
Micro-processor verification using a C++11
sequence-based stimulus engine.
DVCON 2017

Stephan Bourduas
(stephan.bourduas@cavium.com)

Chris Mikulis
(chris.mikulis@cavium.com)

March 1, 2017

Agenda

1. Motivation, Toolchain description.
2. Sequence generator internals (architecture,

code examples).
3. Experimental results.
4. Conclusions, Future work.

2/21

Introduction

Motivation

UVM has become the de-facto industry standard for
design verification.
Why didn’t we use UVM?

• UVM does not meet our stimulus needs for core verification.
• We decided to create our own sequence-based assembly generator (SGen) using

new features introduced in C++11.

Why C++11?

• Lambda functions enable the creation of closures that capture variables in
scope.

• Improved random number generation libraries.
• Polymorphic function wrappers facilitates passing and storing references to

callable objects.
• Regular expressions.
• The auto specifier allows the compiler to deduce types. 3/21

Stimulus Generation with UVM

The generic UVM testbench:

• Active agent injects stimulus into the
DUT.

• Passive agent monitors output.
• Checker correlates inputs and outputs.

Assumes stimulus is generated by a SV
seq/driver pair.

• Not the case for core verification!

4/21

Core Testbench Architecture

Our core testbench:

• Mixed language environment.
• The stimulus is a program binary

loaded into memory.
• Core executes program and the BFM

reacts.
• UVM seq/drivers used for side-band

interfaces.

UVM seq/driver paradigm insufficient:

• We needed to explore alternatives.

5/21

Why SGen?

Prior to SGen we had 2 methods to stimulute our design:

1. Hand-written C or assembly tests.
2. Knob-based assembly generator called PPIGen.

The approaches covered opposite ends of the stimulus spectrum:

• Directed tests used for one-off verification tasks and bring up.
• PPIGen is too random... controllability decreases as the number

of knobs increases.
• We needed to bridge the gap between directed and fully random

stimulus.

6/21

Integrating SGen Into the PPIGen Toolchain

PPIGen

• Directed and random modes.
• Generates init code and linker scripts

based on config input (knobs).
• Compiles and link assembly code to

generate .elf file.

SGen

• Piggybacks onto the PPIGen directed
flow.

• Generates assembly and config files.

7/21

Sequence Generator Tool

Software Architecture

Library descriptions:

• inst: hierarchy of instructions organized
by type.

• seq: sequences written with specific
intent.

• Includes stimulus and config sequences.

• tests: tests achieve goals by using 1 or
more sequences.

• randutils: provides utility classes that
enable randomization.

8/21

Randomization Without Constraints

Weighted set:

• Parametrizable container that holds items and their associated weights.
• pick method selects a item randomly from the set.
• pick_and_delete method selects and removes an item from the set.
• Can contain weighted sets for recursive picking.

Random interface (base class):

• Provides ability to randomize fields belonging to derived classes.
• Maintains a list of lambda functions that are executed in fifo order when the

randomize method is called.
• Lamda functions are added to an object via the push_callback method.
• The push_check method can be used to install callbacks that check for

“constraint violations”.

9/21

Randomization — The Weighted Set Class

1 // Create 2 weighted sets of chars with 2 items each.
2 // Note that the syntax uses C++11 list initialization .
3 wset<char> w1({{’a’, 100}, {’b’ , 200}});
4 wset<char> w2({{’c’, 200}, {’d’ , 800}});
5

6 // Create a nested weighted set
7 wset<wset<char>> w;
8

9 // Add items to the weighted set
10 // w2 has a higher weight.
11 w.add_item(w1, 100);
12 w.add_item(w2, 900);
13

14 // Pick a character from nested wset.
15 // Template magic will make the call recursive .
16 char c = w.pick();

10/21

Randomization — The Random Interface Class

1 // foo.h
2 class foo : public rand_intf {
3 int x;
4

5 foo() {
6 push_callback(
7 // Set x to 1 by default
8 [this]() { x = 1; }
9) ;
10

11 push_check(
12 // make sure x is never

greater than 10;
13 [this]() −> bool { return (x

<= 10); }
14) ;
15 };
16 };

1 // user_code.cc
2 // Create a weighted set with 2 items

with equal weights .
3 // The set contains an illegal value

of 20 that will cause the
simulation to fail if picked .

4 wset<int> w({{10, 100}, {20, 100}});

5 auto f = new foo();
6 f−>push_callback(
7 // Add another callback to

override the default
8 [&](){ f−>x = w.pick(); }
9) ;

10

11 // execute all lambda functions in
fifo order .

12 f−>randomize();

11/21

Anatomy of a Sequence

• A sequence run generates a preamble that sets up base, scratch, index and
offset registers and the main body.

