

1

MicroTESK: Automated Architecture Validation

Suite Generator for Microprocessors

Mikhail Chupilko, Alexander Kamkin, Alexander Protsenko, Sergey Smolov, Andrei Tatarnikov

Ivannikov Institute for System Programming of Russian Academy of Sciences, Moscow, Russia

{chupilko, kamkin, protsenko, smolov, andrewt}@ispras.ru

Abstract—MicroTESK is a tool that automates construction of test program generators for microprocessors. The

main part of each generator is the core implementing architecture-independent test generation methods. To produce

tests for a specific instruction set architecture, the tool analyzes formal specifications of that architecture and extracts

all necessary information, including, first of all, the instructions’ syntax and semantics. The primary use case of the

tool is to generate test programs from high-level test templates, or scenarios, provided by verification engineers. In

this paper, we present a new facility, namely automatic generation of architecture validation suites, which allows

creating simple tests in a “push-button” manner. Such tests exercise individual instructions and short sequences of

dependent instructions by applying both random and directed values of the operands. MicroTESK and the
underlying approach have been applied to the ARMv8, MIPS64, PowerPC, RISC-V, and x86 architectures.

Keywords—microprocessors, instruction set architectures, formal specifications, functional verification, model-based

testing, test program generation, architecture validation suites

I. INTRODUCTION

Test program generation and analysis of test program execution traces is the most widely used approach to

functional verification of microprocessors. To generate test programs, special tools called test program

generators (TPGs) are used. They implement a variety of test generation methods to exercise behavior of a

microprocessor in “all possible” situations. An important requirement for modern TPGs is support of a wide

range of instruction set architectures (ISAs). This implies that information on the ISA must be separated from the

implementation of the test generation methods, i.e. the information makes a model of the ISA. Such approach is

usually referred to as model-based testing.

Industrial TPGs such as Genesys-Pro [1] and RAVEN (Random Architecture Verification Engine) [2] follow

the model-based approach. The main idea is that a TPG consists of the core, which implements architecture-

independent test generation methods, and the model, which stores all information required to create test programs

for the corresponding ISA. Assuming that the ISA model is specified, the primary use case is as follows: a

verification engineer describes a test template in a special high-level language; the TPG analyzes the test template

and constructs randomized assembly code that fits the description. The goal of our work is to bring further

automation to the process to facilitate it. Having an ISA model available, some basic tests can be produced

automatically in a “push-button” manner.

In this paper, we present MicroTESK (Microprocessor TEsting and Specification Kit), an open-source tool for

constructing model-based TPGs [3]. It provides the reusable core and constructs ISA models by processing the

formal specifications. To represent ISA specifications, the tool utilizes nML, a simple architecture description

language [4]. Test templates are written in a Ruby-based language [5] (a Python extension is under development).

The use of the well-tried languages is one of the distinctive features of the tool. Another one is a possibility to

automatically generate basic test templates, so-called architecture validation suites (AVSs) [6]. This facility is

especially useful at early stages of the microprocessor design process.

The rest of the paper is organized as follows. Section II reviews the related work addressing test program

generation for microprocessors in general. Section III overviews the MicroTESK tool, describes tests being

generated automatically, and considers how a MicroTESK-based TPG is developed and debugged. Section IV

contains information on the supported architectures and a case study on applying the AVS generator in industrial

settings. Section V concludes the paper and outlines the directions of future research.

2

II. RELATED WORK

Over the last decades, a lot of efforts have been invested into development of TPGs. The primary challenge is

how to maximize the productivity of testing. This means to create AVSs that provide the necessary level of

coverage with minimal effort. To address this challenge, the model-based approach was proposed [1]. It implies

separation of a TPG into two main parts: (1) the model that represents a formal specification of the ISA under test

and (2) the core that incorporates ISA-independent components implementing test generation methods. AVSs for

such TPGs consist of test templates that formulate the properties of test programs to be generated in terms of the

corresponding model. Test templates are processed with the core to produce tests satisfying the formulated

properties. Such an approach allows reusing a TPG for multiple ISAs and generating large volumes of

randomized tests sharing common properties on the basis of a single test template.

