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Abstract— The universal verification methodology (UVM) [1] has proven insufficient for stimulus
generation for micro-processor core verification. To address our stimulus needs for verifying the Cavium
ThunderX and ThunderX2 ARM cores we have created a sequence-based assembly generator using
C++11 [2], which introduced many new features that make developing in C++ easier and more efficient.
This paper will present an overview of our sequence-based assembly generator SGen and will discuss how
it is being effectively used to verify Cavium’s ARM server cores.

I. Introduction

The universal verification methodology (UVM) [1] has become the de facto industry standard for design
verification. Promoted as a way to accelerate verification through reuse and interoperability, it nevertheless
falls short in the area of stimulus generation for micro-processor core verification. To address our stimulus
needs for verifying the Cavium ThunderX and ThunderX2 ARM cores we have created a sequence-based
assembly generator using C++11 [2]. We chose to use C++11 because it introduced many new features [3] that
make developing in C++ easier and more efficient than previous iterations of the language.

This paper will present an overview of our sequence-based assembly generator SGen. First, we will present
some background and related work. Second, the motivation for creating SGen will be discussed. Third, our
tool chain will be presented. Fourth, some of the internal components of SGen will be described, focusing on
how randomization is achieved despite the lack of a constraint solver. Finally, we will show how SGen is
being effectively used in production to verify Cavium’s ARM server core by presenting data collected from
exerciser (exer) runs.

A. Background and Related Work

Figure 1 shows a typical UVM test bench architecture consisting of an active agent that injects stimulus into
the device under test (DUT) and a passive agent that monitors the output. A checker that listens to each
monitor can correlate the input and output values and perform any required checking and possibly collect
coverage data. The architecture shown in fig. 1 assumes that stimulus is generated by a SystemVerilog (SV)
sequencer/driver pair. This assumption does not hold true for micro-processor verification where the stimulus
is an actual program loaded into memory that the core will execute.

Figure 2 shows an abstracted view of our core test bench. The figure shows that our environment includes
several C++ components, making ours a mixed language environment. The RTL components that make
up the DUT are the core and memory controller. At simulation startup, the program to be executed is
loaded into a sparse memory (C++). The core/mem controller pair interact with a bus-functional model
(BFM) of our last-level cache (LLC) written in SV. There are various checkers and monitors connected to
each major interface. The most important checker in our environment is the ARM instruction-set simulator
that is written in C++.

Clearly, the UVM sequence/driver paradigm is insufficient for our core verification needs. To address our
stimulus requirements for verifying the Cavium ThunderX and ThunderX2 ARM cores we needed to explore
alternative stimulus generation techniques.

Industry and academia have been exploring several techniques for generating test programs for processor
verification. Examples include: linear programming [4], finite state machines (FSM) [5], constraint-satisfaction
problem (CSP) solvers [6], graph-based generation [7], genetic programming [8], and finally random selection.
Most of these solutions have steep learning curves and are impractical for verifying large and complex
components; particularly a pipelined processor with a large verification space.

Some examples of industrial tools are: Raven (ARM), Cadence Perspec, Breker TrekSOC and IBM
Genesys-Pro [9]. All of the aforementioned tools make use of graphical user interfaces (GUIs) for specifying
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Figure 1: Generic UVM testbench architecture. Figure 2: Core testbench architecture.

tool inputs. For example, the Raven tool allows users to create templates using a GUI. The tool then uses
the template to generate instructions. The Raven tool currently ships with a library of templates that can be
used for basic bring-up and random exerciser runs. The Cadence Perspec tool uses a UML-like graphical
syntax to specify system-level tests for SoC verification. The Breker TrekSOC tool generates self-checking
C tests for system-level verification. All of these tools require ramp-up time to learn their syntax. Since
they are proprietary tools customization is difficult or impossible. Keeping our stimulus generators in-house
enables us to avoid these restrictions.

Further, since Cavium already has a random generator called PPIGen that has been used successfully
for several product generations (MIPS and ARM), we chose to leverage our current infrastructure when
developing our new tool.

B. Motivation

Prior to the development of SGen, we had two ways to stimulate our design. The first was to hand-write
a C or assembly test and the second was to use the knob-based instruction generator PPIGen. These two
approaches cover opposite ends of the stimulus spectrum. The hand-written tests are only good for one-off
verification tasks and cannot be leveraged for generating random stimulus. The PPIGen tool is too random
and is not easily steered towards specific scenarios that we are interested in hitting. As with any knob-based
tool, the controllability decreases over time as the number of knobs increases.

