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Introduction



Motivation

UVM has become the de-facto industry standard for
design verification.
Why didn’t we use UVM?

• UVM does not meet our stimulus needs for core verification.
• We decided to create our own sequence-based assembly generator (SGen) using

new features introduced in C++11.

Why C++11?

• Lambda functions enable the creation of closures that capture variables in
scope.

• Improved random number generation libraries.
• Polymorphic function wrappers facilitates passing and storing references to

callable objects.
• Regular expressions.
• The auto specifier allows the compiler to deduce types. 3/21



Stimulus Generation with UVM

The generic UVM testbench:

• Active agent injects stimulus into the
DUT.

• Passive agent monitors output.
• Checker correlates inputs and outputs.

Assumes stimulus is generated by a SV
seq/driver pair.

• Not the case for core verification!
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Core Testbench Architecture

Our core testbench:

• Mixed language environment.
• The stimulus is a program binary

loaded into memory.
• Core executes program and the BFM

reacts.
• UVM seq/drivers used for side-band

interfaces.

UVM seq/driver paradigm insufficient:

• We needed to explore alternatives.
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Why SGen?

Prior to SGen we had 2 methods to stimulute our design:

1. Hand-written C or assembly tests.
2. Knob-based assembly generator called PPIGen.

The approaches covered opposite ends of the stimulus spectrum:

• Directed tests used for one-off verification tasks and bring up.
• PPIGen is too random... controllability decreases as the number

of knobs increases.
• We needed to bridge the gap between directed and fully random

stimulus.
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Integrating SGen Into the PPIGen Toolchain

PPIGen

• Directed and random modes.
• Generates init code and linker scripts

based on config input (knobs).
• Compiles and link assembly code to

generate .elf file.

SGen

• Piggybacks onto the PPIGen directed
flow.

• Generates assembly and config files.
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Sequence Generator Tool



Software Architecture

Library descriptions:

• inst: hierarchy of instructions organized
by type.

• seq: sequences written with specific
intent.

• Includes stimulus and config sequences.

• tests: tests achieve goals by using 1 or
more sequences.

• randutils: provides utility classes that
enable randomization.
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Randomization Without Constraints

Weighted set:

• Parametrizable container that holds items and their associated weights.
• pick method selects a item randomly from the set.
• pick_and_delete method selects and removes an item from the set.
• Can contain weighted sets for recursive picking.

Random interface (base class):

• Provides ability to randomize fields belonging to derived classes.
• Maintains a list of lambda functions that are executed in fifo order when the

randomize method is called.
• Lamda functions are added to an object via the push_callback method.
• The push_check method can be used to install callbacks that check for

“constraint violations”.
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Randomization — The Weighted Set Class

1 // Create 2 weighted sets of chars with 2 items each.
2 // Note that the syntax uses C++11 list initialization .
3 wset<char> w1( {{’a’, 100}, {’b’ , 200}} );
4 wset<char> w2( {{’c’, 200}, {’d’ , 800}} );
5

6 // Create a nested weighted set
7 wset<wset<char>> w;
8

9 // Add items to the weighted set
10 // w2 has a higher weight.
11 w.add_item(w1, 100);
12 w.add_item(w2, 900);
13

14 // Pick a character from nested wset.
15 // Template magic will make the call recursive .
16 char c = w.pick();
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Randomization — The Random Interface Class

1 // foo.h
2 class foo : public rand_intf {
3 int x;
4

5 foo() {
6 push_callback(
7 // Set x to 1 by default
8 [ this ]() { x = 1; }
9 ) ;
10

11 push_check(
12 // make sure x is never

greater than 10;
13 [ this ]() −> bool { return (x

<= 10); }
14 ) ;
15 };
16 };

1 // user_code.cc
2 // Create a weighted set with 2 items

with equal weights .
3 // The set contains an illegal value

of 20 that will cause the
simulation to fail if picked .

4 wset<int> w( {{10, 100}, {20, 100}} );

5 auto f = new foo();
6 f−>push_callback(
7 // Add another callback to

override the default
8 [&](){ f−>x = w.pick(); }
9 ) ;

10

11 // execute all lambda functions in
fifo order .

12 f−>randomize();
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Anatomy of a Sequence

• A sequence run generates a preamble that sets up base, scratch, index and
offset registers and the main body.