The best-known industrial TPGs that follow the model-based approach are Genesys-Pro [1] by IBM Research

and RAVEN [2] by Obsidian Software (now owned by ARM). These TPGs are capable of generating random and

constraint-based tests. They use ISA specifications (models) and test templates described in domain-specific

languages (DSL) with some parts developed in C/C++. Both TPGs are proprietary and their vendors do not reveal

details on how ISA specifications and test templates are developed. From publicly available information, it can be

concluded that the models they use consist of three main parts: (1) description of instruction signatures;

(2) information about test situations; (3) reference instruction set simulator (ISS). The main drawback is that

these three parts are developed separately. Moreover, they are not monolithic (in sense of programming paradigm

usage) and can include descriptions in multiple formats. This complicates their development and maintenance.

Another issue is that despite the fact that the TPG core is ISA-independent and that AVSs for different ISAs solve

common verification tasks, no facilities for AVS reuse are provided.

Besides TPGs there are a number of tools that use ISA specifications to support multiple platforms. Among

them, there are ISSs and compilers (code generator back-ends). In general, they use C/C++ and DSL to describe

the target platform configuration.

QEMU [7] is an ISS that supports multiple platforms. The supported ISAs are mapped to internal QEMU

micro-instructions using code in C. Microprocessor state for different configurations (particular designs) and

additional logic (e.g., memory management) are implemented as separate C libraries.

GNU Compiler Collection (GCC) [8] is a well-known compiler project with multiple ISA support. GCC

machine descriptions consist of two parts: (1) patterns for instructions supported by the target machine and (2)

headers defining macros that convey information about the target machine. Code is generated from a parse tree by

applying the corresponding instruction patterns.

LLVM [9] is yet another retargetable compiler. Basically, a machine description in LLVM is a set of C++

classes generated from descriptions in the TableGen DSL. Registers and instruction templates are defined in the

DSL, while coarse-grained compiler interaction has to be manually implemented in the corresponding classes.

In [10], experimental tools developed at Cadence are introduced. These tools construct ISSs, assemblers, and

disassemblers based on ISA specifications in nML [4]. This is a DSL designed for describing the syntax and

semantics of microprocessor instructions. Specifications in nML can be relatively easy created on the basis of

ISA reference manuals.

It can be summarized that each tool with multiple platform support uses its own description format that suits

its specific needs. In some cases, multiple formats are used for different parts of the description. The use of a

single self-contained format for describing all aspects of the ISA would significantly simplify development and

maintenance of TPGs. Among the above-considered approaches, the nML DSL is the most suitable description

format. Specifications in nML can be derived from ISA reference manuals and they provide enough information

to automatically generate AVSs.

3

III. MICROTESK APPROACH

MicroTESK is divided into two main parts: (1) the modeling framework that processes formal specifications

and constructs a microprocessor model; (2) the testing framework that generates test programs on the basis of the

model and test templates provided by users, i.e. verification engineers. The architecture of MicroTESK is shown

in Figure 1.

Fig. 1. The MicroTESK architecture

There are three main components of the model: (1) the metadata providing a catalogue of supported

instructions; (2) the instruction set simulator (ISS) serving as a reference model; (3) the coverage model holding

constraints describing execution paths of individual instructions.

The modeling framework conducts analyzing of formal specifications, extracting the necessary information,

and construction of the model. To develop ISA specifications, one does it manually by means of the nML

language [4]. The specifications describe data types, registers, memory, addressing modes, and instructions. Here

is an nML specification of MIPS's ADD instruction.

op add(rd: R, rs: R, rt: R)

 syntax = format("add %s, %s, %s", rd.syntax, rs.syntax, rt.syntax)

 image = format("000000%5s%5s%5s00000100000", rs.image, rt.image, rd.image)

 action = {

 if sign_extend(WORD, rs<31>) != rs<63..32> ||

 sign_extend(WORD, rt<31>) != rt<63..32> then

 unpredicted; // Precondition

 endif;

 temp33 = rs<31>::rs<31..0> + rt<31>::rt<31..0>;

 if temp33<32> != temp33<31> then

 exception("IntegerOverflow"); // Coverage item 1

 else

 mark("Normal"); // Coverage item 2

 rd = sign_extend(DWORD, temp33<31..0>);

 endif;