To meet our requirements we needed to bridge the gap between directed and fully random stimulus. Thus,
we created a tool that adapts the sequence-based approach to stimulus promoted by UVM, thereby giving us
the flexibility to create libraries of sequences that can be as random (or not) as necessary.

Even though the industry has been moving towards using SystemVerilog (SV) [10] and UVM, C++ has
certain advantages that appealed to us. First, the standard libraries provide a richer set of data structures
and algorithms when compared to SV; including string manipulation (important for generating assembly
tests). Second, the compile times are much faster than SV, especially incremental compiles. Third, the lack
of a licence requirement was an important factor that favoured C++ over SV. Fourth, debugging C++ code is
easy with gdb and debug print statements. Fifth, C++ is very well documented and there are a lot of sources
of community-driven support such as wikis and forums. Finally, C++ is fast!

Despite all of the aforementioned advantages of C++, we likely would have chosen a scripting language
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Figure 3: The PPIGen tool supports directed and random
modes. The SGen tool piggybacks onto the directed
mode.

such as Python instead had it not been for C++11. The new features introduced in C++11 [3] represent a
significant improvement to the language over C++98. There are many new features but the key enablers for
us were:

• Lambda functions [11] enable the creation of closures that capture variables in scope. These are used
extensively in SGen to facilitate randomization and user-defined overrides (discussed in section II.B).

• The improved random number generation libraries [12] provide a wide array of number distributions
(e.g. uniform, Bernoulli, Poisson) and number generators that are part of the C++11 standard. These
libraries can be used to build sophisticated random number generation into an application. They were
used in SGen to create the weighted_set class that enables generic random picking from a set of
objects (section II.B).

• The polymorphic function wrapper [13] is a utility class that facilitates passing around and storing
references to callable [14] objects. This utility is used to store references to lambda functions throughout
the SGen codebase.

• Regular expressions [15] have been added to the standard library. It is now possible to do regular
expression matching and advanced string manipulation without the need for external libraries.

• The auto specifier [16] is a useful feature that improves the readability and maintainability of code. For
variables and return types, the auto keyword specifies that the type will be deduced by the compiler.
The example in section II.B shows the specifier in working code.

C. The toolchain

The PPIGen tool has two modes of operation for generating test programs: random and directed (shown
in fig. 3). In the random flow, the program input is a single config file that optionally constrains random
variables that affect the program generation and system configuration. In the directed flow, the input is a C
or assembly (.S) file and a config file containing configuration overrides. An important difference between
both modes is that in the directed mode, the configuration of registers assumes default (reset) values unless
otherwise specified in the config file, whereas in random mode configuration registers are randomized.

The PPIGen tool performs two basic functions. The first is to generate an instruction stream when in
random (or exer) mode. The second is to read a config (.cfg) file and to generate appropriate init code and
linker scripts. We wanted to leverage the configuration and linker script generation logic provided by PPIGen
so we developed SGen to produce an assembly program and an appropriately formatted config file that is
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Figure 4: Basic architecture of the SGen program.

fed through PPIGen’s directed flow. Figure 3 shows the PPIGen flow for directed and random test case
generation as well as how the SGen fits into that flow.

II. SGen Overview

This section will discuss the internal structure of the SGen tool and provide code samples that show basic
usage. Some of the more important classes used to create the sequence libraries will be discussed. Finally, a
fully working test will be presented that shows what typical SGen syntax looks like.

A. Software Architecture

Figure 4 shows the software architecture of the SGen tool. The basic building block for generating an assembly
test is an instruction; the inst library contains a class hierarchy of instructions organized by type (e.g. load,
store, etc). The seq library is composed of sequences that are each written with a specific intent. Similarly,
the tests library is comprised of tests that may use one or more sequences in order to achieve a specific
verification goal. A random exerciser (or exer) test can be generated by randomly mixing sequences together.
Finally, the randutils package provides utility classes that enable randomization.

B. Randomization — No constraints, no problem!

The lack of a constraint engine did not deter us from using C++. In our experience, constraints are often
difficult to debug and can significantly impact simulation performance. We have found that randomizing
variables using procedural code is sufficient to meet our needs. In addition, constraints in SV have their own
syntax that one has to learn; since SGen is pure C++ there is no such requirement. In fact, it is often easier to
express complex relationships between variables using procedural code. The random selection of variables is
made possible by a parametrizable weighted set (wset) class and a random interface (rand_intf) base class.

