Intent Verification: Specification Flow

• Objective
– Specification to drive design and intent verification

• Benefits
– Reduces the effort in results review and waiver specification

• Use Model
– Specification constraints guide intent verification (e.g. CDC, RDC) analysis
– Specification constraints reduce intent verification (e.g. CDC, RDC) violations
– Designers do not review specification paths (correct by specification)

Specification Analysis Results Waivers

Questa CDC supports a Specification Flow today
37

Summary
• Projects are threatened by information loss across gaps

• Hierarchical abstraction bridges these gaps
– Modeling must be accurate and provide high-visibility to be effective

• Documentation-rooted methodologies bridge these gaps

38

CLOSING THE DESIGN/IMPLEMENTATION GAP
We Don’t Build RTL in Silicon. Verifying RTL is Not Enough.

39

Intent Verification: Is Your Intent Preserved?

• Designer verifies intent at RTL (usually), but:
– RTL mapped to logical equivalents in generic technology
– Further optimized to target technology to meet constraints

• What is built in silicon is not what was verified in RTL!
– This issue should not be ignored

always @(posedge rx_clk)
begin: DMUX
s1 <= tx_sel;
rx_sel <= s1;
if (rx_sel)
rx_data <= tx_data1 && tx_data2;

else
rx_data <= rx_data ^ 4’b1111;

end

Synthesis

R
X

Optimization

R
X

RTL Generic Technology

Target Technology 40

You Verified CDC at RTL. ☑Intent, Right?

time

Samples

Production

Re-spin

Pressure

RTL
Verification

RTL
Complete

Synthesis Gate Level
Simulation

Tape Out

Did
implementation
introduce new

CDC issues?
41

Synthesis Glitch Example: Functional

42
42

RTL Logic : Mux based synchronizer

Synthesis Glitch Example: Synthesized

43
43

Combo-logic implementation after synthesis

For given constants, logic reduces to (tx0|~tx0) which causes glitch

Synthesis Glitch Example: ECO

44
44

Manual Detection & Correction
• Detection:

– Get lucky with gate-level simulations

• Correction:
– Determine if asynchronous crossing, maps to RTL

• name mappings, bit-blasting effects

– Consider RTL constraint applications and waivers
– Functionally analyze if glitch can occur
– Add logic to the term to prevent the glitch

45

Closing the Design/Implementation Gap

How do you avoid falling in the gap?

• Prevention
– Protect the DMUX paths
– Guide the implementation

• Verification
– Ensure signoff quality before tapeout

46

Prevention: Protecting DMUX Paths
• Infer the DMUX

– Specify synthesis pragma to force DMUX implementation
• Synthesis maps to a n-input mux or a tree of muxes

• Instantiate the DMUX from technology library
– Inefficient for muxes with constant inputs
– Need to have n-to-1 muxes and bus muxes

• Utilize synchronizer library
– Protect the synch structures from synthesis optimization

Requires RTL changes and extra design review steps
Optimization can still move muxes (especially 2-to-1 mux) to LHS

47
47

Prevention: Guiding Synthesis

Use timing constraint
– to ensure the dmux is at the end

of the fan-in cone to the RX
register

– set_max_delay 0 -from
<sel_sync_out> -to <rx_d>

max_delay 0

Does not require RTL changes
Optimization can still move muxes (especially 2-to-1 mux) to LHS

These paths will be reported as timing violations

48

Verification: Questa Signoff CDC

• Structural & functional analysis
of combinational logic for glitch

• Focused glitch debug

Constraints at RTL

Run CDC analysis

CDC results
Glitch results

Fix CDC &
glitch issues

Setup

CDC
Analysis

Gate Design

CDC sign-off

Transformation engine

• Constraints at RTL imported
• No iteration

Debug

• Bit-blasted paths regrouped
• Test logic automatically disabled

Waivers at RTL

Transformation engine

• Waivers at RTL imported
• Correlation with RTL signals

Automated
Setup

Reduced Noise

Glitches Detected

Debug Eased

49

Glitch Check: Report

Glitch node and glitch signal
• With clock group
• Scheme name

Signal assignments exposing glitch

Paths with possible glitch
• Could not prove with formal

Report logic under glitch condition

Questa CDC Glitch Checks Report
==
Section 1 : CDC Glitch Information
Glitch Signals : 1 (Impacts 1 CDC paths)
1.1. Proven Glitch Signals (Static) : 1 (Impacts 1 CDC paths)
1.2. Proven Glitch Signals (Dynamic) : 0 (Impacts 0 CDC paths)
1.3. Possible Glitch Signals : 0 (Impacts 0 CDC paths)