 }

Each instruction from ISA looks like an object with the following attributes: syntax (assembler format of the

instruction), image (binary encoding), and action (what the instruction should do). To describe functionality of

the instruction, the nML language supports bit-level commands (<a..b>, a::b, etc.), branching, and calling of other

operations, including system ones (like unpredicted and exception in the above example).

Being rather simple although powerful enough in most cases, nML does not always have adequate facilities to

describe complex memory management units (MMUs). For this purpose, a special mmuSL language extension is

used. MMU specifications include address types, memory segments, buffers, tables, and overall control logic for

handling loads and stores [11]. In the following example, an address type named VA with the only one attribute

4

(the virtual address itself) is declared. It should be notices that in general case the address type structure may

contain a number of attributes.

address VA(

 value: 32 // Virtual Address itself

)

A memory segment represents a mapping from a set of addresses of some type to a set of addresses of another

type. An example given below defines a segment SEG that maps a VA of the given set (range) to the physical

address (PA). If PA is defined in the same way as VA, the segment performing flat translation with no use of

TLBs and tables (read) would look as follows.

segment SEG (va: VA) = (pa : PA)

 range = (0x00000000, 0xffffffff)

 read = {

 pa.value = va.value;

 }

Buffers (TLBs, cache units, page tables, etc.) are specified with the following parameters: the associativity

(ways), the number of sets (sets), the entry format (entry), the index calculation function (index), the tag

calculation function (tag) and the data eviction policy (policy). Here comes a sample description of TLB accessed

by VAs. The only attribute given here (entry) sets up the TLB record format, the others are omitted. The

keyword register means that the buffer is mapped to the registers and can be read in the nML specification.

register buffer TLB (pa: PA)

 entry = (value : 32)

 ...

Specification of memory access instructions processing uses requesting of the segments and buffers. The

syntax of mmuSL is similar to nML though allows using such constructs as follows.

 B(A).hit – the buffer B contains an entry for the address A,

 E = B(A) – the entry for the address A is read from the buffer B and assigned to E,

 B(A) = E – the entry E for the address A is written to the buffer B,

 and the like.

Here is a fragment of the MIPS MMU specification. It contains two attributes, read and write, which,

respectively, define logic of loads and stores. This MMU is called each time when an access to memory happens

in nML, triggering the whole of the MMU logic (address translation, caching, etc.) as shown below.

mmu MMU(va: VA) = (data: 32)

 var c: 3; // Cache policy

 var pa: PA;

 var cacheData: 256;

 var offset: 3;

 var l1Entry: L1.entry;

 read = {

 c = 3; // Default cache policy

 pa.value = va.value; // Let physical address be equal to logical address

 MMU_PA(pa) = pa.value; // PA is saved into nML register

 offset = pa.value<4..2>; // address is WORD-aligned

 if c<1..0> != 2 then // If address is cacheable

 if L1(pa).hit then // L1 Cache Access

 l1Entry = L1(pa);

 cacheData = l1Entry.DATA;

 else

 cacheData = M(pa); // Memory Access

 l1Entry.V = 1; // L1 Cache Update

 l1Entry.TAG = pa.value<31..12>;

 l1Entry.DATA = cacheData;

 L1(pa) = l1Entry;

 endif; // If the address hits the L1.

 else // The address is uncacheable.