The wset class is a container that can hold items and their associated weights. The class has a pick
method that is called to randomly select an item from the set. Since the class is parametrizable, it can hold
objects of any type, including other weighted sets for nested picking. An useful feature of the pick method is
that it is recursive. That is, it does not matter whether the weighted set items are weighted sets or scalars,
the pick method is “smart” enough to detect a nested knob and a user need only call the pick method once.

In lieu of a constraint solver, the SGen tool provides a random interface class that maintains a list of
lambda [11] functions (or closures [17]) that are executed in fifo order when the randomize method is
called. The callback functions are registered with the random interface class via the push_callback method.
If multiple lambda functions set the same variable, the last one “wins”. The random interface class also
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Listing 1: The weighted set class.
1 // Create 2 weighted sets of chars with 2 items each.
2 // Note that the syntax uses C++11 list initialization .
3 wset<char> w1( {{’a’, 100}, {’b’, 200}} );
4 wset<char> w2( {{’c’, 200}, {’d’, 800}} );
5

6 // Create a nested weighted set
7 wset<wset<char>> w;
8

9 // Add items to the weighted set
10 // w2 has a higher weight.
11 w.add_item(w1, 100);
12 w.add_item(w2, 900);
13

14 // Pick a character from nested wset.
15 // Template magic will make the call recursive.
16 char c = w.pick();

Listing 2: The random interface class.
1 // foo.h
2 class foo : public rand_intf {
3 int x;
4

5 foo() {
6 push_callback(
7 // Set x to 1 by default
8 [this ]() { x = 1; }
9 ) ;

10

11 push_check(
12 // make sure x is never greater than 10;
13 [this ]() −> bool { return (x <= 10); }
14 ) ;
15 };
16 };
17

18 // user_code.cc
19 // Create a weighted set with 2 items with equal weights.
20 // The set contains an illegal value of 20 that will
21 // cause the simulation to fail if picked.
22 wset<int> w( {{10, 100}, {20, 100}} );
23 auto f = new foo();
24 f−>push_callback(
25 // Add another callback to override the default
26 [&](){ f−>x = w.pick(); }
27 ) ;
28 f−>randomize(); // execute all lambda functions in fifo order

.

provides a mechanism to check for “constraint violations” by executing a list of “rule check” callbacks after
the randomize method is called. A failed check will cause the tool to print an error message and exit.

Listing 2 shows an example of class foo that derives from rand_intf and sets a callback in its constructor
that sets x to a default value of 1. Further, the constructor also adds a check that will enforce the rule that
x is never greater than 10. The user code in listing 2 shows an additional callback being registered that
will assign x to a random value by using a weighted set. Note that the set contains the illegal value of 20,
which will violate the condition that x never be greater than 10. If picked, the value of 20 will cause the
program to exit due to randomization failure. Since the program is C++, so-called “constraint violations” can
be debugged using a debugger.

C. Anatomy of a sequence

When a sequence is run it generates a block of instructions that consist of a preamble and a main body.
The preamble is used to set up base, scratch, index and offset registers that are used by the instructions
in the main body of the sequence. Without proper setup code in the preamble, the program would access
illegal addresses and start faulting continuously. Thus, proper register initialization is required for the test to
perform useful work.

Since register initialization is required for most sequences, a helper class and associated sequence that
randomizes and initializes registers was created. The reg_helper class randomizes which registers will be
used for base, scratch, etc. The reg_init_seq will generate the preamble code that will initialize all the
registers to sane and legal values. For example, base registers will be loaded with a valid address.

While developing the sequence library we found it useful to partition the sequences into top-level and
light-weight sequences. A top-level sequence requires a proper preamble and is usually instantiated from
the test. Figure 5 shows a top-level sequence foo_seq instantiating a register init sequence (reg_init_seq)
that will generate the preamble. A light-weight sequence is typically a short sequence that requires some
configuration from a top-level sequence. Figure 5 shows the main body of foo_seq executing the light-weight
sequences bar and baz. A loop that executes a short block of code ten times is an example of a light-weight
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Figure 5: Top-level sequence foo_seq using the reg_-
helper and reg_init_seq to generate a preamble while
also executing nested light-weight sequences bar and baz.

Figure 6: The SGen factories mirror the class inheritance
tree.

sequence. It does not make sense to provide a full preamble for such a short sequence since the init code
would likely be longer than the main body.

D. Factories

Similar to UVM, SGen uses factories to create instances of registered types; they are used heavily for creating
instruction and sequence instances. However, unlike the typical usage of factories in UVM, SGen provides
a hierarchy of factories that mirror the class hierarchy of the instruction and sequence libraries. Figure 6
shows how the instruction types in the inst package are organized. The arm_inst class is at the top of the
hierarchy, therefore any class that derives from it can be instantiated using the arm_factory class. The same
holds true for all of the other types in the hierarchy.