• The reg_helper class provides random register allocation and reg_init sequence
generates the preamble.

• A light-weight sequence is typically short and thus generating a preamble would
be wasteful; these sequence rely on the top-level sequence for configuration.

12/21

Factories

• A hierarchy of factories reflect the class hierarchy in the inst package.
• arm_factory can instantiate any class that derives from arm_inst.
• The get_types method returns array of registered type names:

• Used to instantiate types belonging to a specific factory
• The user need not know the names of registered types.
• Facilitates writing generic sequences (new types are automatically used).

13/21

Simple Sequence Example

1 auto rand_w = wset<unsigned>(1,100); // random number between 1−100
2 auto& f = simd_factory:: instance () ; // get reference to desired factory
3 auto type_vec = f.get_type_instances() ; // return vector of type instances
4

5 // create weighted set of instances with randomized weights.
6 wset<simd_factory::inst_type> inst_wset(type_vec
7 , [&rand_w](){ return rand_w.pick(); });
8

9 // generate random number of instructions .
10 unsigned num = rand_w.pick();
11 for (int n = 0; n < num; ++n) {
12 auto inst = inst_wset.pick() ;
13 inst−>randomize();
14 do_item(∗inst);
15 };

Refer to listing 3 in the paper for a more detailed code example that
shows register initialization and instruction randomization.

14/21

Experimental Results

Compile and Link Times

Table 1: Incremental compile and
link times reported by unix time
utility.

Modified user cpu
base class time time

inst 4.5s 1.6s
seq 3.5s 1.3s
test 1.0s 0.5s
all 4.9s 1.8s

• Table 1 shows compile and link times for
when files are modified in different
packages.

• The inst package has the most reverse
dependencies.

• The table shows compile and link times
for when files are modified in each
package.

• The worst case compile time was 5s.

NOTE: Full compile of our testbench took 9m and incremental
compile after touching a single SV test took 6m.

15/21

Regressing RTL Changes

Table 2: Failures broken down by test
type for recent regression and
exerciser runs.

Failures

Series Tests Directed PPIGen SGen

reg0 421 2 0 6
reg1 446 1 0 15
reg2 417 2 0 29
reg3 410 21 16 34
reg4 388 1 1 8

exer0 47 – 0 5
exer1 46 – 0 6
exer2 41 – 9 26
exer3 35 – 1 0
exer4 55 – 1 0

• RTL designer has added SGen exers
to their regression flow.

• reg runs consist of directed tests as
well as PPIGen and SGen exers.

• exer runs consist of only random
exercisers.

• Directed failures do not necessarily
gate check-in.

• SGen has consistently caught bugs
that would have escaped standard
regression.

16/21

PPIGen and SGen Exerciser Runs

Figure 7: Overlap of failure buckets
for SGen and PPIGen

• 25k exerciser runs per generator were run
over a 1 month period.

• 1731 total failures:
• SGen accounted for 1560
• PPIGen accounted for 171

• Once we bin the failures we see that both
tools are doing a good job:

• 41 total buckets with only 13
overlapping.

• SGen is more efficient at hitting bugs
despite PPIGen being the more mature
tool.

17/21

Runtime Speed

Primary motivation for C++11 was speed:

• Typical exerciser run generates tests with 25k–50k instructions.
• For 500 runs:

• the average execution time of SGen was 709ms.
• The number of instructions generated per second was 31k.

• The tool adds no overhead (computes and licenses) to our
simulation times.

18/21

Conclusion and Future Work

Conclusion

• We bridged the gap between directed and fully random stimulus
by creating a sequence-based generator using C++11.

• We were able to express complex dependencies between random
variables despite the lack of a constraint engine.

• Weighted set, random interface and lambda functions.
• New features introduced in C++11 were key enablers.

• Fast compile and run times increased productivity.
• SGen is currently being used in production to verify the Cavium

ThunderX2 core
• Results show that it is better at uncovering certain types of errors

than existing tools.
• Generated more failures than PPIGen for the same number of

runs.

19/21

Future Work

• Continue adding support for SIMD and FP instructions.
• Continue adding to sequence library.
• Improve configuration randomization.
• Explore possibility of using an interpreted language for test

writing (i.e. Python front end).

20/21

End.

	Introduction
	Motivation
	UVM Testbench
	Core Testbench
	SGen
	Toolchain

	Sequence Generator Tool
	Software Architecture
	Randomization
	Sequence
	Factories
	Sequence Example

	Experimental Results
	Compile Times
	Regressing Changes
	Exerciser Runs
	Speed

	Conclusion and Future Work
	Conclusion
	Future Work