5

 cacheData = M(pa); // Memory Access

 endif; // If the address is cacheable.

 data = cacheData<...>; // Data Extraction

 }

 write = { ... }

}

To make specification of ISA work for the purpose of test program generation, verification engineer should

develop a set of Ruby-based [5] test templates. The test templates description language combines facilities for

describing properties of test programs and features of a general-purpose programming language. ISA-specific

constructs such as instruction wrappers are created on the fly by using the model metadata. Broadly speaking, test

templates specify how to combine instruction sequences and what constraints to apply. For example, the Ruby

code below describes all possible pairs of ADD and SUB instructions with “Normal” and “IntegerOverflow"

constraints having been attached.

class ExampleTemplate < BaseTemplate

 def run

 block(:combinator => 'product') {

 iterate {

 add t0, t1, t2 do situation('Normal') end

 add t0, t1, t2 do situation('IntegerOverflow') end

 }

 iterate {

 sub t3, t4, t5 do situation('Normal') end

 sub t3, t4, t5 do situation('IntegerOverflow') end

 }

 }.run

 end

end

The generation process, conducted by the reusable MicroTESK TPG core adjusted by a test template, consists

of the following stages:

1. constructing an abstract instruction sequence (no particular data);

2. solving constraints applied to the instructions and generating data;

3. creating initialization code that prepares the registers and the memory;

4. executing the instructions (including the initialization code) in the ISS;

5. creating self-checks based on the information provided by the ISS (optional);

6. printing the resulting instructions to an assembly file.

MicroTESK allows constructing complex instruction sequences by combining smaller parts. To solve

constraints, the tool utilizes a number of built-in and external SAT- and SMT-solvers. Supported types of

constraints include: (1) constraints on instruction operands; (2) constraints related to control flow; (3) floating-

point constraints; (4) MMU-related constraints. The tool architecture facilitates integration of custom components

for sequence processing and constraint solving (test data generation).

Each base template for the given ISA has an exception handlers section. Inside the section, the handlers are

separated by means of memory replacement commands orgs; each branch has a mark (“Overflow”, “Unaligned”,

etc.) to be called in user templates to make a specific situation. As for the interruption handling, it is up to the

nML part to make the processing of events carefully. Each event processing is described in the correspondent

nML operation (including reset, process context switching, etc.) and should be called explicitly from the test

template even if it is caused by changing of input wires.

The template-based approach implemented in MicroTESK is rather popular as it automates many routine

tasks related to construction of instruction sequences and test data. However, more automation would be

desirable. Being in many respects similar to each other, microprocessors are often verified in a similar way. In

other words, there are typical test scenarios that can be applied to different microprocessors. Our idea is to

generate such kind of tests, namely AVS, automatically by analyzing ISA specifications.

6

We have implemented a MicroTESK extension that automatically produces the following types of tests:

 tests for individual instructions (execution units):

o tests that for each instruction

 randomize the operands;

 try the boundary values;

 cover all possible execution paths extracted from the specifications;

 tests for instruction sequences (pipeline control logic):

o tests that enumerate short instruction sequences (pairs, triples, etc.),

o and, optionally,

 enumerate the execution paths of the instructions;

 enumerate the dependencies between the instructions.

Here is an automatically constructed test template aimed at covering all execution paths of the ADD

instruction.

sequence {

 add r(_), r(_), r(_) do testdata('all-paths') end

}.run

The test template is handled as follows. MicroTESK extracts all execution paths, including: (1) an integer

overflow path; (2) a normal execution path. For each of them, it formulates the constraint and generates test data

by solving that constraint (to do it, the tool uses external SMT solvers). As a result, it constructs test cases to

cover each execution paths individually. Here is how an integer overflow test case may look like.

// Initialization code

lui r2, 0x8000

lui r3, 0x8000

// Target instruction

add r1, r2, r3 // IntegerOverflow exception

An automatically constructed test template aimed at testing multiple instructions has the following structure.

block(:combinator => '...', :compositor => '...', :permutator => '...') {

 # Group 1 (e.g., integer arithmetic)

 iterate {

 add r(_), r(_), r(_)

 ...

 }

 ...

 # Group N (e.g., loading / storing)

 iterate {

 sw r(_), _, r(_)

 ...

 }

}

IV. CASE STUDY

MicroTESK has been used to construct TPGs for several ISAs, including ARMv8 (AArch64), MIPS64

(Revision 5), PowerPC (e500mc), RISC-V (Version 2.2), and x86 (x86-64). The TPGs for ARMv8, MIPS64, and

RISC-V are industrial tools, while the rest are research prototypes. Table I provides information on the ISA

specifications used for TPG construction and the efforts spent on their development.