The factory class provides a utility method get_types that returns a vector of type names that can be
used to instantiate types belonging to that factory. By selecting the appropriate factory, a test writer can
restrict which instructions their sequence or test will generate. Further, the user does not even have to know
the names of the individual types registered with the factory. This makes writing generic sequences and test
cases easier.

E. Putting it all together

The previous subsections have discussed the basic building blocks needed to create random test programs using
SGen. This subsection will present an example test that actually compiles. Listing 3 shows the body method
of a test that will generate only simd instructions. Note that the listing makes use of the bare_sequence
class, which is a special sequence type whose body method is a callback type that the user must override.
This class is useful for creating a sequence “on-the-fly” that we don’t wish to add to the standard sequence
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library.
The program in listing 3 shows the following:
– line 3: A bare_sequence class is instantiated.
– line 6: The sequence body is assigned to a lambda function.
– lines 14 to 16: A register helper (reg_helper) is instantiated, configured, and randomized.
– line 18: A register init sequence (reg_init_seq) is instantiated using the sequence factory.
– line 19: The register helper instance that was created earlier associated with the reg_init_seq instance.
– line 21: The register init sequence will generate the init code in the preamble.
– line 27: Create a weighted set instance to hold instruction objects.
– line 28: The simd factory will only create simd instructions.
– line 29: The factory method get_types returns a vector of type names that can be used to create
instruction instances later.

– line 35: Use the factory to create instruction instances.
– line 36: Constrain registers used by the instruction instance using the register helper object.
– line 38: Add instruction instance to the weighted set with a random weight.
– lines 42 to 48: Randomly pick instructions from the weighted set and send them to the driver.
– line 52: Execute the sequence until the end-of-test condition is reached (10k generated instructions in
this case).

Note that by using the simd factory get_types method to get the list of registered instructions, the user
need not know which instructions are supported by the tool. As more instructions are added the code in
listing 3 will automatically include them in subsequent runs.

III. Results and Discussion

This section presents data on incremental compiles, regression and exerciser runs, and run times.

A. Incremental compile

As mentioned previously, one of the motivations for choosing C++ was fast compile times. Table 1 shows
the incremental compile and link times for when a base class is modified, forcing multiple dependencies to
re-compile and link. The instruction package has the most reverse dependencies, therefore modifying a file
in inst will cause many files to recompile. Table 1 shows the compile and link times for when a base class
is modified in each package. The worst case is when each package has modified files that trigger the most
compiles. As table 1 shows, the worst case compile time is approximately 5 seconds.

B. Regressing Changes

An RTL designer has recently started running a small sample of random exers as part of their regression
strategy for qualifying check ins. Data for recent runs by this RTL designer is presented in table 2. The
regressions include mostly directed tests as well as a small selection of PPIGen and SGen exers. The exer runs
contain only PPIGen and SGen random exercisers. Table 2 shows that for regressions, SGen appears to catch
RTL bugs more consistently than the knob-based PPIGen. Note that directed failures do not necessarily
prevent changes from being released because our regression suite is often not 100% clean. This was one reason
why the RTL designer chose to start running random exercisers as part of their regressions. The reg3 series
with 21 failures is the only regression run where the directed failures would have prevented release. Table 2
also shows that both tools caught RTL errors but SGen had a greater number of total failures. The RTL
designer has observed that the SGen tool consistently catches bugs that the standard regression suite and
PPIGen would have missed.

C. Exerciser Runs

25k exers per generator were run over a one month period. The data collected from those runs is presented in
this subsection. Out of 50k runs, there were a total of 1731 failures. Interestingly, PPIGen only accounted for
171 of those failures and SGen accounted for 1560. On first glance it would appear that SGen is doing a
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Listing 3: Fully working example of a test that executes
only simd instructions.