--
1.1. Proven Glitch Signals (Static) : 1 (Impacts 1 CDC paths)
--
1 Glitch signal : tx0 (tx_clk)

Converging point : rx0
Receiving nodes : data (rx_clk) (Static-1)

==
Section 2 : Glitch Propagation Conditions
--
2.1. Proven Glitch Signals (Static) : 1 (Impacts 1 CDC paths)
--
1 Glitch signal : tx0 (tx_clk)

CDC Paths : 1
Receiving node : data (tx_clk)
CDC ID : partial_dmux_90614
Glitch propagation condition : <Value> <Signal>

1 data
1 tx1
0 rx_en2

50

Automotive Customer Results
• Two real glitches detected on the first design
• Verified 4 designs with Questa Signoff CDC

– Design size ranging from ~1-10million

Design Gate count Crossings Glitches
Detected

Formal (multicycle)
proved glitches

Runtime
(s)

Memory
(GB)

Design 1 ~1M 3594 3 2 350 3.9
Design 2 ~10M 297000 37 22 6661 40
Design 3 ~5M 332258 313 20 2650 5.9
Design 4 ~7M 128694 202 - 10310 23

51
51

Summary
• Gap: implementation process can introduce new issues

– Intent verification flows on RTL are not enough

• Manual analysis flows require significant effort
– Work through constraints, waivers, name mapping, bit-blasting, renaming
– Must analyze if the issue merits an ECO

• Automated tool flows are better-suited

52

SUMMARY

53

Verify that the product will work as intended

VerificationDesign

• Enable the designer to verify
their intent was met, with an
intent verification flow

• Align the verification tasks
with organizational or skillset
gaps

• Close the gap between what
was verified and what is built

• Avoid lossy handoffs with
strong and accurate modeling

• Automate generation and
checking of constraints and
assertions from documentation

54

THANK YOU
We appreciate your attendance and hope you’ll watch your step

55

	Mind the Gap(s): �Creating & Closing Gaps Between Design and Verification
	Is and is nots…
	This Workshop Will Not…
	This Workshop Will…
	Gaps Are Neither Good nor Bad
	WHERE ARE THE GAPS?�
	Certain Types of Gaps Cause Program Issues
	Creating AND EMBRACING GaPS: �Intent Verification VS �Functional Verification
	Discipline Drivers at the Dawn of RTL
	Discipline Drivers Today
	The Designer Knows the Intent: S1
	S2: The Designer Knows the Intent
	Why Not Let the Designer Verify?
	Designer-Driven Intent Verification
	Why Isn’t Functional DV Enough?
	Intent Verification Example: Lint
	Linting is Essential
	Intent Verification Example: Advanced Linting
	Bridging the Gap to DV and Beyond
	Examples of Necessary Bridges to DV
	Summary
	Closing Organizational, geographical, �time-based GAPS
	Recall the Story of a Very Large Aircraft…
	Intent Verification, the SoC and Gaps
	Example: A Distributed Hierarchical CDC or RDC Approach
	Hierarchical CDC or RDC Analysis Flow
	Is My Hierarchical Flow Bullet Proof?
	Block-level Conflicts
	Top-level Conflicts
	Questa CDC Hierarchical Model Evolution
	Questa HDM White-box Abstraction
	HDM Reconvergence : Example 1
	HDM Reconvergence : Example 2
	Hierarchical Analysis Results
	Let’s Talk About Communication – It’s Hard!
	Can We Eliminate the Communication Gap?
	Intent Verification: Specification Flow
	Summary
	Closing the Design/implementation GAP
	Intent Verification: Is Your Intent Preserved?
	You Verified CDC at RTL. ☑Intent, Right?
	Synthesis Glitch Example: Functional
	Synthesis Glitch Example: Synthesized
	Synthesis Glitch Example: ECO
	Manual Detection & Correction
	Closing the Design/Implementation Gap
	Prevention: Protecting DMUX Paths
	Prevention: Guiding Synthesis
	Verification: Questa Signoff CDC
	Glitch Check: Report
	Automotive Customer Results
	Summary
	Summary
	Verify that the product will work as intended
	Thank you