The TPG development is reduced to specifying the corresponding ISA. The labor costs are approximately 2-5

instructions per person-day (depending on the ISA complexity). It should be noted that specifications can be

reused when describing other designs of the same family. The nML and mmuSL languages allow marking

specification elements with revisions to enable/disable those elements depending on the ISA version.

7

Table I. Information on ISA specifications

Instruction Set Architecture ARMv8 MIPS64 PowerPC RISC-V x86 (x86-16)

Instruction count 1015 235 122 262 58

ISA specification size (LOC) 18178 3999 2766 3500 2585

MMU specification size (LOC) 2643 267

Efforts (person-months) 30 4 3 4 2.5

It is not a secret that each program contains bugs. After their development, the nML specifications may also

have errors, such as incorrect assembler format of instructions and wrong results of instruction execution on the

MicroTESK simulator. To detect such errors, we supply all the developed MicroTESK-based TPGs with

environments. The environment includes the reference model of the ISA and the comparator. The comparator is

the tool that compares results of test program simulation on the TPG and on the reference model. We use

execution traces as simulation results. An execution trace contains events of the following kinds: instruction

execution, write to register, write to memory, read from memory.

For every test template of the TPG the following actions are made:

1) The test program is generated. Upon generation the program is simulated on the MicroTESK internal

simulator; the execution trace is generated.

2) The test program is compiled by the toolchain and is simulated on the reference model; another

execution trace is generated. The QEMU emulator is used here. We have modified the QEMU

output trace format to be compatible with the MicroTESK related one.

3) The execution traces from steps 1 and 2 are compared. We have implemented the

Trace Matcher [12] tool as a comparator. The tool produces a report of discrepancies that were found

during test program simulation.

A prototype of MicroTESK’s AVS generator has been used to verify a MIPS-compatible microprocessor. The

microprocessor implements 221 instructions, which can be divided into 13 groups: (1) integer arithmetic; (2)

logical operations; (3) data transfer; (4) shifts; (5) branching; (6) empty operations; (7) loading and storing; (8)

exceptions; (9) system operations; (10) floating-point arithmetic; (11) FPU data transfer; (12) type conversion;

(13) FPU branching.

It is worth noting that the verification was carried out at a late design stage, when the microprocessor had been

thoroughly tested and had been ready for tapeout. The generator constructed test programs by enumerating triples

of instructions, functional branches for each of the instructions (integer overflow/normal execution, cache

hit/miss, etc.), and dependencies between the instructions. Since the number of instructions is large enough, we

used some heuristics to reduce the test size. The generated AVS contains approximately 37.5 million test cases,

each being composed of 20-100 instructions (target instructions and initialization code). The total number of

instructions in the generated test programs is more than 1 billion. As a result, 6 errors were found in the reference

instruction set simulator and 9 errors were found in the RTL model. Here are two examples.

Failure 1. The first instruction divides the value of the register r1 by the value of the register r2 and saves the

quotient and the remainder in the registers LO and HI respectively. The second instruction moves the contents of

the register r3 into the register HI. The third instruction moves the contents of the register HI into the register r4.

The failure is that r4 contains the result of the division instead of the contents written by the second instruction.

div r1, r2 // LO := r1 / r2, HI := r1 % r2

mthi r3 // HI := r3

mfhi r4 // r4 := HI

Failure 2. The first instruction moves the contents of the register r1 into the FPU condition codes register

(FCCR, $25). The second instruction moves the contents of the register r3 into the register r2 unless the condition

code $fcc0 is false. The third instruction performs a floating-point operation that causes the Inexact exception.