1

2 // A bare sequence has no body and must be set by the user.
3 seq :: bare_sequence seq("simd");
4 seq.set_driver(asm_driver_p());
5

6 seq.set_body([&]()
7 {
8 using namespace seq;
9 using namespace randutils;

10 using namespace inst::simd;
11

12 // Instantiate a reg helper utility class to help with randomizing base,
13 // offset , scratch and index registers .
14 auto rh = std::make_shared<reg_helper>();
15 rh−>num_base_regs(12); // reserve 12 base regs
16 rh−>randomize();
17

18 auto reg_seq = seq_factory::instance().create("reg_init_seq");
19 reg_seq−>reg_helper_ptr(rh); // set the reg helper instance
20 reg_seq.set_driver(asm_driver_p());
21 reg_seq−>start(); // This will generate the preamble code
22

23

24 // Create and constrain instructions and add them to a wset with random
25 // weights.
26

27 wset<std::shared_ptr<simd_instruction>> inst_knob; // Create a wset to hold instruction objects
28 auto& f = simd_inst_factory_t::instance(); // we only want simd instructions
29 auto types = f.get_types(); // Returns a vector of type names registered with the factory
30

31 // Loop over type vector creating and configuring instances of each
32 // registered type.
33 for(auto& t : types)
34 {
35 auto inst = f.create(t) ; // create an instruction instance
36 rh−>constrain_regs(inst); // constrain the registers used by the instruction
37 inst_knob.add_item(inst
38 , knobs::weight.pick()∗5); // add the instruction to the wset with a random weight
39 };
40

41 // Generate istream.
42 int maxn = knobs::num.pick(); // Generate a random number of instructions
43 for(int n = 0; n < maxn; ++n)
44 {
45 auto i = inst_knob.pick(); // pick and instruction
46 i−>randomize(); // randomize fields
47 seq.driver_p−>do_item(∗i); // send instruction to .S file
48 };
49 }); // end of sequence body
50

51 // execute sequence until we’ve generated 10k instructions .
52 while(asm_driver_p()−>inst_count() < 10000)
53 {
54 seq. start () ; // sequence body executed every time start is called
55 };

8



Table 1: Incremental compile and link times reported by
unix time utility.

Modified user cpu
base class time time

inst 4.5s 1.6s
seq 3.5s 1.3s
test 1.0s 0.5s
all 4.9s 1.8s

Table 2: Failures broken down by test type for recent
regression and exerciser runs.

Failures
Series Tests Directed PPIGen SGen
reg0 421 2 0 6
reg1 446 1 0 15
reg2 417 2 0 29
reg3 410 21 16 34
reg4 388 1 1 8
exer0 47 – 0 5
exer1 46 – 0 6
exer2 41 – 9 26
exer3 35 – 1 0
exer4 55 – 1 0

Figure 7: Venn diagram showing the overlap of failure
buckets for the SGen and PPIGen generators.

better job of generating failures when compared to PPIGen. However, once we sort and classify the failures
into buckets (or bins) based on failure signature, we see that both tools are doing a good job of generating
failures.

The total number of buckets generated by both tools was 41. Figure 7 shows the overlap of buckets
between the two tools. There were 15 buckets unique to SGen and 13 buckets unique to PPIGen. There were
13 buckets that overlapped. This result is encouraging because it shows that the new tool is adding value by
uncovering unique buckets that PPIGen is missing.

Despite the similar bucket counts for SGen and PPIGen (28 and 26 respectively), the fact that SGen
generated far more failures for the same number of total runs supports the premise that a sequence-based
methodology is more efficient at finding bugs than a knob-based one. Finally, it should be noted that PPIGen
is a more mature and feature-complete generator — SGen does not currently support all of the ARM v8.1
instructions. The fact they they perform similarly is highly encouraging.

D. Speed

A primary reason for selecting C++ was runtime speed. A typical exerciser run generates tests with 25k to
50k instructions. For 500 runs, the average SGen execution time was 709ms and the number of instruction
generated per second averaged 31k. This run time is extremely fast and adds no overhead (in terms of
computes and licenses) to our simulation times.
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IV. Conclusion

In an effort to bridge the gap between directed and fully random stimulus methods, we have created SGen, a
sequence-based assembly generator using C++11. Despite not having a constraint engine, we nevertheless
are able to describe complex relationships between random variables using the random interface class in
conjunction with the new lambda functions introduced in C++11 [11].

SGen is currently being used to verify the Cavium ThunderX2 core and results show that it is better
at uncovering certain types of errors than our existing tools. In fact, SGen was able to generate far more
failures than PPIGen for the same number of runs. Even though the bucket counts were similar there were
still a good number of buckets unique to each tool. We can therefore conclude that the goal of augmenting
our stimulus was achieved.

In addition to generating failures, we also showed that the compile and run times are extremely fast. This
makes developing and debugging new sequences efficient and it also reduces the cost (in term of computes)
associated with adding SGen to our verification flow.

Finally, we expect that results will improve as we continue to add new sequences and instructions to the
tool.
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