• The reg_helper class provides random register allocation and reg_init sequence
generates the preamble.

• A light-weight sequence is typically short and thus generating a preamble would
be wasteful; these sequence rely on the top-level sequence for configuration.
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Factories

• A hierarchy of factories reflect the class hierarchy in the inst package.
• arm_factory can instantiate any class that derives from arm_inst.
• The get_types method returns array of registered type names:

• Used to instantiate types belonging to a specific factory
• The user need not know the names of registered types.
• Facilitates writing generic sequences (new types are automatically used).
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Simple Sequence Example

1 auto rand_w = wset<unsigned>(1,100); // random number between 1−100
2 auto& f = simd_factory:: instance () ; // get reference to desired factory
3 auto type_vec = f.get_type_instances() ; // return vector of type instances
4

5 // create weighted set of instances with randomized weights.
6 wset<simd_factory::inst_type> inst_wset(type_vec
7 , [&rand_w](){ return rand_w.pick(); });
8

9 // generate random number of instructions .
10 unsigned num = rand_w.pick();
11 for ( int n = 0; n < num; ++n) {
12 auto inst = inst_wset.pick() ;
13 inst−>randomize();
14 do_item(∗inst);
15 };

Refer to listing 3 in the paper for a more detailed code example that
shows register initialization and instruction randomization.
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Experimental Results



Compile and Link Times

Table 1: Incremental compile and
link times reported by unix time
utility.

Modified user cpu
base class time time

inst 4.5s 1.6s
seq 3.5s 1.3s
test 1.0s 0.5s
all 4.9s 1.8s

• Table 1 shows compile and link times for
when files are modified in different
packages.

• The inst package has the most reverse
dependencies.

• The table shows compile and link times
for when files are modified in each
package.

• The worst case compile time was 5s.

NOTE: Full compile of our testbench took 9m and incremental
compile after touching a single SV test took 6m.
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Regressing RTL Changes

Table 2: Failures broken down by test
type for recent regression and
exerciser runs.

Failures

Series Tests Directed PPIGen SGen

reg0 421 2 0 6
reg1 446 1 0 15
reg2 417 2 0 29
reg3 410 21 16 34
reg4 388 1 1 8

exer0 47 – 0 5
exer1 46 – 0 6
exer2 41 – 9 26
exer3 35 – 1 0
exer4 55 – 1 0

• RTL designer has added SGen exers
to their regression flow.

• reg runs consist of directed tests as
well as PPIGen and SGen exers.

• exer runs consist of only random
exercisers.

• Directed failures do not necessarily
gate check-in.

• SGen has consistently caught bugs
that would have escaped standard
regression.
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PPIGen and SGen Exerciser Runs

Figure 7: Overlap of failure buckets
for SGen and PPIGen

• 25k exerciser runs per generator were run
over a 1 month period.

• 1731 total failures:
• SGen accounted for 1560
• PPIGen accounted for 171

• Once we bin the failures we see that both
tools are doing a good job:

• 41 total buckets with only 13
overlapping.

• SGen is more efficient at hitting bugs
despite PPIGen being the more mature
tool.
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Runtime Speed

Primary motivation for C++11 was speed:

• Typical exerciser run generates tests with 25k–50k instructions.
• For 500 runs:

• the average execution time of SGen was 709ms.
• The number of instructions generated per second was 31k.

• The tool adds no overhead (computes and licenses) to our
simulation times.
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Conclusion and Future Work



Conclusion

• We bridged the gap between directed and fully random stimulus
by creating a sequence-based generator using C++11.

• We were able to express complex dependencies between random
variables despite the lack of a constraint engine.

• Weighted set, random interface and lambda functions.
• New features introduced in C++11 were key enablers.

• Fast compile and run times increased productivity.
• SGen is currently being used in production to verify the Cavium

ThunderX2 core
• Results show that it is better at uncovering certain types of errors

than existing tools.
• Generated more failures than PPIGen for the same number of

runs.
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Future Work

• Continue adding support for SIMD and FP instructions.
• Continue adding to sequence library.
• Improve configuration randomization.
• Explore possibility of using an interpreted language for test

writing (i.e. Python front end).
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End.
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