The failure occurs when the superscalar mode is enabled (in this mode, integer and floating-point instructions are

8

executed simultaneously) and the Enables.Inexact bit is set in the FPU control/status register (FCSR), and it

manifests as a “hang” of the microprocessor.

ctc1 r1, $25 // FCCR := r1

movt r2, r3, $fcc0 // if $fcc = 1 then r2 := r3

cvt.s $f1, $f2 // Inexact exception

V. CONCLUSIONS

The most widely used approach to functional verification of microprocessors is test program generation. The

idea is to construct a huge volume of randomized assembly code that covers various situations in microprocessor

behavior. There are tools, so-called TPGs, which automate that process. They represent knowledge of a target

ISA (including the instructions’ syntax and semantics) and are able to produce test programs based on high-level

test templates. An obvious observation is that all microprocessors (at least, most of them) are similar to each

other; thus, there should be general principles of test template development for different microprocessor

architectures. The main goal of our work is to reveal such principles and to automate construction of typical tests

based on ISA specifications.

We have extended the MicroTESK tool by the facility for generating basic test templates, so-called AVSs.

That extension allows testing how the microprocessor executes individual instructions and short sequences of

instructions. On the one hand, the approach reduces time to get first tests; thus, it may be useful at early design

stages. On the other hand, it provides a certain degree of systematicness and thoroughness; thus, it may benefit at

all stages. Our experience has shown that automatically generated tests can discover critical bugs even in mature

designs. The MicroTESK tool, including the suggested extension, is open-source and distributed under the

Apache License, Version 2.0.

In the nearest future, we are planning to reveal more industrial test design patterns to make our tool mature

enough to bring microprocessor verification to a new level of automation. Another important direction is

automating development of online TPGs, i.e. generators that synthesize and launch tests on the fly. Such tools are

essential for post-silicon verification and for testing FPGA prototypes.

ACKNOWLEDGEMENT

The authors would like to thank Russian Foundation for Basic Research (RFBR). The reported study was

supported by RFBR, research project No18-07-01218.

REFERENCES

[1] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, A. Ziv, “Genesys-Pro: Innovations in test program generation for

functional processor verification”, Design & Test of Computers, 21(2), 2004. pp. 84--93.

[2] Random Architecture Verification Engine (RAVEN) — http://www.slideshare.net/DVClub/introducing-obsidian-software-

andravengcs-for-powerpc

[3] Microprocessor Testing and Specification Kit (MicroTESK) — http://forge.ispras.ru/projects/microtesk

[4] M. Freericks, “The nML machine description formalism”, Technical Report TR SM-IMP/DIST/08, TU Berlin CS Department, 1993.

[5] A. Tatarnikov, “Language for describing templates for test program generation for microprocessors” , Proceedings of ISP RAS, 28(4),

2016. pp. 81-102.

[6] L. Fournier, A. Koyfman, and M. Levinger. “Developing an Architecture Validation Suite — Application to the PowerPC

Architecture”, Design Automation Conference (DAC), 1999. pp. 189–194.

[7] Quick Emulator (QEMU) — http://www.qemu.org/

[8] GNU compiler collection (GCC) — https://gcc.gnu.org/

[9] Low Level Virtual Machine (LLVM) — https://llvm.org/

[10] M. Hartoog, J. Rowson, P. Reddy, S. Desai, D. Dunlop, E. Harcourt, N. Khullar. “Generation of Software Tools from Processor

Descriptions for Hardware/Software Codesign”, Design Automation Conference (DAC), 1997. pp. 303–306.

[11] M. Chupilko, A. Kamkin, A. Kotsynyak, A. Protsenko, S. Smolov, A. Tatarnikov, “Specification-based test program generation for

ARM VMSAv8-64 memory management units”, Workshop on Microprocessor Test and Verification, 2015. pp.1-6.

[12] Trace Matcher tool — https://forge.ispras.ru/projects/traceutils

http://www.slideshare.net/DVClub/introducing-obsidian-software-andravengcs-for-powerpc
http://www.slideshare.net/DVClub/introducing-obsidian-software-andravengcs-for-powerpc
http://forge.ispras.ru/projects/microtesk
http://www.qemu.org/
https://gcc.gnu.org/
https://llvm.org/
https://forge.ispras.ru/projects/traceutils

